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We propose a generalisation of the Mullins—Sekerka problem to model phase separation in
multi-component systems. The model includes equilibrium equations in bulk, the Gibbs—
Thomson relation on the interfaces, Young’s law at triple junctions, together with a dynamic
law of Stefan type. Using formal asymptotic expansions, we establish the relationship to a
transition layer model known as the Cahn—Hilliard system. We introduce a notion of weak
solutions for this sharp interface model based on integration by parts on manifolds, together
with measure theoretical tools. Through an implicit time discretisation, we construct
approximate solutions by stepwise minimisation. Under the assumption that there is no loss
of area as the time step tends to zero, we show the existence of a weak solution.

1. Introduction

In this paper, we study some mathematical models describing a chemical system of
N species undergoing phase transition under isothermal conditions. Qur starting
point is a Cahn-Hilliard system which contains a small length scale parameter &.
We then formally derive a limiting system of equations as ¢—0. This leads us to
propose a multi-phase analogue of the Mullins—Sekerka problem in R?® including
triple junction lines and quadruple junctions. We present a weak formulation for this
system and prove a conditional existence result using an implicit time discretisation
approach.
The Cahn—Hilliard system we consider takes the form

@ J,u= Aw,

(1) w= —¢Au+ %f(u),
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where the spatial variable ranges in some open, bounded Q@ <R?® and where
u:(0, T) x Q— RN (N = 3) represents the vector of molar functions or of mass
densities of the components in the chemical system, and w:(0, T) x Q—R" is the
associated vector of chemical potentials.

Since u; is the concentration of the jth component of the chemical system, it
should be non-negative and the sum of all u;’s should be one. Thus we constrain u
to lie in the so-called Gibbs triangle, defined by {ueRY:ZN,u; =1, u; = 0}. Now,
let e be the vector (1,...,1) in R¥. In view of the constraint, we introduce the
hyperplane

S={ucR¥ | u-e=1},
and its tangent plane
TE={ueR"|u-e=0}.

Next, let :RY - R be a potential with an N-well structure on X, ie. let |5 have
exactly N local minima, which are of equal height. We define

1
F=Vob =5 (Vs - e

to be the projection of V,iy onto the tangent plane TX and we set B:=V,f. We
assume that B is positive definite at the minima. The free energy is then given by

E[u]= J gqulz-}—%w(u)dx
Q

for functions u:Q— X. The vector w:Q — TX of chemical potentials is the gradient
of E[u] with respect to the I? inner product. Thus its value is given by (II). Equation
(I) is a balance law which is a consequence of mass conservation (cf. [17]).
We study (I)-(II) subject to the natural boundary conditions
0 0
oy U= 0, W= 0
on 0Q.

Elliott and Luckhaus [17] have proved the existence of solutions for this problem.
We refer to recent work of Elliott and Garcke [16] for the case that a nonconstant
mobility matrix is introduced in the model.

In this paper, we concentrate on the case N = 3 and we study asymptotic expan-
sions of solutions of the system (I)—(II), provided ¢ is small. A similar study has
been carried out by Bronsard and Reitich [5] for the Allen—Cahn system

1
eu, — eAu + " V() =0,

where the vector u of order parameters is not conserved. They obtained formally
that each interface evolves by its mean curvature and that an angle condition must
be satisfied at triple junctions. Then they proved that this limiting system of partial
differential equations is well posed in the classical sense by combining C?*-Schauder
estimates with a fixed-point argument. For the Cahn—Hilliard system (I)—(II), the
formal asymptotic expansion and the study of the limiting problem are harder, since
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the mass conservation of the individual species introduces a nonlocal aspect to this
system of equations. :

Using the results of the asymptotic expansion, we derive a multi-phase analogue
of the Mullins—Sekerka problem (see Section 2). Roughly speaking, we can write this
system around a (time-dependent) triple junction line as:

® Aw =0 in each bulk region;

® [wlr=0o0nT;

® [Vowlr*vr= —vr[ulr on T;

® we[ulr=—oxronT;

® the angles are 120° between the three interfaces (Young’s law).

