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Abstract. We prove local integral (entropy) estimates for nonnegative solutions
of the fourth-order degenerate parabolic equation

ut + div(unr�u) = 0

in space dimensions two and three. These estimates enable us to show that solutions
have finite speed of propagation if n 2 ( 1

8 , 2) and that the support cannot shrink
if the growth exponent n is larger than 3/2. In addition, we prove decay estimates
for solutions of the Cauchy problem and a growth estimate for their support.

1. Introduction. We consider nonnegative solutions of the initial
boundary value problem

8><
>:

ut + div
�
unr�u

�
= 0 in ⌦⇥ (0, T )

@
@⌫ u = @

@⌫�u = 0 on @⌦⇥ [0, T ]
u(x, 0) = u0(x) in ⌦

(PT )

in space dimensions two and three. This problem appears in the lubrication
theory for thin viscous films that are driven by surface tension and the
function u is the height of the film (cf. [15]). The above partial di↵erential
equation is a fourth-order parabolic equation that degenerates for u = 0. In
recent years also other examples of similar degenerate parabolic equations
of higher order appeared in the physics and materials science literature. We
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only mention models for phase separation in alloys (Cahn–Hilliard equation
with degenerate mobility; cf. [8], [10], [11]) and models for the evolution of
dislocation densities in the theory of plasticity (Norton–Ho↵-type models;
cf. [14]). For an overview on degenerate parabolic equations of higher order
and their applications we refer to Bernis [2].

The mathematical investigation of problem (PT ) started with a paper
by Bernis and Friedman ([5]). In one space dimension they were able to
show the existence of a nonnegative Hölder-continuous solution for all values
n � 1. The Hölder continuity of the solution is important for their analysis
because it ensures the smoothness of the solution where it is positive and
it implies its boundedness. Bernis, Peletier and Williams ([6]) studied the
question whether self-similar source-type solutions of the Cauchy problem
corresponding to (PT ) exist. They showed that only for n 2 (0, 3) self-similar
source-type solutions with finite mass exist.

A new idea in the study of fourth-order degenerate parabolic equations
was the discovery of new integral (or entropy) estimates, which in one space
dimension are derived from the equality

1
↵(↵+1)

d

dt

Z
⌦

u↵+1 = �
Z

⌦
un+↵�1u2

xx �
(n+↵�1)(2�↵�n)

3

Z
⌦

un+↵�3u4
x. (E)

A careful analysis shows that identity (E) gives a priori estimates for real
numbers ↵ satisfying 1

2  ↵ + n  2. In the paper by Bernis and Friedman
([5]) the identity (E) was applied only for ↵ = 1�n. Using the new estimates
Beretta, Bertsch and Dal Passo ([1]) and Bertozzi and Pugh ([7]) were able to
prove regularity results that are optimal in the sense that they are sharp for
the source-type similarity solutions. Integral estimates derived from a local
version of identity (E) are used by Bernis ([3]) and Kersner and Shiskov ([16])
to show that in one space dimension solutions to (PT ) have the property of
finite speed of propagation of their support if n 2 (0, 2). In addition, Bernis
([3]) obtained regularity results for the resulting free boundary and decay
estimates for t ! 1. In a recent paper, Bernis ([4]) extends his result on
finite speed of propagation to the case n 2 [2, 3).

Although there has been some progress in the study of degenerate par-
abolic equations of type (PT ) in one space dimension, many questions are
still unanswered. Probably the most important one is to define classes of
functions in which problem (PT ) has a unique solution. In this context we
refer to Beretta, Bertsch and Dal Passo [1] for an example of nonuniqueness.
If 0 < n < 3, a class in which problem (PT ) may be well-posed consists of
functions with a prescribed contact angle at the edge of the support. The
integral estimates resulting from identity (E) imply that the solutions have
a zero contact angle for almost all t. The only result for a nonzero contact
angle that is known to the authors is by Otto ([20]) who shows in space
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dimension N = 1 for the special case of growth exponent n = 1 existence of
weak solutions with a prescribed contact angle.

In higher space dimensions there are existence results for degenerate par-
abolic equations of fourth order by Elliott and Garcke ([10, 11]) and Grün
([14]). But in these papers the growth exponent n was restricted to the
interval [1, 2) if one wants to prescribe initial data with compact support.
In a recent paper Dal Passo, Garcke and Grün ([9]) were able to show a
global version of the integral estimates in higher space dimensions (cf. also
Section 2). These estimates make it possible to show existence of weak so-
lutions to problem (PT ) if n 2 (1

8 , 3). Furthermore, the integral estimates
imply new regularity results; in particular, the zero contact angle is attained
in a generalized sense (cf. Corollary 2.2 in [9]). But so far it is not known
whether solutions to problem (PT ) in higher space dimensions are bounded
or continuous. Recently Bernis and Ferreira have constructed self-similar
source-type solutions in the case of higher space dimensions ([12]).

Let us briefly describe the outline of this paper. In Section 2, we present—
basically following the spirit of [9]—the main ingredients and results concern-
ing the construction of solutions to problem (PT ), using an approach that
will be well adapted to the proof of a local version of the global integral esti-
mates derived in [9]. These local integral estimates will be essential for our
results about the qualitative behaviour of the solution’s support (cf. Section
3).

For technical reasons we need to assume for this construction and therefore
throughout the paper that N = 2, 3 and

n > 1
8 , if N = 2, n 2 (1

8 , 4), if N = 3. (H)

Of course our construction would work in one space dimension as well, but
since this was already considered by other authors (cf. [1, 7, 3]), we do
not state results in one space dimension. A priori estimates also hold for
n 2 (0, 1

8 ), but they do not guarantee su�cient regularity to formulate a weak
notion of solutions (cf. the proof of Theorem 2.1 in [9]). In space dimension
three we can only prove integrability of the flux unr�u if 0 < n < 4 (cf. [9]),
and therefore compactness of approximate solutions can only be established
for this range of values of n.

In Section 3 we prove a local version of the integral estimates derived
in [9] and we use these estimates to obtain a nonshrinking property for the
solution’s support under the assumption that n > 3/2. Another consequence
of the local integral estimates is that the solution we constructed has finite
speed of propagation. By this we mean that if a solution is zero in a ball
Br0(X0) ⇢ ⌦ at time t0 it will remain zero in a slightly smaller ball for
slightly later times t > t0. This result is achieved by a generalization of
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Bernis’ technique ([3]) to higher space dimensions together with the methods
derived by Dal Passo, Garcke and Grün ([9]) (cf. Section 4). Having shown
finite speed of propagation it is possible to construct solutions to the Cauchy
problem related to (PT ) that have compact support for all times t � 0
(Section 5). In addition, we prove decay estimates for these solutions and
give upper estimates for the growth of their support. The rest of the paper
is devoted to the proof of auxiliary results of interpolation and di↵erential
inequality type (see Section 6 and Appendix).

