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Abstract. In this paper we generalize the degenerate two—phase Stefan problem (Mullins—
Sekerka evolution) to multi-phase systems. We prove a conditional existence result for this
evolution problem in the framework of geometric measure theory by using an implicit time
discretization. In each time step we solve a variational problem for an energy functional that
contains capillarity terms as well as bulk energy contributions.

1. Introduction

The Stefan problem describes transitions between two phases. These are melting and
solidification at the interface between liquid and solid. In the original formulation the phase

~ transition was assumed to take place at a fixed melting temperature. This assumption had
the drawback that undercooling (or superheating) can lead to regions of undefined phase
(mushy regions). Therefore, the Gibbs—Thomson law was introduced which takes surface
tension effects into account. This means that the melting temperature is not constant but

. proportional to the mean curvature of the interface. Existence of weak solutions to the

non-degenerate Stefan problem with Gibbs—Thomson law was shown in [L1]. We refer to
the book of Meirmanov [M] for the general theory of the Stefan problem.

In many physical situations heat conduction takes place on a faster time scale than the
evolution of the interface. Having this in mind several authors (see for example [MS, Gu,
LSt]) consider the quasi-static (or degenerate) Stefan problem with an infinite fast heat
diffusion in the bulk. Existence of classical solutions local in time was shown by Chen,
Hong, Yi [CHY] and Escher, Simonett [ES]. In [LSt] a conditional existence result for global
solutions of this problem has been established by using an implicit time discretization of the
problem. The crucial difficulty was to assure the convergence of the time-discrete solutions
in an available sense. For that a condition which excludes a loss of perimeter in the limit had
to be set. In this paper the result of [LSt] is generalized to multi-phase systems. We also
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refer to Luckhaus [L2] and Bronsard, Garcke, Stoth [BGS] for the mathematical treatment
of multicomponent alloy systems. '

1.1 The equations. The degenerate Stefan problem with Gibbs-Thomson law is described
formally by the equations '

(1) X = Au inQ,
(2) H = —(u+f) onl

where Q@ C R, n € IN, is open and bounded, I' denotes the interface between liquid and
solid, H is the mean curvature of I', u is the temperature, and X is the characteristic function
of the set occupied by the liquid. The function f represents outer sources and sinks.

Equation (1) is the quasi-static version of the diffusion equation in the Stefan problem,
incorporating Laplace’s equation in bulk and a jump condition across the interface. The
Gibbs—Thomson law (2) can be interpreted as the Euler-Lagrange equation of the Gibbs-
Thomson free energy

6(0) = [ {92 = (u+ N}

which is defined for all characteristic functions X € BV (Q) (see [L2]).

In the case of N phases, we define X; as the characteristic function of phase 7, the interface
between phases i and j is denoted by T';;, and H;; is its mean curvature. The specific energy
content of phase i is given by the constant 3; and the surface tension on T; is a constant
a;; € IRT. In this notation the energy diffusion equation for the N-phase system is given as

N
(3) S pdX = Au in Qx(0,T).
=1

The Gibbs—Thomson law now demands that at all times ¢t the characteristic functions
(Xy(t), ..., Xn(t)) are a stationary point of

- N N .
G(Xl,...,XN)zfn{ > aijﬂij_Z(ﬁiu+fi)Xi}

1,7=1,i<g =1

in the class
N

S = {(X,..., &) € BV(Q,{0,1)",> A =1}.

=1

The measures j;; are the surface measures of the interface I'y; and they are defined by
pig = 5 (V] + V| = V(X + X)) -

Hence, the Gibbs-Thomson relation becomes

(4) aiHi; = (8; — B)u+ (fi — fi) onlij.

The functions f; represent outer forces which result in generation and extermination of
phase 1.

A weak formulation for this problem is given in the setting of functions of bounded vari-
ation (see [Gi], [S]) as follows:
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Let Q) C R" be open, bounded and OS) Lipschitz. Let (AD,..., X%) € S and let (fi,. .. JIN) €
CO)N with QO == Q x (0, T) for some fized T € R* and let up € L*(0,T; HY*(2)). Fune-
tions (Xi,...,Xn) € L=(0,T;S) together with a function u € up + L2(0,T; H*2(Q)) are
called a weak solution of the degenerate multi-phase Stefan problem with Gibbs—Thomson

law (3), (4) if

55 [ o+ [x0) = [vuve
(5) =1 g Q o

for all £ € C=(Qr7, R), ¢(T) = 0, €laax (o) = 0

and

i /aij (div( — %VC%);LH + zj\f: /(ﬂzu + fi)¢(VX; =0,

(6) i,7=1,4<g Qr =1 Qr

for all (€ C®(Qr,R")  with (- vlsgxor) = 0.