Here I" denotes any one of the three surfaces meeting at the triple junction line,
[ Ir denotes the jump across I, vr is the normal, vy the normal velocity, xr is the
sum of principal curvatures of I, while o is the surface tension, being a given constant.
In other words, we obtain a geometrical model in which the evolution of the surfaces
separating the bulk regions is determined through this system of partial differential
equations. We present a precise formulation of this geometrical problem under the
assumption that there are no singularities such as coalescing quadruple junctions or
self-intersecting interfaces (see Definition 3.1). We do this while allowing the surface
tension o to be different on different interfaces, giving rise to a modification of
Young’s law. We also derive some geometrical properties of this flow (see Section 3,
third subsection).

In the binary case (N =2), the associated formal result was obtained by Pego -
[31]. The proof of the convergence to the Mullins—Sekerka problem was given in
the radial case by Stoth [36] and in the general domain case by Alikakos, Bates
and Chen [1] assuming smoothness of the interfaces and particular initial data.
Recently Chen [10] adapted the geometric measure theoretical approach of Ilmanen
[25] (see also [34]) to prove the convergence result in the binary case without the
assumption of smoothness of the interfaces. Many of the methods used in these
convergence results are inspired by those which were developed to prove the conver-
gence of the Allen—Cahn equation to the mean curvature flow of the interfaces (see
[13,207). We note that no rigorous convergence results have been obtained yet for
the Allen—Cahn system. So we expect serious difficulties in the Cahn—Hilliard system.

The limiting system above can be interpreted as a multi-phase analogue of the
Mullins—Sekerka problem. The classical existence result for the Mullins—Sekerka
problem has been obtained recently by Escher and Simonett [ 18] and independently
by Chen, Hong and Yi [12]. They used the method developed by Duchon and
Robert [14] for the case when the interface is a graph over R. It is based on integral
representation formulae and fixed-point arguments. The new features of the present
system are the triple junctions lines and the angle conditions, which present obstacles
to this approach.

Instead, we extend the weak formulation approach developed by Luckhaus [26]
in his study of the Stefan problem with the Gibbs—Thomson law (see Definition 4.1).
The main tool of this formulation is a weak form of the curvature equation, using
integration by parts on manifolds. We use conservation of mass to overcome the
difficulty that chemical potentials are only defined up to a constant, so that we are
able to treat the Neumann problem. We show that this weak formulation is consistent
with the strong formulation (see Proposition 4.3). In particular, we point out that
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the angle condition arises as the natural boundary condition when performing the
integration by parts of the curvature equation. We prove a conditional existence
result for the multi-phase Mullins—Sekerka problem (see Theorem 5.8). The method
we use is based on implicit discretisation in time, ensuring the existence of solutions
at each time step via a variational formulation. We use a-priori estimates to pass to
the continuous model. This result is conditional in nature, since we have to impose
a convergence condition on the semidiscretised approximation that we are not able
to verify. This condition says that there is no loss of perimeter in the limit as the
time step converges to zero.

This time discrete approach was successful in developing a weak formulation of
the mean curvature flow for general surfaces with singularities such as junctions (see
[2,277). It has the advantage that it does not allow fattening of the interfaces (as
opposed to the viscosity solution approach of Chen, Giga and Goto [11] and Evans
and Spruck [19]). Hence coupling with ‘bulk’ equations is possible. Luckhaus and
Sturzenhecker [27] also used this weak formulation for the case of a two-phase
Mullins—Sekerka problem. We extend their work to the N = 3-dimensional case and
the case of Neumann boundary data, and incorporate the triple junction conditions
in this weak framework.

We conclude with some remarks on studies related to ours. Cahn and Novick-
Cohen [8] derive an Allen—Cahn/Cahn—Hilliard system to describe simultaneous
phase separation and ordering in binary alloys. In their model, the mobility depends
on the order parameter and degenerates at special values. Applying formal asymptotic
expansions, they derive that on a small timescale the limiting motion consists in a
certain coupling of motion by mean curvature and motion by minus the surface
Laplacian [9, 28].