Notation and general assumptions. We assume that ⌦ ⇢ RN (N =
2, 3) is an open and bounded domain with boundary of class C1,1 (or C0,1 if
⌦ is convex) that is piecewise smooth. Therefore, the unit outward normal
⌫(x) to ⌦ exists for almost all x 2 @⌦. The initial data u0 2 H1(⌦) (or u0 2
H1(RN ) if we consider the Cauchy problem) are assumed to be nonnegative.
By ⌦T we denote the space–time cylinder ⌦⇥ (0, T ). h ·, · i := h ·, · i(H1)0⇥H1

stands for the duality product of a functional in
�
H1(⌦)

�0 and an element in
H1(⌦). For a (N⇥N)-matrix A and vectors a, b 2 RN we define h a,A, b i :=PN

i,j=1 aiAijbj . We define [⇣ > 0] := {x 2 ⌦ : ⇣(x) > 0} and Br0(x0) :=
{x 2 RN : |x� x0| < r0}. In addition we use the constants convention; i.e.,
di↵erent constants appearing in a sequence of inequalities may be denoted
by the same symbol.

2. Construction of a solution. In this section, we briefly describe the
main ingredients of the approximation process used to construct solutions
to problem (PT ). This approximation method will be consistent with our
technique to derive a local version of the integral estimates of Dal Passo,
Garcke and Grün ([9]). Let us consider for � > 0, � > 0 auxiliary problems

8><
>:

(u��)t + div
�
m��(u��)r�u��

�
= 0 in ⌦⇥ (0, T )

@
@⌫ u�� = @

@⌫�u�� = 0 on @⌦⇥ [0, T ]
u��(0) = u0�� := u0 + �✓1 + �✓2 in ⌦,

(PT,��)

where u0 2 H1(⌦) is nonnegative and ✓1, ✓2 are positive real numbers. For
the di↵usion coe�cient m�� we choose

m��(⌧) :=
⌧n+s

�⌧n + ⌧s + �⌧n+s
,

and we assume that
R
⌦ u↵+1

0 < 1 for a number ↵ 2
�

1
2 � n, 2� n

�
.

If s is su�ciently large, our particular choice of bounded di↵usion coe�-
cients m�� ensures that there exists a solution to problem (PT,��) which is
positive for almost every t 2 (0, T ). In addition, the integral estimates of
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Proposition 1.2 of [9] hold true, and for almost every t 2 (0, T ) we have that
r�u(t, .) is contained in L2(⌦).

Passing successively first with � and then with � to zero, we obtain,
following the lines of proof of Theorem 2.1 of [9], a solution of (PT ) in the
sense of
Definition 2.1. A solution of problem (PT ) is a nonnegative function u 2
L1(0, T ;H1(⌦)) with the following properties:

i) for all q > 4N
2N+(2�N)n , u 2 H1,2(0, T ; (H1,q(⌦))0),

ii) there exists an ↵ 2 (1
2 � n, 2� n) such that

u
↵+n+1

4 2 L4(0, T ;H1,4(⌦)), and u
↵+n+1

2 2 L2(0, T ;H2,2(⌦)),

iii) u solves the equation ut + div(unr�u) = 0 in the sense that
Z T

0
hut(t), ⇣(t)i = 1

2

Z
[u>0]

n(n� 1)un�2 |ru|2rur⇣

+ 1
2

Z
[u>0]

nun�1 |ru|2�⇣ +
Z

[u>0]
nun�1

⌦
ru,D2⇣,ru

↵
+
Z

⌦T

unrur�⇣

for all ⇣ 2 L1
�
0, T ;H3,1(⌦)

�
fulfilling r⇣ · ⌫ = 0 on @⌦⇥ [0, T ].

iv) u attains its initial data in the sense limt&0 u(t) = u0 in L1(⌦).
Let us collect some properties of the solution u. The regularity of u implies

that u 2 C([0, T ];Lp(⌦)) for p 2 [1,1) if N = 2 and for p 2 [1, 6) if N = 3
(cf. Corollary 4 in Simon [21]). Hence, u attains its initial values in the sense
of iv). Since u 2 C([0, T ]; (H1,q(⌦))0)\L1(0, T ;H1(⌦)) for q > 4N

2N+(2�N)n

we can conclude that u(t) is well-defined in H1(⌦) for all t 2 [0, T ]. In
addition, we obtain u 2 CS([0, T ];H1(⌦)), where CS([0, T ];H1(⌦)) denotes
the space of all functions u : [0, T ] ! H1(⌦) that are continuous in t with
respect to the weak topology in H1(⌦). For the two latter results we refer
to Lions and Magenes [17, Chapter 3, Lemma 8.1] (see also [3]). Another
consequence of u 2 CS([0, T ];H1(⌦)) is that t 7!

R
⌦ |ru|2(t) is lower semi-

continuous. Following the arguments of Dal Passo, Garcke and Grün ([9; cf.
the proof of Theorem 2.4]) we can establish

R
⌦ |ru|2(t2) 

R
⌦ |ru|2(t1) for

almost all t1, t2 2 [0, T ] with t1 < t2.
Now we state a global integral estimate that is valid for all real numbers

↵ satisfying 1
2 < ↵ + n < 2, ↵ 6= 0,�1 and all t 2 (0, T ):

1
↵(↵+1)

Z
⌦

u↵+1(t) + C�1
1

⇢Z
⌦t

��D2u
↵+n+1

2
��2 +

Z
⌦t

��ru
↵+n+1

4
��4�

 1
↵(↵+1)

Z
⌦

u↵+1
0 + C2

Z
⌦t

u↵+n+1,

(1)
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where C1 depends on ↵ and n and C2 depends on ↵, n,N and ⌦. For the
proof we refer to Dal Passo, Garcke and Grün [9]. We want to point out thatR
⌦ u↵+1

0 is bounded for compactly supported initial data only if ↵ + 1 > 0.
Hence, we obtain that for arbitrary nonnegative initial data and n 2 (0, 3)
the regularity stated in ii) holds for all ↵ 2

�
max{1

2 � n,�1}, 2� n
�
. It was

shown in [9] that C2 = 0 if the domain ⌦ is convex.
Applying a diagonal procedure or continuing successively the solution we

may also replace the interval (0, T ) by (0,1) to get a solution on ⌦⇥(0,1).
We refer to the initial value problem on ⌦ ⇥ (0,1) by problem (P ) or by
problem (P��) in the case of the modified problem.

3. Integral estimates—local version. In this section we derive a local
version of the integral estimate (1) and show local positivity properties of
the solution. In addition, we prove a nonshrinking property for the support
of solutions if n is large enough.

Let us now formulate the local version of the integral estimate.

Theorem 3.1. Let hypothesis (H) be fulfilled, let u be a solution of problem
(P ) constructed as in Section 2 and let ↵ be a real number satisfying 1

2 <
↵ + n < 2 and ↵ 6= 0,�1. Let ⇣ 2 C2

0 (⌦) be a nonnegative function such
that

R
⌦ ⇣4u↵+1

0 < 1.
Then there exists a positive constant C1 depending only on ↵ and n, such

that the following estimate is valid for all t 2 (0,1) :

1
↵(↵+1)

Z
⌦

⇣4 u↵+1(t) + C�1
1

⇢Z
⌦t

⇣4
��D2u

↵+n+1
2

��2 +
Z

⌦t

⇣4
��ru

↵+n+1
4

��4�

 1
↵(↵+1)

Z
⌦

⇣4u↵+1
0 + C1

Z t

0

Z
[⇣>0]

u↵+n+1
�
|r⇣|4 + ⇣2|�⇣|2

�
. (2)

Proof. The proof consists of two steps. First, we prove an estimate similar
to (2) for a solution u�� of Problem (P��). Afterwards we pass to the limits
� & 0 and � & 0.