The orientation of I';; is defined by the inner normal to the set occupied by the phase .
By v we denote the outer normal to 80 and we assume that the coefficients describing the
specific energy content of the different phases §; € IR are mutually different, i.e.

(7) Bi#B; fori#j.

The surface tension coefficients a;; € R* have to satisfy the subadditivity condition (see

[L2])

(8) a,-jgaik+akj for alli,j,kE{l,...,N}'

which will guarantee stability. We require symmetry, that is

(9) i = oy
and we define «; := 0.

The equation (6) is a weak formulation of (4) and it can be shown that (6) implies (4)
for smooth surfaces. Furthermore, from (6) follows an angle condition at points where three
interfaces meet (see [BGS]). To demonstrate that the measures Hij can be interpreted as
surface measures on the interfaces T’ ij We give a representation formula in terms of the
reduced boundaries 8*); of the sets §); (for a definition of the term reduced boundary see

[Gi]). Then it holds for all open sets O C

N
(10) IVXIQ) = Y 7 (0°0 N o N )
k=1,ks#i
and
N
A1) V(A4 X)I@) = Y [H (0% N0 N Q) + K (079 N 8" N Q)]
k=1,k#i,j .
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(for a proof see Vol’pert [V] and Baldo [B]). This implies

(12) pii () = HH (@ N N Q)
for all open sets Q' C Q. In addition, it holds
X; X '
(13) lg—kf—l + ngjl =0 Hij — a,lmost everywhere.
) - 7

1.2. The discretization. Similar to [LSt] we construct time-discrete solutions (Xh o xR
and u” for time steps k > 0. For that we have to solve the following minimum problem in
each time step: minimize the functional

N

= 5 h
f’ht(Xla . ,XN) = E Q;j / Hij + 5 / VUV(U — u?’))
1,§=1,i<g Q

(14)

>

2

Q
N .
> [ Gite) + b)) %

in the class S, where the fi;; are the interface measures with respect to (X, ..., Xn) and
v € HY(Q) is the weak solution of

N

(15) S Bi(X— Xt —h) =hAv, v= uly ()5

=1

which is the implicit time discretization of (3) when (X1,..., AN) = (xh(t), ooy XR(2)) and
v = uM(t). The discretization of the boundary values uf are chosen such that they are
constant on time intervals (kh, (k + 1)h), k € IV, and ul — wp in L2(0,T; H*(Q)) when
h tends to zero. In addition we assume without loss of generality that the boundary values
are extended into € such that Aup(t) = Aul(t) = 0 holds for almost all {. Minimizing
the functional F™* is closely related to the equations (4) and (6) since the corresponding
Euler-Lagrange equation is given by

N

s NXME) VAR
2 / oy (div ¢ - lvx,-wtnw|vzvf<t>|)"5f

1,§=1,1<73 Q

(16) £ [(Bute) + £V ) =0

for all ¢ € C(Q, R") with ¢ - v]sax(,r) = 0.

This can be shown as follows. Let X"(¢) be a minimizer of Fht and let u"(¢) be the solution
of the elliptic boundary value problem (15) with X; = X!(t). Given a function ( with
properties as in (16) we define a family of transformations of the set O by ¥ : Q0 x R —
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which we construct by solving the initial value problems

d—‘i\p(m,e) = ((U(z,e)),
U(r,0) = .

The condition for ¢ on the boundary of Q guarantee that ¥(-,¢) maps Q in . The trans-
formations ¥ are constructed such that

| & (2, )emo = (),
i.e., ¥(-,¢) transforms () in the direction of the vector field (. Using the notation Q% := {z €
QX (t,z) = 1} and QF, :={((z,¢) |z € O} we define X[, as the characteristic function
of the set Qi‘s and v as the corresponding solution of (15). The Euler-Lagrange equation
(16) now follows from

d
(17) , ng""(xl’;, cees X om0 = 0 |
which is true because X = X (¢) is the minimizer of (14). To compute the derivative
z,€|5_0 K

with respect to & of the first term in Fhixt,, ey XN ) (see (14)) one can apply the same
arguments which are used to derive the first variation of area (see Giusti [Gi], Chapter 10).
The non-standard part is to compute the derivative of