Garcke and Novick-Cohen [21] consider a Cahn—Hilliard system with degenerate
mobility (cf. [16]). They obtain formally that in the singular limit the interfaces
move according to motion by surface diffusion. This result has already been derived
in the binary case by Cahn, Elliott and Novick-Cohen [7]. The new feature is a
balance of fluxes, which is an independent condition at the triple point, and has to
be incorporated in the model in addition to the continuity of the chemical potentials
and Young’s law.

2. Formal asymptotics

In this section, we perform a formal asymptotic analysis of the vector-valued
Cahn-Hilliard system, assuming that ¢ is small. We do not intend to derive all terms
of the expansion. Our goal is to expand the solution up to the order necessary to
obtain a well-posed limit problem.

We denote the N minima of ¥5 by A(j) (j=1,..., N), with height y(4(j)) = 0.
This latter condition is assumed to make integration constants vanish, that otherwise
appeared at several places in the formal expansions.

A prototype example is given by the logarithmic potential

Yu)=0 i u;Inu; — % u-(Id—eeMu+c(9),

i=1

where 0 denotes the absolute temperature, which is treated as a fixed constant here,
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and with ¢(0) chosen such that y(A(j)) = 0. The projection of V, () onto e is given
by

f(u)=%(e-u)e—u+9(1nu—%(lnu-e)e).

If 0 is sufficiently small, we note that y has an N-well structure on the hyper-
plane X. The minima are located at the N points given by the formula
A(j)==0e+(1—Nob)e;, and f vanishes there. Here 6= 5(6) is some well-defined
function with 6(8) < Ce™'/ as 6 — 0. Thus in the deep quench limit (§ - 0) the minima
approach the corners of the Gibbs triangle. We note that the matrix B(u) is given
by

16 0

N + 05—

u; u;
By construction, B(u) maps the tangent plane TE onto itself. Since 8/ converges
to oo as 0 — o0, we conclude that B(A(j)) is positive definite on TX for small positive
values of 0. At some places we will point out how identities simplify in the case of
this prototype potential.

1.
B;j(u) =fi,u,-(“) =N 0ij—

QOuter expansion
We make the ansatz

o0 o]
Uoue(t, X; €)= Y, eXuR(t,X), Woult, x;8)= Y, e*wX(t, ),
K=0 K=0
with u® € X and u¥=!, wk22 ¢ TS, We substitute this ansatz into the Cahn—Hilliard

system.
The 0(1/¢)-equation of (II) is

f@®)=0.
The stable solutions of this equation are u° = A(j) for some je {1,..., N}.
The O(1)-equation of (I) is

0,u’ = AwP.

Since u° is a constant, this implies Aw® = 0.

Inner expansion in the transition layer

We construct a solution that makes a transition from some A(j) to some different
A(k) across some smoothly evolving manifold I'(¢) =T'(¢; 0). Assume that I'(¢; ¢) is
a smoothly evolving manifold, with spatial normal v(t, -; ). We introduce coordinates
r(t, -; ¢) and s(¢, -; &) in some suitable neighbourhood of T'(¢; ¢):

We set r(z, -; &) to be the signed distance function, positive in the direction of
v(t, -; €). In the neighbourhood of T'(t; ¢) the projection P(t; ) onto I'(t; ¢) is well
defined. We assume that T'(¢; ¢) is locally diffeomorphic to T'(¢; 0) with associated
diffeomorphism ®(z, -; &) and we define s(t, x; &) through ®(%, s(t, x; €); &) = P(t; )x.

We rescale the r-variable to z(t, x; &) = (1/e)r(¢, x; &).

The pioneering mathematical work which used this parametrisation in a systematic
way was done by De Mottoni and Schatzman [13].
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‘We make the ansatz

o0
un(t, x;8)= Y. e UX(t, z(1, x; €), s(t, X; €)),
K=0

win(t, X3 )= Y, e5WX(t, z(t, x; 8), s(t, x; ¢)),
K=0

with U%eX and UXZ!, WX20ec TZ. We substitute this ansatz into the
Cahn-Hilliard system.
The O(1/¢*)-equation of (I) reads
8, WO =0.

