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Abstract

We present an existence result for the Cahn—Hilliard equation with a con-
centration dependent mobility which allows the mobility to degenerate. Formal
asymptotic results relate the Cahn—Hilliard equation with a degenerate mobil-
ity to motion by surface diffusion V= —Agx. We state a local existence result
for this geometric motion and show that circles are asymptotically stable.
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1 Introduction

In this paper we discuss a phenomenological model for isothermal phase separation in
binary alloys which was introduced by Cahn and Hilliard [6, 7]. We assume that the
alloy occupies an open bounded domain 2 C R" with smooth boundary. If ¢; and ¢
denote the local concentrations of the two components of the alloy we can introduce
u = ¢; — ¢ as an order parameter for the system.

Then the law of mass conservation gives

Uy = -V-J
where the vector J denotes the mass flux. For J we assume a generalized Fick’s law
J=—-B(u)Vw

with a nonnegative mobility B which can depend on the concentration. Furthermore
w 1s the difference of the chemical potentials of the two alloy components and is given
as

w = —yAu+ ¥'(u)
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where v > 0 is a small parameter and ¥ is the homogeneous free energy. The chemical
potential w can be seen as the functional derivative of the free energy

E(u) = /Q (% |V |? —|-\I!(u)> de |
For the homogeneous part of the free energy we choose for the moment
U(u) = (u* — 3%)? BeR?.

With this choice the free energy is of the typical Ginzburg-Landau form with the
gradient term representing interfacial energies and the homogeneous free energy of a
double well form, where the two minima of ¥ correspond to the two different phases
of the system. Similar energies arise for example in the theory of van-der—Waals
fluids and in models for shape memory alloys.

We supplement the system with the no—flux boundary condition n -J = 0 which
ensures mass conservation and the Neumann boundary condition n - Vu = 0 which
is the natural boundary condition for the functional £. By n we denote the outer
normal to €.

The structure of this paper is as follows. In section 2 we review some well known
results for the case of a constant mobility. In particular we discuss the stationary
situation. Then we consider a mobility which can depend on the order parameter u
and we allow mobilities which can degenerate. An existence theorem for the resulting
fourth order degenerate parabolic equation is presented in section 3. The Cahn-
Hilliard equation is related to certain sharp interface models. In section 4 we discuss
motion by surface diffusion which arises as the asymptotic limit in the case of a
concentration dependent mobility. We give a local existence result and show that
circles are asymptotically stable. Some remarks on open questions and conjectures
are given 1in section 3.

2 Constant mobility

In the case that the mobility is constant (we choose B = 1) the Cahn-Hilliard equation
becomes

u = A(—yAu+ U'(u)). (2.1)

First we want to discuss the stationary case which is related to the question, which
are the possible states as t — oo. Using the no—flux boundary condition we can lift
the outer Laplacian to get

—vAu + ¥'(u) = const

Solutions to this equation are critical points of the energy functional

E(u) = /Q (% |V |? —I—\Il(u)> de |



if we allow variations subject to a mass constraint fqu = u,. Because we are
interested in critical points which are limits as t — oo of the Cahn—Hilliard equation
the mass u,, is given by the mass of the initial values.

First of all let us investigate absolute minimizers of the functional £ subject to
the mass constraint. In the case v = 0 all minimizers are given by the two valued
functions

u() = { _g v o (2.2)

where Q; UQ_ = Q and B|Q4| — B|Q-| = un|Q|. Here we assumed |u,,| < 5. We
get no restrictions on the shape of the interface and in particular interface energy
is neglected. To include interfacial energy Cahn and Hilliard introduced the higher
order term Z|Vu|® in the free energy. This term penalises gradients and therefore
minimizers of £ with 4 > 0 have to be more regular and try to minimize interfacial
regions.

There is a fundamental result by Modica [17] who proved that minimizers of the
functional £ converge as v tends to zero (in the sense of subsequences) to a two valued
function of the form (2.2) where the interface between 2, and €_ has minimal area.
This shows that the term 2|Vu|* models interface energy. In general there exist other
critical points. In one space dimension Zheng Songmu [20] showed that if |u,,| < 3
there exist 2N + 1 (N € IN) critical points, where N is related to 4 and tends to
infinity as ¥ tends to 0. In higher space dimensions the full characterization of critical
points is still an open problem.

We now return to the evolutionary problem. Well posedness results such as exis-
tence and uniqueness of solutions are well established (see [14]). Furthermore in one
space dimension solutions tend to the critical points as t — oo (see [20]).