For each �, � we consider the functions

g↵
��(⌧) = �

↵+n�s⌧↵+n�s + 1
↵⌧↵ + �

↵+n⌧↵+n (3)

and

G↵
��(⌧) = �

(↵+n�s)(↵+n�s+1)⌧
↵+n�s+1 + 1

↵(↵+1)⌧
↵+1 + �

(↵+n)(↵+n+1)⌧
↵+n+1,

(4)
which have the property (G↵

��)
00 = (g↵

��)
0 = ⌧↵+n�1

m��(⌧) . We choose s large
enough such that we can conclude from Lemma 2.1 of [9] that u(t) is strictly
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positive for almost all t 2 (0,1). Furthermore, r�u(t) exists for these
t as an element of L2(⌦). Hence, u�� fulfills for all T > 0 and all � 2
L2
�
0, T ;H1(⌦)

�
the identity

Z T

0
h(u��)t,�i �

Z
⌦T

m��(u��)r�u�� ·r� = 0. (5)

Let us now choose � = ⇣4 g↵
��(u�� + ") as test function in (5). For the

parabolic part (i.e., for the first term in (5)) we obtain
Z T

0
⇣4
⌦�

u��(t)
�
t
, g↵

��

�
u��(t)+"

�↵
=
Z

⌦
⇣4 G↵

��(u��+")(T )�
Z

⌦
⇣4 G↵

��(u0��+").

(6)
For the elliptic part we estimate in a way similar to the proof of Proposi-
tion 1.2 of [9] for almost all t 2 (0, T ):

�
Z

⌦
m��(u��)r�u��r

�
⇣4g↵

��(u�� + ")
�

� ��2

Z
⌦

⇣4(u�� + ")↵+n+1�2�
n

2
3

⇥
D2(u�� + ")�

⇤2 + 1
3

⇥
�(u�� + ")�

⇤2o

+ c(↵, n, �)
Z

⌦
⇣4(u�� + ")↵+n�3|ru��|4

� (�1 + �2)
Z

⌦
⇣4(u�� + ")↵+n�3|ru��|4

� C
�1

Z
⌦

⇣4(u�� + ")↵+n�1
⇣
1� m��(u��)

m��(u��+")

⌘
|�u��|2

� C
�2

Z
⌦

⇣4(u�� + ")↵+n�1|�u��|2
⇣ "

u�� + "

⌘2

�
Z

⌦
m��(u��) g↵

��(u�� + ")r�u��r⇣4

�
Z

⌦

⇣
m��(u��)

m��(u��+") + 1
⌘
(u�� + ")↵+n�1|�u��| |ru��| |r⇣4|

�
Z

⌦
(u�� + ")↵+n�1|ru��||D2u��||r⇣4|

�
Z

⌦
(u�� + ")↵+n�2|ru��|3|r⇣4|

=: I1 + I2 + A1 + A2 + A3 + L1 + L2 + L3 + L4 (7)

with the notation

c(↵, n, �) := (1��)(�� 1
3 )� 1

3 (↵+n�1)(↵+n�2)+ 2
3 (1��)(1�↵�n), (8)
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where � can be chosen such that c(↵, n, �) is positive (cf. [1], [9]). Hence,
the terms I1 and I2 are positive and it remains to estimate A1, A2, A3 and
L1, L2, L3, L4. The term A1 can be absorbed in I2 if we choose �1 and �2

small enough. Using the global integral estimates derived for u�� in Section 2
we obtain that, for �, � fixed and when integrated over time, A2+A3 = o"(1)
as " tends to zero.

Now we estimate the terms L1 to L4. First we get

L1 =
Z

⌦
m0

��(u��) g↵
��(u�� + ")�u��ru��r⇣4

+
Z

⌦
m��(u��)(g↵

��)
0(u�� + ")�u��ru��r⇣4

+
Z

⌦
m��(u��)g↵

��(u�� + ")�u���⇣4 =: L1
1 + L2

1 + L3
1.

(9)

In the Appendix we shall prove that there exists a constant C (independent
of �, �) and a constant Ĉ(�, �) such that the following estimates hold for all
⌧ � 0 and all " � 0:

m0
��(⌧) g↵

��(⌧ + ")  C|⌧ + "|↵+n�1 + Ĉ(�, �) "|⌧ + "|↵+n�1,

m��(⌧) (g↵
��)

0(⌧ + ")  C|⌧ + "|↵+n�1,

m��(⌧) g↵
��(⌧ + ")  C|⌧ + "|↵+n.

(10)

Thus we obtain

|L1
1| + |L2

1| + |L2| + |L3|  C

Z
⌦
(u�� + ")↵+n�1|ru��||D2u��|⇣3|r⇣| + o"(1)

 �3

⇢Z
⌦

⇣4
��r(u�� + ")

↵+n+1
4

��4 +
Z

⌦
⇣4
��D2(u�� + ")

↵+n+1
2

��2�

+ C�3

Z
[⇣>0]

(u�� + ")↵+n+1 |r⇣|4 + o"(1).

For L3
1 we get

|L3
1|  C

Z
⌦
(u�� + ")↵+n|�u��| ⇣2|r⇣|2 + C

Z
⌦
(u�� + ")↵+n |�u��| ⇣3|�⇣|

 �4

Z
⌦

(u�� + ")↵+n�1|�u��|2⇣4 + C�4

Z
[⇣>0]

(u�� + ")↵+n+1
�
|r⇣|4 + ⇣2|�⇣|2

�
.

Finally, we estimate the last term:

|L4|  C

Z
⌦
(u�� + ")↵+n�2 |ru��|3 ⇣3|r⇣|

�5

Z
⌦

⇣4(u�� + ")↵+n�3|ru��|4 + C�5

Z
[⇣>0]

(u�� + ")↵+n+1|r⇣|4.
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Now one can use the inequalities
Z

⌦
⇣4(u�� + ")↵+n�1|D2u��|2

Ĉ

⇢Z
⌦

⇣4
��D2(u�� + ")

↵+n+1
2

��2 +
Z

⌦
⇣4
��r(u�� + ")

↵+n+1
4

��4� (11)

and Z
⌦

⇣4
��D2(u�� + ")↵+n+1

��2

Ĉ

⇢Z
⌦

⇣4u↵+n+1�2�
��

��D2(u�� + ")�
��2 +

Z
⌦

⇣4
��r(u�� + ")

↵+n+1
4

��4� (12)

to control the terms L1, . . . , L4. The estimate for the elliptic part together
with (5), (6), (11) and (12) gives (2) if we pass to the limits " & 0, � & 0
and � & 0.