A N
= [ Vo V(of —ul) — /,',Biuh X
3, Ve =3 [

with respect to . Defining w® 1= v® — 4. w := wh(¢) — u® and using Aub, = 0 we calculate
P g D> D g D

h l
3 /r; VoV (v —ub) — Z—: Bl xs

1=1 Q
= ﬁ/[VwEP—ZN:/ Biul s
2 /o o P

i=1

h h al
= — V(w® —w 2+h/Vw‘—wVw+’—/ Vuwl|? — /ﬁ,»u")(f
5 [ 19 =P+ [ v 5 vl =3 [ o
h N h al
= - [ [V —w)? - /ﬂixfe—xi"w—/ Vul|? — /ﬁ.-u")(f
5 190 =3 = Atk g [1wer =3 [ o
— h/lv( ‘5 )IZ iv:/ ﬂ'Xh h t) > ﬂ'Xh +ﬁ/lv ’2
Tz T n’f’su(jL;/g”wzaw

=1
We observe that the first term is o(¢) and that the third and fourth term do not depend on
¢. Differentiating the second term by using the change of variables formula yields

(bl o & e - l
= <§/I;VU V(v —ub)—é?/ﬂﬁmb&) 22/9 Biu" (£)(V X,

le=0 1=1
The derivative of the fi—term can also be computed by using the change of variables formula.
This proves that (16) is the Euler-Lagrange equation of the functional F"t,
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Starting with X? one constructs X/ (kh) , k € IV, as the minimizer of F"* by iteration.
For t € (kh, (k+1)h) we set X[(t) = X['((k+1)h). The existence of a minimizer of F™! can
be seen as follows: From the BV—compactness—theorem we immediately get the convergence
of a minimizing sequence (X}, ..., X% )en in L*(Q)N. Defining v; as the solution of (15)
with X; = X! we conclude that v' — v in H"*({2) and we establish the continuity of the
Vy_term in the functional Ft. To finish the existence proof we need alemma which assures
the lower semicontinuity of the interfacial energy term in F byt

Lemma 1.1. Let o;; € Rt (i,5 = 1,..., N) satisfy (8). Then the functional

N
.A(Xh... ,XN) = Z a,-j/,u,'j
Q

1,J=1,i<J

is lower semicontinuous in the class S with respect to strong convergence in L'(Q).

Proof. Assume (X}, ..., XY) = (X1,..., An) in L'(2). We define measures ut by

N
pi(D) :=/ VY aiXjl, i=1,..,N
D j=1

for all D C ) open. Baldo [B] demonstrated that under the assumption (8) the equality
N N

(18) V= > e
i=1 §,j=14<]

holds. By Viil (b we denote the measure theoretic supremum of the measures (£, ..., ply,
which is defined by ‘

N N
\/ ph(D) := sup{ z,ui(Di) | D; C D open and mutually disjoint } .
=1 =1

Let D; C ©Q be mutually disjoint and let g; € C3(Di, R") with |g;{ < 1. Then we may
estimate
N

nJ=

N
/a’i]’dengi =llim Z/Ol,‘j)(j dng,'
1 Q _)ooi,jzl Q
N

< limi Q).
< s\ )
Taking the supremum over all possible choices of D; and g; gives
N N
' . !
V@) < lpint\/ 4

Applying the identity (18) gives the assertion of the lemma.
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2. The existence result

We first prove the compactness of the discrete solutions (XP,..., &%) in LY(Qr). This
will be shown with the help of the following four lemmas. We assume that 9 is Lipschitz.
First we show an a priori estimate.

Lemma 2.1 (a priori estimate). The discrete solutions (Xp, . xR fulfill
N
sup Z /,uf](t)—i—/ IVt < C
t€(0.T) ; ;e I Qr

where C is a constant depending on fﬂ VAL, ||uD“L2(O’T;H1,2(Q)), Il fillzr (), ij and B;
(ij=1,...,N).

Proof. We sum F™(X[(kh), ..., X2(kh)) over k. Then we use that (XL (kR), ..., X1(kh)) is
a minimizer of F™*. This implies in particular

FUXMER), ..., XR(kR)) < Fht(Xh((k - 1), .., X((k — 1)R)).

Now we can establish the a priori estimate with the help of Young’s inequality.