There have also been a number of numerical studies for the Cahn—Hilliard equa-
tion, which support the fact that the Cahn—Hilliard equation models phase separation.
In particular they show that at early stages the solution rapidly tends to the values
4 and forms thin transition layers between the different phases. In material science
this is known as spinodal decomposition — the solution tries to avoid the unstable
concave part (the spinodal interval) of the energy. After this first stage of the evolu-
tion the solution has a fine grained separated structure and therefore the interfacial
part of the energy is still large. In a second much slower part of the evolution some
grains grow and other shrink in order to reduce the interfacial regions under the im-
plicit constraint of mass conservation. This latter stage of the evolution is known as
coarsening. The generic case is that the solution converges for ¢ tending to infinity to
a limit which consists of two regions (a {u = §} and a {u = —[} region) separated
by a thin interfacial region. For numerical results and a review on results for the
Cahn-Hilliard equation with constant mobility we refer to Elliott [10].

3 Non—constant mobility

The mathematical literature has so far mainly considered the case of a constant
mobility. But in applications the mobility usually depends on the concentration. In
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the interfacial region (i.e. |u| = 0) the diffusion is much larger than in the pure
components (i.e. u = +1). Typically a mobility of the form

1—wu?  for lul <1,
B(u):= { 0 for  Ju|>1 (3.3)

is chosen (see Hilliard [15], Langer, Bar—On and Miller [16] and deGennes [9]).
Let us now discuss some difficulties which arise in the mathematical study of the
Cahn-Hilliard equation with a concentration dependent mobility of the above form.

1. Difficulty: The Cahn-Hilliard equation becomes a fourth order degenerate
parabolic equation. Therefore it has similar difficulties as other degenerate parabolic
equations such as the porous medium equation

u— V- (Ju|"Vu) =0 (3.4)
and its fourth order analogue
u + V- (Ju]"VAu)=0. (3.5)

The equation (3.5) was introduced to model the motion of viscous droplets spreading
over a solid surface. Bernis and Friedman [2] studied this equation in one space di-
mension and proved existence of a positive weak solution and results on the behaviour
of the support of the solution.

2. Difficulty: Because the equation is a fourth order parabolic equation there is
no maximum principle valid. Therefore many techniques which were developed for
porous medium type of equations cannot be applied.

3. Difficulty: We want to develop an existence theory which allows the homogeneous
free energy to become singular when |u| — 1. This is due to the fact that the
homogeneous free energy in applications usually has a logarithmic form. An existence
theory should include the following three cases:

i) The mean field potential

U(u) = g (T+w)n(l +u)+ (1 —u)ln(l —w))+ \Ifz(u) (3.6)

where ¥? is a smooth function and # is a positive temperature.
ii) The double obstacle potential

.2
\Il(u):{l w?  if fu] <1,

00 otherwise.

which is the deep quench limit # N\, 0 of 1) if one chooses ¥?(u) = 1 — u?* (see Blowey

and Elliott [4]).
iii) The smooth double well potential

T(u) = (- F2 FeER*



which we introduced before.
Now we formulate general assumptions under which we can prove the existence of
a weak solution. We define

U(u) =T (u) + U*(u)

with a smooth function ¥? and a convex function ¥' : (—1,1) — R such that
(I"Y'(u) = (1 — u?)"'F(u) where F € C'([-1,1], R¥). This allows in particular the
logarithmic free energy i). The mobility is chosen to be of the form (3.3). Under
these assumptions the following theorem holds.

Theorem 1 (Elliott and Garcke): Let either 9Q € C"!' or Q) convex and suppose
E(ug) is bounded and |ug| < 1 a.e. Then there exists a pair (u,J) such that

a) we L*0,T; H* ()N L>(0,T; H'(Q)) N C([0,T]; L*(N)) ,

by w e I2(0.T; (H'()))

c) u(0)=uy and Vu-n =0,

d) Jul<1 ae in Qpr:=Qx(0,T),

e) JeL*(Qr,R"),

which satisfies u; = =V - J in L*(0,T; (HI(Q))') and

J = —B(u)V (—yAu+ ¥'(u))

in the following weak sense

Jom=— [ BAGY - (Blum) 4 (BY)w)Vu-

Qr
for all p € L*(0,T; H (Q,R")) N L>(Qr, R") which fulfillp-n =0 on 9Q x (0,T).