Remark 3.2. If we assume in addition to the assumptions in Theorem 3.1
that ↵ is positive, we can derive for all 0  t1 < t2 < 1
Z

⌦
⇣4 u↵+1(t2) + C�1

2

⇢Z t2

t1

Z
⌦

⇣4
��D2u

↵+n+1
2

��2 +
Z t2

t1

Z
⌦

⇣4
��ru

↵+n+1
4

��4�


Z

⌦
⇣4u↵+1(t1) + C2

Z t2

t1

Z
[⇣>0]

u↵+n+1
�
|r⇣|4 + ⇣2|�⇣|2

�
, (13)

with a constant C2 depending on ↵ and n. This estimate holds for all
⇣ 2 C2

0 (⌦) and for ⇣ ⌘ 1 if ⌦ is convex.
To show (13) we choose �(x, t) = �(t)⇣4(x) g↵

��(u��(x, t)+") in (5), where
� is the characteristic function of the interval [t1, t2]. Then we proceed as
in the proof of Theorem 3.1. But in order to pass to the limit � & 0 in the
term

R
⌦ G↵

��(u��)(t1) we need to show

�

Z
⌦

u↵+n�s+1
�� (t1) ! 0 as � & 0.

In the case t1 = 0 we could use that u0,� is uniformly bounded away from
zero to proceed. Since the global integral estimate has been established for
a whole interval of values of ↵, we can use a similar argument as was used
in the proof of Lemma 3.3 ([3]) to show the above convergence in the case
t1 > 0 as well. To prove the convergence for a fixed ↵ we use that we have
a uniform bound on �

R
⌦ u↵̃+n�s+1

�� (t1) for a ↵̃ < ↵ to control �u↵+n�s+1
�� at
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points where u� is small. The convergence of all other terms can be shown
as in the proof of Theorem 3.1.

The local integral estimate as formulated in Theorem 3.1 enables us to
generalize results of Beretta, Bertsch and Dal Passo ([1]) on positivity prop-
erties to space dimensions two and three. Our results improve results by
Grün ([14]) who first showed positivity properties in higher space dimen-
sions.

Corollary 3.3. Let hypothesis (H) be fulfilled and let u be a solution of Prob-
lem (P ) constructed as in Section 2. Assume ⇣ 2 C2

0 (⌦) fulfills
R
⌦ ⇣4u

3
2�n
0 <

1.
Then u has the following properties:

i) if n > 3
2 then for all Lebesgue measurable sets E ⇢ [⇣ > 0] with

positive measureZ
E

u(x, t) dx > 0, for all t 2 (0,1),

ii) if N = 2 and n > 3 then for almost all t 2 (0,1) u(t) is strictly
positive on [⇣ > 0].

Proof. Assume
R

E u(x, t) dx = 0 for a set E ⇢ [⇣ > 0] with positive measure
and a time t > 0. Then u(t) would be zero on a set with positive measure.
But with the help of Theorem 3.1 we control

R
⌦ ⇣4u↵+1(t) for all ↵ with

3
2 � n < ↵ + 1 < 3 � n. Since ↵ + 1 can be chosen negative, this gives a
contradiction.

It remains to prove ii). We choose an arbitrary open ball B ⇢⇢ [⇣ >
0]. Theorem 3.1 and the L1(0,1;H1(⌦))-regularity of u implies that
u

↵+n+1
4 (t) 2 H1,4(B) for all ↵ with 1

2 < ↵ + n < 2 and almost all t 2 (0,1).
Hence, for these t it holds that u

↵+n+1
4 (t) 2 C�(B) if � 2 (0, 4�N

4 ). Assume
there exists a x0 2 B with u(x0, t) = 0. Using the inequality u(x, t)

↵+n+1
4 <

C|x� x0|� (x 2 B) and estimate (2) of Theorem 3.1 we get for ↵ + 1 < 0

1 >

Z
⌦

⇣4 u(x, t)↵+1 dx > C�1

Z
B

⇣4|x� x0|
4�(↵+1)
↵+n+1 dx.

This gives a contradiction if n > 6
4�N , because we can choose ↵ such that

the integral on the right-hand side becomes unbounded. Therefore, u(t) is
strictly positive on B for almost all t. Applying the above argument for a
countable collection of balls B ⇢⇢ [⇣ > 0] that cover [⇣ > 0] gives the result.

4. Finite speed of propagation. In this section we show that the
solution we constructed in Section 2 has the property of finite speed of
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propagation of its support if n 2 (1
8 , 2) and the space dimension is two or

three. First we give a definition of finite speed of propagation.
Definition 4.1. We say a function v : ⌦ ⇥ (0,1) ! R has finite speed
of propagation if for all t0 > 0, x0 2 ⌦ and r0 > 0 with Br0(x0) ⇢ ⌦
and v(t0) ⌘ 0 almost everywhere in Br0(x0) there exists a T⇤ > 0 and
a continuous function r : [t0, t0 + T⇤) ! R+ with r(t0) = r0 such that
v(x, t) = 0 for all t 2 [t0, t0 + T⇤) and x 2 Br(t)(x0).

The following result states that the solution constructed in Section 2 has
finite speed of propagation if n 2 (1

8 , 2).

Theorem 4.2. Let n 2 (1
8 , 2), N 2 {2, 3} and ↵ 2 (max{1

2 � n, 0}, 2� n).
Let u be the solution of problem (P ) constructed in Section 2 and assume
that there exists a time t0 � 0 such that u(t0) ⌘ 0 in Br0(x0) ⇢ ⌦ almost
everywhere. Then there exists a positive constant T⇤ depending on ↵, n,N, r0

and u(t0) such that for all t 2 (t0, t0 + T⇤), u(t) ⌘ 0 a.e. in Br(t)(x0), where
r(t) is defined through

(r(t))N = (r0)N �A0(t� t0)⌘/4

✓Z t

t0

Z
Br0 (x0)

��D2 u
↵+n+1

2
��2◆�

. (14)

The constant A0 depends on ↵, n, r0 and N and the exponents ⌘ and � are

⌘ =
4(↵ + 1)

4N↵ + 5Nn + 4N � 4n
and � =

n

4N↵ + 5Nn + 4N � 4n
.

Proof. The proof follows the line of Bernis’ proof in one space dimension
([3]). Since the technical modifications are not straightforward, we present
the proof. For simplicity we assume without loss of generality that (x0, t0) =
(0, 0) (see Remark 3.2). In order to proceed we need to derive the estimate
(2) of Theorem 3.1 for ⇣(x) = �r(x) = (rN � |x|N )+ with r > 0. We can
derive this estimate if we approximate �r by smooth functions and pass to
the limit in the estimate for the smoother functions.

For �r the following estimates hold:

|r�r(x)|  N rN�1, if |x| < r

and
|��r(x)|  2N(N � 1) rN�2, if |x| < r.