Lemma 2.2 (Compactness in space). The discrete solutions (XL xR fulfill
[ 128 +58) 2 —s0
5—0
Q7!
uniformly in h for each unit vector € € IR", each 1 <i < N, and each Q7' cC Or.

Proof. By approximation with smooth functions we can establish that

(19 [ i sey -zt < s [ o
QTI nT
holds if s is sufficiently small. Since
1 Al |
h . h
/IVXi < ming; o;j . Z [ s
we have the uniform boundedness of J IVXP| from the a priori estimate in Lemma 2.1.

Qr
Hence the claim follows from (19).

0O

The next lemma is needed in order to control time differences of the solution.

Lemma 2.3. Let ¢ € BV(Q), [l¢llo < M € R*. Then there egist constants ¢, p, € IRt
depending on Q and M such that for all p < pg

C
e p( [1vel+ cH"—l(am) + Zplln-sae -
0 0
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Proof. Let 1, = p™"¢() be a smooth mollifier with compact support. We split

(20) /lwlS/lw*tbp—sOH/I(P*%l

Q

where we extend ¢ by zero on R"™\ . In order to treat the first term on the righthandside
of (20) we consider an arbitrary u € C (@), |u| < M. Choosing 1 € C5°(2), 1 = 0,
V| < efe,ne=1n Qe ={z €Q: dist(z, 8) > €} we compute

[ twn s =l < / 9 (une)
Q

p
p/nelvu“FCE / |u[

Q O\Q.

p( / V| + c’H"_l(aﬂ))

for p < po with suitable po,c. Passing to the limit ¢ — 0 and approximating ¢ by smooth
functions u (see [Gi]) we obtain

IN

IN

/ o %1, — ol < p( / V| + cHP 1 (89) -

The second term in (20) is estimated by

C
/ o < Slll-rn)
0

This proves the lemma. O
Lemma 2.4 (Compactness in time). The discrete solutions (Xh, ... k) satisfy
T—r N
/ / I B+ ) - &) < et
=1
Proof. We can assume 7 = kh, t = mh for some kE,m € IN. For abbreviation we set

P = Zz B XE (- + 1) — XP). Using that (Xh, ... X]'\‘,) is a solution of the implicit time
discretization of the d1ffus1on equation and the a priori estimate (Lemma 2.1) we estimate

t4-7
Xh(s X” (s—h)
[ / IZ@ me)
t+7 %
< /( / ||uh<s>ui,1,2(m)
t
< erl/? .

Employing the last lemma with p = 71/4 finishes the proof. O
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The results of the Lemmas 2.2 and 2.4 enable us to apply the Fréchet-Kolmogoroff com-
pactness theorem to deduce the existence of a subsequence of (Xp, ..., &%) (for which we
use the same notation as for the whole sequence) such that

N
. vk N
(21) le B -— X in L!(Qr)
for some X € L'(Qr). A subsequence converges in addition almost everywhere and therefore,
A only attains the values 3, = 1,..., N. Defining Q; := {z|X(z) = B;} and X; as the
characteristic functions of Q; we conclude X,-" — A; almost everywhere and therefore

(22) X x in L'Or) foralll1<i< N

' b0
with (X1,...,Xn) € L®(0,T;5). From (22) and the a priori estimates of Lemma 2.1 we
obtain that
(23) VA = VX, foralll<i< N

in the sense of Radon-measures. Now we want to pass to the limit in the implicit time
discretization of the diffusion equation and in the weak formulation of the Gibbs-Thomson
law. To do so we have to require that there is no loss of perimeter in the limit, i.e.

(24) /|w¢."| - /|vx,-| forall1 <i< N .
Qr Qr

This condition gives us control on the limit behaviour of the normals VX! /|VX!|. Conditions
of this form are typical in this type of geometric problems and we refer to [ATW, LSt, BGS, 0]
where the same conditions were assumed for other geometric problems.

Our main result is:

Theorem 2.5. Let @ C IR" be open, bounded and 99 Lipschitz. Suppose ;€ R, 1 < i <
N, and ai; € R*, 1 <i,j < N, satisfy (7), (8) and (9) and assume that (24) holds. Then
there ezist functions (Xy,...,Xy) € L®(0,T;S) and u € up + L*0,T; ﬁl’z(Q)) which are
a weak solution of the degenerate multi—phase Stefan problem with Gibbs—Thomson law (3),

(4)

Proof. Since u" is bounded in L*(0, T H'2(Q)) uniformly in A (see Lemma 2.1) we get the
existence of a weakly convergent subsequence

u" = w in L*(0, T; HY*(Q)) .
From the weak completeness of L?(0, T; H*2(2)) we see that
w € up + L*0,T; HY*(Q)) .
A discrete integration by parts of the term fﬂT o7 ke gives (5) if we pass to the limit

h — 0 in the implicit time discretization of the diffusion equation (see (15) for X; = X} (¢)
and v = ul(¢)).