The proof of this theorem is based on the following two energy estimates. We point out
that the following calculations to derive the energy estimates are of formal nature, but
they can be made precise for a regularized problem (see [11]). First we differentiate
the free energy functional to get

%S(U(t)) _ %/ﬂ(%wmuwu))

— /Q (YVuVu, + U (u)u)
— /Q (—vAu+ T (u)) u,
— /QwV (B(u)Vw) = — /Q B(u)| V|
This gives £(u(t)) + fo, B(u)|Vtw|> = E(uq). To derive a second estimate we introduce

the function ®(u) = (1 + u)In(l + ) — (1 — «)In(1 — u) which is the logarithmic

part of the mean field potential. We note that ®”(u) = ﬁ Using this fact we can



establish a second estimate

%/ﬂ@(U) = /Q(I)/(u)ut:/Q(I)/(“)V'B(U)V(—fyAu-y\I/'(u))
— —/chll(u)(Vu)B(u)V (—yAu+ T (u))

= — [ Al = [ @Vl = [ eV,

Since ¥} is bounded we can use the estimate on the gradient of u to control the last
term on the right hand side. Therefore we get

et + [ (1auf + v vaP) < [ o) +ct.

The idea of the proof is now to replace the degenerate mobility B by positive mobilities
B. and the singular part ¥, of ¥ by smooth ¥! such that B. and ¥! converge to B and
U'. This modified problem has a solution for which we can show energy estimates
similar to the two above. Compactness results give the existence of a converging
subsequence and we can show that the limit solves the degenerate Cahn-Hilliard
equation in the sense stated in Theorem 1. We want to stress that we can show that
|u| remains less than or equal to one without having a maximum principle.

For a complete proof of a more general version of this theorem see [11].

4 Sharp interface models as asymptotic limits

As in the stationary case one observes that the parameter v is related to the thickness
of the interface between different phases and that the thickness tends to zero as
tends to zero. Therefore one expects to recover a sharp interface model in the limit
v N\ 0. That means we expect to get an evolutionary problem for hypersurfaces I';
(t is the time parameter) which is the limit of the zero level sets of the solutions to
the Cahn—Hilliard equation.

The first result in this direction for the case of constant mobility has been es-
tablished by Pego [18] who used formal asymptotic results to show that I'; evolves
according to the law

Aw =0 forz € Q\ Ty,
w =K forxz ely,
V =n-Vw]t forzel,
and Vw-n =0 on Jf)

where n denotes the normal on T'; (£ respectively), x is the mean curvature, V is the
velocity of T'; in normal direction and [.]* denotes the jump across I';. To determine
the evolution one has to solve Laplaces equation in the bulk with Neumann boundary
condition on Jf) and a Dirichlet condition on I';. Unless I'; has constant mean curva-
ture Vw will suffer from a jump discontinuity along I'; which is the driving force of
the evolution. This evolutionary problem is known as the Mullins—Sekerka problem
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and can be seen as a quasistatic version of the Stefan-problem with a Gibbs-Thomson
law on the free boundary. For rigorous results on the convergence of solutions of the
Cahn-Hilliard equation to solutions of the the Mullins—Sekerka problem see the work
of Stoth [19] and Alikakos, Bates and Chen [1]. All results hold after a rescaling of
time (t — /7t). This shows again that the second stage in the evolution of the
Cahn—Hilliard equation is on a slow time scale.

If the mobility is B(u) = 1 — u?, Cahn, Elliott and Novick-Cohen [5] used formal
asymptotic techniques to show that in the limit as 4 tends to zero, I'; evolves according
to the law

V=—-Ask (4.7)

where Ag is the surface Laplacian. Their result holds for the deep quench limit and
after a rescaling of time (t — ~t). Therefore the evolution of the Cahn-Hilliard
equation with the mobility B(u) =1 — u?

The geometric evolution (4.7) is known as motion by surface diffusion and in
contrast to the Mullins—Sekerka problem is a purely local evolution, i.e. the normal
velocity is determined by local quantities. Because the mobility in the Cahn-Hilliard
equation with degenerate mobility was zero in the pure phase, we do not get any bulk
diffusion in the limit.

is on an even slower time scale.

Let us now derive some simple properties of motion by surface diffusion. If one
starts with a compact initial surface 'y which is the boundary of an open set ©(0)
we get

d
a‘/olume(ﬂ(t)) = /Ft V= N —Agr =0

where Q(t) is the set enclosed by I';. Therefore motion by surface diffsion preserves
volume. For the perimeter of Q(t) we can derive

%Per(ﬂ(t)) - —/Ft KV = —/Ft w(—Asw) = —/Ft Vsr[* <0

which means that the perimeter decreases.