Using the notation w = u
↵+n+1

2 and q = 2 � 2n
↵+n+1 (cf. Bernis [3]) we can

derive from Theorem 3.1 that there exists a constant C independent of r
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such that for all r 2 (0, r0)

sup
0<t<T

Z
Br(0)

�
rN � |x|N

�4
wq + C�1

Z T

0

Z
Br(0)

�
rN � |x|N

�4|D2w|2

 C

Z T

0

Z
Br(0)

r4(N�1)w2.

(15)

Now we define

Es(r, T ) :=
Z T

0

Z
Br(0)

�
rN � |x|N

�s |D2w|2,

F (r, T ) := sup
0<t<T

Z
Br(0)

�
rN � |x|N

�4
wq

and obtain, using (15) and a weighted version of the Gagliardo–Nirenberg
inequality (cf. Lemma 6.3),

F + E4  Cr4(N�1)

Z T

0

Z
Br(0)

w2

 Cr4(N�1)

Z T

0

✓Z
Br(0)

|D2w|2
◆d✓Z

Br(0)

�
rN � |x|N

�4
wq

◆ 2
q (1�d)

+ Cr�2⌫+4(N�1)

Z T

0

✓Z
Br(0)

�
rN � |x|N

�4
wq

◆ 2
q

 Cr4(N�1)Ed
0T 1�dF

2
q (1�d) + Cr�2⌫+4(N�1)TF

2
q .

Hence, we may choose T0 so small that Cr�2⌫+4(N�1)TF
2
q (r, T )  F (r, T )/2

for r 2 ( r0
2 , r0) and T 2 (0, T0). This implies that for these (r, T ) we have

F (r, T ) + E4(r, T )  Cr4(N�1)Ed
0 (r, T )T 1�dF

2
q (1�d)(r, T ).

Now Young’s inequality yields

F (r, T ) + E4(r, T )  CrE✓
0(r, T )T ⌘ (16)

with
 =

4(N � 1)q
q � 2(1� d)

, ✓ =
dq

q � 2(1� d)
, ⌘ =

(1� d)q
q � 2(1� d)

.

For r 2 ( r0
2 , r0) this leads to the following di↵erential-type inequality for E0:

E4(r, T )  C · (r0) E✓
0T ⌘.
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Since ✓ > 1 it follows from Lemma 6.4 with K = C ·(r0) T ⌘ that E0(r, T ) =
0 if r  r1, where r1 is defined through

rN
1 = rN

0 � ✓+3
✓�1C

1
4 (r0)


4 T

⌘
4 E0(r0, T )

✓�1
4 .

But this property only holds as long as r1 � r0
2 .

With the help of the integral estimate (1) and the Gagliardo–Nirenberg
inequality (cf. [19]) we estimate

E0(r0, T ) 
Z

⌦T

|D2u
↵+n+1

2 |2

 C1
↵(↵+1)

Z
⌦

u↵+1
0 + C1C2

Z T

0

Z
⌦

u↵+n+1

 C1
↵(↵+1)

Z
⌦

u↵+1
0 + C

Z T

0

�
|ru(t)|a(↵+n+1)

2 |u0|(1�a)(↵+n+1)
1 + |u0|↵+n+1

1

�

 C1
↵(↵+1)

Z
⌦

u↵+1
0 + CT

�
|ru0|a(↵+n+1)

2 |u0|(1�a)(↵+n+1)
1 + |u0|↵+n+1

1

�
,

where a = (↵ + n) 2N
N+2 .

This implies that we can choose T so small that r1 � r0
2 . For these

T we conclude from (16) that F (r1, T ) = 0, and hence u(T ) ⌘ 0 almost
everywhere on Br1(0). Therefore, the proof of Theorem 4.2 is complete, and
in particular we showed that u has finite speed of propagation.

Remark 4.3. If ⌦ is convex the integral estimate (13) with ⇣ ⌘ 1 can be ap-
plied to show that

R1
t0

R
Br0 (x0)

��D2 u
↵+n+1

2
��2 can be estimated by

R
⌦ u↵+1(t0).

This implies that for ⌦ convex the time T⇤, which appeared in Theorem 4.2,
only depends on ↵, n, N , r0 and

R
⌦ u↵+1(t0).

5. The Cauchy problem. The result on finite speed of propagation as
formulated in Theorem 4.2 allows us to construct solutions to the Cauchy
problem ⇢

ut + div
�
unr�u

�
= 0 in RN ⇥ (0,1)

u(0) = u0 in RN
(CP)

which are compactly supported for all t � 0.

Theorem 5.1. Assume n 2 (1
8 , 2), N 2 {2, 3}, and let u0 2 H1(RN )

be a nonnegative function with the property u0(x) = 0 if |x| > R0, where
R0 2 R+. Then there exists a nonnegative compactly supported solution
u 2 L1((0,1);H1(RN )) of (CP) in the sense that for all T > 0 there exists
a R(T ) > 0 such that

i) u(x, t) = 0 if |x| > R(T ) and t 2 [0, T ],
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ii) u is a solution of (PT ) with ⌦ = B2R(T )(0) and initial value u0.
In addition, the following properties hold true:

iii) there exists a constant c1 depending on ↵ and n such that for all
0  t1 < t2 < 1 and ↵ 2 (max{0, 1

2 � n}, 2� n)Z
RN

u↵+1(t2) + c1

�Z t2

t1

Z
RN

|D2u
↵+n+1

2 |2 +
Z t2

t1

Z
RN

|ru
↵+n+1

4 |4
 


Z

RN

u↵+1(t1), (17)

iv) the function t 7!
R

RN |ru|2(t) is almost everywhere equal to a non-
increasing function.

Proof. We choose a real number R̄ > 0, set ⌦ = BR0+4R̄(0) and construct
a solution to (PT ) as described in Section 2. For x with |x| > R0 + 4R̄ and
t 2 [0, T ] we set u(x, t) = 0.

Covering the set ⌦ \ BR0 by balls of radius 2R̄ and applying to these
latter balls Theorem 4.2 it follows that there exists a time T⇤ depending
on ↵, n,N, R̄ and

R
RN u↵+1

0 (cf. Remark 4.3) such that u(x, t) = 0 if |x| >
R0+R̄ and t 2 [0, T⇤]. Now we choose u(., T⇤) as new initial data. Repeating
the above construction with R0 replaced by R0 + R̄ and the initial time 0
replaced by T⇤ we obtain a solution in BR0+5R̄⇥ [T⇤, 2T⇤] satisfying u(x, t) =
0 if |x| > R0 + 2R̄ and t 2 [T⇤, 2T⇤]. For the last step we used thatZ

RN

u↵+1(T⇤) 
Z

RN

u↵+1
0

to conclude that the support of u(t) remains in the set BR0+2R̄ on the whole
interval [T⇤, 2T⇤] (cf. inequality (1) in which C2 = 0 since ⌦ is convex).

Using the regularity properties of solutions to problem (PT ) (cf. Definition
2.1) we may “glue together” the solutions obtained on [0, T⇤] and [T⇤, 2T⇤]
to obtain a solution on RN ⇥ [0, 2T⇤]. An inductive argument completes the
construction of the solution.