It remains to show (6), which we shall derive from (16) in the limit & — 0. The convergence
of the term fn(ﬁ,-u" + fi)¢V X! follows since we can use the identity '

/ (Biuh + £;) (VA = / div(But¢) X + / FiCV XM,
2 0 Q
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With the convergence we established above it is possible to pass to the limit in the B;u— and
the f,—terms.
For the treatment of the curvature term we first show

(25) [l = phij

in the sense of Radon measures. We will always consider the measures as measures defined
on IR" by extending them by zero outside of {. To establish (25) it is sufficient to show

Jo Futs = fo fui for all f € C°(Q).

Assumption (24) and the lower semicontinuity of |VA!| on open sets imply

limsup/ |V = limsup </ |V —/ ]VX{'I)
h—0  JKnQ h—0 Q O\K
< / IV/Yz"—-/ |VX,I =/ ‘V‘th
Q MK KnQ

for all compact K C IR". Hence we can use a theorem which characterizes weak conver-
gence of Radon measures by lower semicontinuity of the measures on open sets and upper
semicontinuity on compact sets (see Theorem 1 in Section 1.9 of [EG]). This result implies

|

’

(26) /ﬂ VAP = / IV

for all f € C°(f). From (10)—(12) we get the representation
N
[ avaii= 0 s
@ i=1,5i

Using the lower semicontinuity

lim inf |wﬂwmelﬂw&+&n

h—0 [

which holds for all open sets €)' C  then gives for all f € Cco(Q), f>0

h—0

(27) hmﬁ/ﬂww+4mz/ﬂw&+&»
Q Q

This follows as in the proof of Theorem 1 in Section 1.9 of [EG].
From (26) and (27) we conclude that for all f € C°(Q2), f >0

(28) lim sup /ﬂ fuls < L Fui

h—0
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A strict inequality in (28) would imply that for nonnegative f € C°(())

/ fIVX] = lim / FIVAL
0 h—0

- [ > g

J=1,5#4
N
< Z limsup/ fufj
=15 h—0 Q
N
< 3 [ su= [ sivng
=15 7 &

which is a contradiction. Since the above argument works for all subsequences we conclude

. h __ -
lim /ﬂ fuii = /n fui

for all nonnegative f € C°(). A splitting of a general f € CO(‘Q) in a positive and a
negative part then gives (25).
Hence the convergence

i": ./%dl"CH Z /as’jdiVij

43=1,4<J o 4LI=Li<j o
is established. It remains to show
h h h
(29) / vV Qv u — /V,V(l/,,um
Q
.VX VA . . .
e - ‘ -: 7 T . . - - L - (> &

where we set v : IV—X’T and y; := AR Therefore, we need approximative normals ge €

Ceo (2, R™), |ge| < 1 such that

/ (1— g.) [V <e.
9]

The existence of such g, follows from the definition of [, [V.X;|. From (23) and (24) we get

[l

lim / (1—gv)|Vah lim/ (IVah AL
Q Q

h—0 h—0

(30) - /ﬂ Vx| — /Q GV

= / (1 — geVi)lV/Yil <e
Q
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which implies that g. is also a good approximation of the normals v if & is small. Now we
estimate with a constant C' depending on (:

l f V?Vg%hﬂ?j - sz'VCVi/iij
Q Q

[ = g )V + ge)uly + SJ{ 9:VCae(ply — pig) + S{ (ge — vi)VC(vi + ge) i
0

< C [ |l =glIVAH + lfgeVCgs(ﬂ?j — pi)
Q Q

+ C f |Vi '-gsl |VX’L|
)

Therefore, it follows

(31)

lim supj_o <

({V?VCV?#Z - S{VNCV:'M

< c (nmsuphﬁof W — g VAR 4 [ i — gl wl)
Q Q

Since ,
W =g’ = WP —290F + |ge* < 2(1 = ged)

the convergence (29) follows from (30) and (31) for ¢ — 0. This proves the theorem.
: O
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