Now we want to present some results for the two dimensional case, i.e. for the
evolution of curves in the plane. We have to consider V' = —3d,,x where J,, is the
second derivative with respect to arc—length. First we state a local existence result.

Theorem 2 (Elliott and Garcke): Assume I'g is a simple connected closed curve
and [p (k])? is bounded. Then there exists a time T > 0 such that the motion
V = —0,sk possesses a strong solution on the time interval [0,T] and
2 T 2
ess su K —I—/ Vo<C
P0<t<T/F (Ks) o Jr, 2=

t

is satisfied.

This theorem is proved by writing the evolution equation as a graph over a fixed
curve. The resulting equation is a nonlinear fourth order parabolic equation and can
be solved via linearzation and application of Schauders fixed point theorem (see [12]
for a proof).



In general we do not expect that a simple connected curve remains simple, i.e. we
expect self intersections to occur. But in the case that the initial curve is close to a
circle we can prove that no self intersections occur and that a global solution exists.
This fact is formulated in the following theorem (see [12] for a proof).

Theorem 3 (Elliott and Garcke): There exists a § > 0 such that :
If the initial curve 'y is given as

Lo = {d°(#)(cosh,sinb) | § € S'}

and satisfies

|d°(.) — ervsy <0 and s (k2)* <6

then the evolution problem v = —k,, has a global strong solution with initial curve
To.

Our last theorem states that solutions which exist globally in time converge to a
circle. The proof of this theorem is based on energy estimates and the fact that the
length decreases during the evolution (see [12]).

Theorem 4 (Elliott and Garcke): Assume a global simple connected solution T
of V.= —k,, exists. Then there exists a time Ty such that T'; is given by a periodic
function R(.,t) : [0,27) — R* in the following way

Ty ={(xo(t),y0(t)) + R(0,t)(cos 8,sinb) |6 € [0,27)}

for all t > T,. Moreover
1.) Length(I'y) \( Lo
and 2.) ||R(.,t) — Rl — 0
where Lo, (R ) is the length (radius) of a sphere which encloses a ball with the same
area as §2(0).

The last two theorems show that circles are asymptotically stable.

5 Open questions

There remain many open questions. The most important is whether there exists
a unique solution to the Cahn-Hilliard equation with degenerate mobility or not.
It is known that the initial value problem for the equation w; = —(|u|"Uzzz), can
have more than one solution (see Beretta, Bertsch and Dal Passo [3]). But this
nonuniqueness result is for a weaker notion of solutions than ours. For our concept
of solution, which is introduced in Theorem 1, we conjecture that only one solution
exists.

It also would be interesting to know more about the qualitative behaviour of
solutions. The dynamics will strongly depend on the choice of the homogeneous free
energy. If we choose the logarithmic free energy (3.6) the minima of ¥ are strictly
less than one and we expect that the set {|u| = 1} is empty or has at least measure
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zero after a certain time. In the case of a constant mobility Elliott and Luckhaus [13]
showed that the set {|u| = 1} has zero measure for all t > 0 even if {|ug| = 1} has
positive measure.

If we choose the double obstacle free energy, the minima of ¥ are +1. As in the
case of constant mobility we expect that the sets {u = 1} and {u = —1} develop
an interior and that one gets a free boundary problem for {u = 1} and {u = —1}.
Moreover there are no results known for the asymptotic behaviour as ¢ tends to
infinity.

Another important class of open questions concerns the regularity of solutions.
First of all we would like to answer the questions whether the solution is continuous
or not. Since the equation is of fourth order, techniques based on Moser or deGiorgi
iteration techniques seem not to be applicable directly.

A rigorous result concerning the convergence of solutions of the Cahn-Hilliard
equation with a degenerate mobility to solutions of motion by surface diffusion is still
missing. Also there are no rigorous results on motion by surface diffusion in higher
space dimensions, but numerical computations and formal analysis by Coleman, Falk
and Moakher [8] show that cylinders are unstable.

Finally we want to show that self intersections of curves evolving to motion by
surface diffusion are possible. If we do not understand I'; as a phase boundary we can
continue the evolution after self intersections have occured. The question arising then
is whether the nonlinear fourth order parabolic equation which governs the evolution
has a global solution or if finite time singularities occur such that a solution cannot
be continued.
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