Properties iii) and iv) are true since they hold for the solutions of problem
(PT ) which we constructed in Section 2. This proves the theorem. ⇤

The next theorem states decay estimates for solutions of the Cauchy prob-
lem and growth estimates for their support.

Theorem 5.2. Let the assumptions of Theorem 5.1 hold and let u be a
solution to (CP) constructed as in Theorem 5.1.

Then the following properties are satisfied:
i) if N = 2 and p 2 (1,1) or N = 3 and p 2 (1, 6) then there exists a

constant C depending on p, n,N such that for all t > 0

|u(t)|p  C |u0|
4p+nN

p(4+nN)
1 t�

p�1
p

N
4+nN , (18)
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ii) there exists a constant C > 0 depending on n,N such that for all t > 0

|ru(t)|2  C |u0|
8+n(N�2)
2(4+nN)

1 t�
1
2

N+2
4+nN , (19)

iii) if u0(x) = 0 for all x 2 RN with |x| > R0, then u(x, t) = 0 for all x 2
RN with |x| > R0 +B |u0|

n
4+nN

1 t
1

4+nN , where B is a constant depend-
ing on n and N .

Proof. As in Section 4 we introduce the function w := u
↵+n+1

2 , and we
derive from (17) that for all t1 < t2 2 [0,1)

Z
RN

wq(t2) + c1

Z t2

t1

Z
RN

|D2w|2 
Z

RN

wq(t1) (20)

with q = 2 ↵+1
↵+n+1 and ↵ 2 (max{0, 1

2 � n}, 2 � n). From the Gagliardo–
Nirenberg inequality in RN (cf. [19]) and since mass is conserved (

R
RN u(t) =R

RN u0) we obtain, with r = 2
↵+n+1 and a constant C depending only on N ,

q, r,
|w(t)|q  C|D2w|a2 |w|1�a

r = C|D2w|a2 |u0|
1�a

r
1 .

Here a is the exponent from the Gagliardo–Nirenberg inequality and is de-
fined through 1

q = a(1
2 �

2
N ) + (1 � a)1

r . We refer to Bernis ([3], Chapter
10) who demonstrates how to prove the Gagliardo–Nirenberg inequality if
0 < r < 1.

Hence, (20) gives with Y (t) :=
R

RN wq(t) that

Y (t2)� Y (t1) + C�1|u0|
� 2(1�a)

ra
1

Z t2

t1

Y
2

aq (⌧)d⌧  0,

where C depends on ↵, n and N . This implies that

Y 0  �C�1|u0|
� 2(1�a)

ra
1 Y

2
aq

in D0(R+). Now combining this inequality with the C([0,1);L↵+1(⌦))-
regularity of u (cf. Section 2) we observe that Y fulfills the assumptions of
Lemma 6.5. Applying Lemma 6.5 with the choices ⇥ = 2

aq , v1 = Y and

v2 =
⇣
Y 1�⇥

0 + C�1|u0|
� 2(1�a)

ra
1 (⇥� 1)t

⌘ 1
1�⇥

we can estimate

Y (t) 
✓

Y
�( 2

aq�1)

0 + C�1|u0|
� 2(1�a)

ra
1

�
2
aq � 1

�
t

◆ aq
aq�2

.
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Therefore, there exists a constant C depending on ↵, n and N such that

|u|↵+1  C|u0|
4(↵+1)+nN

(↵+1)(4+nN)
1 t�

↵
↵+1

N
4+nN

for ↵ 2
�
max{0, 1

2�n}, 2�n
�
. This proves (18) for p 2

�
max{1, 3

2�n}, 3�n
�
.

To derive the decay estimate for |ru(t)|2 we choose ↵ = 2�n
2 and estimate

Z
RN

|ru|2(t) = �
Z

RN

u�u 
✓Z

RN

u↵+1

◆ 1
2
✓Z

RN

u↵+n�1|�u|2
◆ 1

2

. (21)

From the integral estimate (17) we derive

c1

Z 2t

t

Z
RN

u↵+n�1|�u|2  Y (t).

Now we can use that
R

RN |ru(t)|2 is nonincreasing almost everywhere (cf.
Theorem 5.1.iv) and inequality (21) to conclude that for almost all t

Y (t) � c�1
1

Z 2t

t

Z
RN

u↵+n�1|�u|2

� C�1t
�

sup
s2[t,2t]

Z
RN

u↵+1(s)
��1�Z

RN

|ru|2(2t)
�2

,

where C depends on n and N . This implies that for almost all t

�Z
RN

|ru|2(2t)
�2  �

sup
s2[t,2t]

Z
RN

u↵+1(s)
�2

t�1

 C|u0|
2(4(↵+1)+nN)

(4+nN)
1 t�

2↵N
4+nN�1 = C|u0|

2(8+n(N�2)
(4+nN)

1 t�
2N+4
4+nN .

Since t 7!
R
⌦ |ru|2(t) is lower semi-continuous, (19) is proved for all t 2

(0,1).
Having established (19) we are able to show the result on the decay be-

haviour for u in all Lp-norms with p as in i). The Gagliardo–Nirenberg
inequality gives

|u|p  C|ru|a2 |u0|1�a
1

with a = 2Np�2N
(N+2)p . We remark that the assumptions on p and N ensure

a 2 [0, 1]. The decay estimate for the gradient then implies (18).
It remains to prove the growth estimate for the support of the solution u.

Therefore, we make use of the scaling property that with u also

uK(x, t) := KNu(Kx,K�t), � := 4 + nN,
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is a weak solution of the Cauchy problem having the same mass as u. The
local integral estimate for uK

Z
RN

⇣4u↵+1
K (t2) + C�1

1

Z t2

t1

Z
RN

⇣4|D2u
↵+n+1

2
K |2


Z

RN

⇣4u↵+1
K (t1) + C2

Z t2

t1

Z
[⇣>0]

u↵+n�1
K

�
|r⇣|4 + ⇣2|�⇣|2

�

where ↵ 2
�
max{0, 1

2 � n}, 2� n
�
, ⇣ 2 C2

0 (RN )
and C1, C2 are constants depending only on ↵ and n,

follows by transformation of the local integral estimate for u (cf. Theorem
3.1 and Remark 3.2). The decay estimate i) gives

Z
RN

u↵+1
K (x, 1) dx =

Z
RN

KN(↵+1)u↵+1(Kx,K�) dx

=
Z

RN

KN↵u↵+1(y,K�) dy

 KN↵C|u0|
4(↵+1)+nN

4+nN

1 K�� ↵N
4+nN  C|u0|

4(↵+1)+nN
4+nN

1 .

Now we apply Theorem 4.2 to the functions uK at time t0 = 1. The above
estimate for

R
RN u↵+1

K (x, 1) dx gives that T⇤ in Theorem 4.2 only depends on
↵, n,N,R0 and |u0|1 (cf. Remark 4.3). A covering argument as in the proof
of Theorem 5.1 gives that for all R̄ > 0 there exists a time T̄ > 1 depending
on ↵, n,N, R̄ and |u0|1 such that for all A 2 R+ the following property holds:

if uK(x, 1) = 0 for all x 2 RN with |x| > A,

thenuK(x, t) = 0 for all x 2 RN with |x| > A + R̄ and t 2 [1, T̄ ].
(AK)

When transformed back to u, property (AK) implies that for all ⌧0 > 0 and
all Ā 2 R+

if u(x, ⌧0) = 0 for all x 2 RN with |x| > Ā,

then u(x, t) = 0 for all x 2 RN with |x| > Ā + R̄ ⌧1/�
0 and t 2 [⌧0, ⌧0T̄ ].

(A)
By assumption we have u0(x) = 0 if |x| > R0. Theorem 4.2 and a covering
argument as in the proof of Theorem 5.1 give the existence of a time T⇤ > 0
and a function

R : [0, T⇤] ! R+, R(0) = R0

such that
u(x, t) = 0 if |x| > R(t) and t 2 [0, T⇤].
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Now we fix a time T0 2 (0, T⇤), and we apply property (A) with ⌧0 = T0 to
derive

u(x, t) = 0 if |x| > R(T0) + R̄ T 1/�
0 and t 2 [T0, T0T̄ ].

If we apply property (A) again, this time setting ⌧0 = T0T̄ and Ā = R(T0)+
R̄ T 1/�

0 we get

u(x, t) = 0 if |x| > R(T0) + R̄ T 1/�
0 (1 + T̄ 1/�) and t 2 [T0T̄ , T0 (T̄ )2].

Induction gives for k � 1

u(x, t) = 0 if |x| > R(T0) + R̄ T 1/�
0

k�1X
j=0

(T̄ )j/� and t 2 [T0 (T̄ )k�1, T0 (T̄ )k].

Hence for k � 2 it holds that

u(x, t) = 0 if |x| > R(T0) + R̄ T 1/�
0

(T̄ )k/� � 1
(T̄ )1/� � 1

and t 2 [T0 (T̄ )k�1, T0 (T̄ )k].

If t 2 [T0 (T̄ )k�1, T0 (T̄ )k] we estimate

R̄ T 1/�
0

(T̄ )k/� � 1
(T̄ )1/� � 1

 R̄ (T̄ )1/�

(T̄ )1/� � 1
t1/� ,

and hence

u(x, t) = 0 if |x| > R(T0) + B̄ t1/� and t > T0 T̄ , (22)

where the constant B̄ depends on n,N and |u0|1. Using (14), near t = 0
R(t) can be estimated in the following way:

R(t)  R0 + r0 � sup
R0+r0

⇣
rN
0 �A0t

⌘/4
⇣Z t

0

Z
Br0 (x0)

|D2u
↵+n+1

2 |2 dx dt
⌘�⌘ 1

N
.

Now (17) implies that for t ! 0 the right-hand side converges to R0; i.e., in
relation (22) R(T0) can be replaced by R0, and thus (22) holds for all t > 0.

Finally, we use that the local integral estimate is invariant under the
scaling

uM (x, t) = Mu(x,Mnt) (23)

to conclude that B̄ in (22) can be chosen as

B̄ = B|u0|
n

4+nN

1
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with a constant B depending only on n and N but not on u0. This can
be seen by the following argument. Because of the scaling property (23) we
only need to show the growth estimate for initial data with mass one. The
form of B̄ then follows by scaling solutions with arbitrary mass to a solution
with mass one. This completes the proof of the theorem.

Remark. i) In one space dimension the method to prove Theorem 5.2 would
give the results of Bernis (cf. Theorem 7.1 and inequality (7.7) of [3]).

ii) The powers in the decay estimates of Theorem 5.2 are optimal, as can
be seen from self-similar source-type solutions of the form

u(x, t) = t�N� û

✓
|x|
t�

◆
where � =

1
4 + nN

which have been found by Bernis and Ferreira ([12]). A self-similar source-
type solution therefore necessarily has the decay t�

p�1
p

N
4+nN for the Lp-norm,

t�
1
2

N+2
4+nN for |ru(t)|2 and a growth rate of t

1
4+nN for its support.

iii) Scaling arguments are widely used in the literature, but the combina-
tion with the induction argument leading to the proof of (22) seems to be
new.

6. Auxiliary inequalities. In this section we prove some auxiliary
inequalities used in Sections 4 and 5. We introduce the notation

|v|pp,r :=
Z

Br(0)
|v|p for all p 2 (0,1).

First we state a version of the Gagliardo–Nirenberg inequality appropriate
for our purposes. In particular we state the dependence on the radius r
explicitly.

Lemma 6.1. (Gagliardo–Nirenberg) Let 0 < q < 2. Then there exist con-
stants K1 and K̂1 such that for all r > 0 and v 2 H2

�
Br(0)

�
|v|2,r  K1|D2v|a2,r|v|1�a

q,r + K̂1r
�µ|v|q,r, (24)

where
a =

(2� q)N
(4�N)q + 2N

and µ =
(2� q)N

2q
.

If Br(0) is replaced by RN , then (24) holds with the constant K̂1 = 0.

The Gagliardo–Nirenberg inequality was independently proved by Gag-
liardo ([13]) and Nirenberg ([18, 19]). Bernis proved the lemma for the
nonstandard case q 2 (0, 1) in one space dimension. The generalization to
higher space dimensions is straightforward. The explicit dependence of the
constants on r follows by a simple scaling argument.

The following lemma generalizes Lemma 10.5 of Bernis [3] to higher space
dimensions.
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Lemma 6.2. Let 0 < q < 2. Then there exists a constant K2 such that for
all r > 0 and all v 2 L2(Br(0))Z

Br(0)
|v|q  K2

✓Z
Br(0)

�
rN � |x|N

�4
vq

◆c✓Z
Br(0)

v2

◆ q
2 (1�c)

,

where c = 2�q
10�q .

Proof. For s 2 (0, r) we getZ
Br(0)

vq =
Z

Bs(0)
vq +

Z
Br(0)\Bs(0)

vq


�
rN � sN

��4
Z

Bs(0)

�
rN � |x|N

�4
vq+

� Z
Br(0)\Bs(0)

v2
� q

2 CN,q

�
rN � sN

� 2�q
2


�
rN � sN

��4
Z

Br(0)

�
rN � |x|N

�4
vq+

� Z
Br(0)

v2
� q

2 CN,q

�
rN � sN

� 2�q
2 .

Now we minimize the function f(z) = az�4 + bz
2�q
2 on the interval (0, rN ],

where we set a =
R

Br(0)(r
N � |x|N )4vq and b = (

R
Br(0) v2)

q
2 CN,q. The point

z0 := ( 8a
(2�q)b )

2
10�q is the only positive number with f 0(z) = 0. It follows that

either f has a minimum z0 2 (0, rN ] or z0 > rN . Both possibilities imply
the inequality stated in the lemma. ⇤

The next lemma supplies an auxiliary inequality, which was used in Sec-
tion 4 to show finite speed of propagation.

Lemma 6.3. Let 0 < q < 2. Then there exists a constant K3 such that for
all r > 0 and all v 2 H2

�
Br(0)

�
K3|v|22,r  |D2v|2d

2,r

�Z
Br(0)

�
rN � |x|N

�4
vq
� 2

q (1�d)

+ r�2⌫
� Z

Br(0)

�
rN � |x|N

�4|v|q� 2
q ,

where we have set

d =
(10� q)N

10N + (4�N)q
and ⌫ =

(10� q)N
2q

.

Proof. The Lemmas 6.1 and 6.2 yield

|v|2,r  K1|D2v|a2,r|v|1�a
q,r + K̂1r

�µ|v|q,r

 C|D2v|a2,r

✓Z
Br(0)

�
rN � |x|N

�4|v|q
◆ c

q (1�a)

|v|(1�c)(1�a)
2,r

+ Cr�µ

✓Z
Br(0)

�
rN � |x|N

�4|v|q
◆ c

q

|v|1�c
2,r .
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Dividing by |v|(1�c)(1�a)
2,r , using Young’s inequality for the second term on

the right-hand side and taking the power 2
a(1�c)+c , we obtain

|v|22,r  C|D2v|
2a

a(1�c)+c

2,r

�Z
Br(0)

�
rN � |x|N

�4|v|q� c(1�a)
a(1�c)+c

2
q

+ Cr�
2µ
c
�Z

Br(0)

�
rN � |x|N

�4|v|q� 2
q .

Now the claim follows from the definition of a and c. ⇤

Let
Rs(r) :=

Z
Br(0)

�
rN � |x|N

�s�(x) dx

with
� 2 L1

�
Br0(0)

�
, � � 0, r0 > 0.

Assume
R4(r)  K R✓

0(r)

for r 2 [rm, r0]. Then the following lemma holds (cf. Lemma 11.1 of [3]).

Lemma 6.4. Let K > 0, ✓ > 1 and 0  rm < r0. If for the real number r1

defined through
rN
1 = rN

0 � ✓+3
✓�1K

1
4 R0(r0)

✓�1
4

the inequality r1 � max{0, rm} holds, then R0(r) = 0 for r 2 (0, r1].

This lemma is proved in the same way as Lemma 11.1 in Bernis [3]. We
only need to use that R01 = NrN�1R0. But we might as well switch to the
variable z = rN and apply Lemma 11.1 directly.

Lemma 6.5. Let ⇥ > 1, C > 0, M > 0 and assume that the functions
v1, v2 : [0,1) ! (0,M) are continuous and have the following properties:

i) v1 is monotonically decreasing and fulfills v1
0  �Cv⇥

1 in D0(R+);
ii) v2

0 � �Cv⇥
2 in D0(R+);

iii) v2(0) � v1(0).
Then v2(t) � v1(t) for all t 2 R+.

Proof. The function s : [0,1) ! R+
0 , defined by

s(t) :=

(
C v2(t)

⇥�v1(t)
⇥

v2(t)�v1(t)
if v2(t) 6= v1(t),

⇥Cv2(t)⇥�1 if v2(t) = v1(t)
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is bounded and nonnegative. For arbitrary t2 > 0 and an arbitrary, nonneg-
ative function  2 C10 ((0, t2)) we have

�
Z t2

0
 0(t)(v2(t)� v1(t)) dt � �C

Z t2

0
(v2(t)⇥ � v1(t)⇥) (t) dt. (25)

Now we approximate an arbitrary nonnegative Lipschitz functions � 2
C0,1([0, t2]) by smooth functions with compact support. Hence, inequality
(25), the continuity of v1, v2 and item iii) imply

(v2(t2)� v1(t2))�(t2) �
Z t2

0
(v2(t)� v1(t))(�0(t)� s(t)�(t)) dt.

Choosing � as the solution of the ordinary di↵erential equation K̇(t) =
s(t)K(t), K(0) = K0 > 0 and using that � is positive, the result can be
established.

7. Appendix. We are left to prove the estimates (10). We formulate
the result in the following lemma.

Lemmar 7.1. There exist constants C (independent of � and �) and Ĉ =
Ĉ(�, �) such that for all ⌧ � 0 and for all " > 0

m0
��(⌧) g↵

��(⌧ + ")  C(⌧ + ")↵+n�1 + Ĉ(�, �) " (⌧ + ")↵+n�1,

m��(⌧) (g↵
��)

0(⌧ + ")  C(⌧ + ")↵+n�1,

m��(⌧) g↵
��(⌧ + ")  C(⌧ + ")↵+n.

Proof. We only prove the first inequality. The second and the third inequal-
ities are easier to establish since one can use that m��(⌧)  m��(⌧ + "), and
therefore we omit the proofs.

We define Z,N,P1, P2, P3 such that

g↵
��(⌧) = �

↵+n�s⌧↵+n�s + 1
↵⌧↵ + �

↵+n⌧↵+n =: P1(⌧) + P2(⌧) + P3(⌧)

and
m0

��(⌧) =
s�⌧s+2n�1 + n⌧2s+n�1

(�⌧n + ⌧s + �⌧s+n)2
=:

Z(⌧)
N(⌧)

.

Now we estimate

P1(⌧ + ")Z(⌧) = (⌧ + ")↵+n�1
�

⌧+"
⌧

�1�s⇥ s�2

↵+n�s⌧2n + �n
↵+n�s⌧n+s

⇤
 (⌧ + ")↵+n�1

⇥
s�2

↵+n�s⌧2n + �n
↵+n�s⌧n+s

⇤
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and

P2(⌧ + ")Z(⌧) = (⌧ + ")↵+n�1
�

⌧+"
⌧

�1�n⇥ s�
↵ ⌧s+n + n

↵⌧2s
⇤


⇢ (⌧ + ")↵+n�1

⇥
s�
↵ ⌧s+n + n

↵⌧2s
⇤

if n � 1,

(⌧ + ")↵+n�1(1 + "
⌧ )
⇥

s�
↵ ⌧s+n + n

↵⌧2s
⇤

if n < 1.

For the last inequality we used that (1 + "
⌧ )1�n  1 + "

⌧ if n < 1.
In addition we get

P3(⌧ + ")Z(⌧) = (⌧ + ")↵+n�1
�

⌧+"
⌧

�⇥
s��
↵+n⌧s+2n + n�⌧2s+n

⇤
.

This gives

m0
��(⌧)g↵

��(⌧ + ")

 C(⌧ + ")↵+n�1
�

�2⌧2n+�⌧n+s+⌧2s+��⌧s+2n+�⌧2s+n

�2⌧2n+�⌧n+s+��⌧s+2n+⌧2s+�⌧2s+n+�2⌧2s+2n

 
+ C"(⌧ + ")↵+n�1

⇥
�⌧n+s�1+⌧2s�1+��⌧s+2n�1+�⌧2s+n�1

�2⌧2n+�⌧n+s+��⌧s+2n+⌧2s+�⌧2s+n+�2⌧2s+2n

⇤
.

Now we can estimate the factor { } by a constant, which does not depend on
�,� and ⌧ . The factor [ ] is for all ⌧ � 0 bounded by a constant depending
on � and �. This proves Lemma 6.1.
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