We are looking for bounded W°, and thus W°(z, z, s) = W°(, 5).
The O(1/¢)-equation of (II) is

0=—0,,U°+ f(U°).

Since fis the projection of V,J onto the plane e*, there exists a solution U of this
system of ODEs satisfying the constraint U - e =1 and connecting the values A(j)
at z= —oo and A(k) at z= + oo. For this existence we refer to [35]. In particular,
Sternberg shows that

+ o + o0
0=0p= J |6, U}? dz=2j v(U)dz
is finite. We set U°(t, z, 5):= U(2).

The O(1/¢)-equation of (I) is

(at r)O az UO = 6:2 Wl:
where (0,r)°(t, z, 5) = 0,7(t, X3 &)p=0 With x, = @(t, 5; &) + &v(t, Dy (t, s; €); €)z. Since
(8,7)° is independent of z, we may integrate this with respect to z and obtain
@)U ZZ e =0, WHEZ* 2.

We note that (9,r)° = —v, where v is the normal velocity v of I'(z; 0). In the case
of the prototype potential , the above identity may be restated as
—v(1—NS&)=0,Wi|t3=—0,W}|*2, and 0=0,W}|tZ fori#j, k.

The O(1)-equation of (IT) is

WO = —0, U — 3,U%AR° + 8, U(Vr - Vs)° + D, f(U°)U?,

where (Ar)°(t, z, s) = Ar(t, X,; €),=0 and (Vr - Vs)°(t, z, 5) = (Vr * Vs)(t, X,; €)|,=0. Due
to the orthogonality of the parametrisation close to the interface I'(t; 0), (Vr * Vs)°
vanishes, and we find

W°+0,U%Vr)°=—0,,U'+D,f(U° - UL
We observe that 0, U° satisfies the corresponding homogeneous equation, and thus
the solvability condition implies that {*% (W° + 0,U%Ar)°) - 0,U° dz = 0. Since W°
and (Ar)° are independent of z, this gives the scalar relation

+ oo
WO U=+ % + (Ar)° f |6,U°> dz =0.

— 0
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We observe that (Ar)° =x, where x is n times the mean curvature of T’ (¢; 0) and
[T216,U° dz was defined to be o, earlier in this section. If  is the prototype
potential, this solvability relation may be rewritten as (W2 — W9)(1 — N§) = —xo.

Matching inner and outer expansions
We want to match an inner expansion u,, around I'(t) =TI'(¢; 0) with spatial normal
v(t, ) to two corresponding outer expansions Uout,+- Thus we assume I'(¢; 0) locally
to separate two bulk regions Q. (¢). In Q. we assume that u takes the form Uous, +
as given by the outer expansion, and we assume that all terms of the expansion
together with their derivatives have limits as I is approached. Around I', we assume
that u takes the form u;, as in the inner expansion. :
Now, let z and s e I'(t; 0) be given and set x, be the corresponding image of (z, s)
under the reparametrisation.
In the matching region, we have two representations of the solution, namely

) 1 =<}
uout,i(tv Xes 8)= Z ﬁ?uout,i(t: Xes s)|e=OSJ:: Z P'i(t, z, S)SJ,
J=0"v:* ( 8) J=0
v 1 d J - J J
Wout, + (£, X5 &) = Z ﬁ?w"‘“’i(t’ X;; €)|s=08’ =t Z 04(t, z, s)¢’,
J=0"v" ( 8) J=0
and
[se)
un(t, x58)= ), U(t, 2, 9),
J=0
@
winlt, X5 8)= ), &'W(1, z,9).
J=0

We note that P and QX are polynomials of degree K in z.
The first matching conditions are
lim (Uo(ta 2, S) - ugut,i(t$ S)) = 0’ i (Wo(t, z, S) - Wgut,i(t, S)) =0.
z>too z—too o
Since U° only depends on z, and uy + are constant, and since W?° is independent
of z, this implies
]im UO(Z) = ugut,i >

z—+ oo
WL, 5) = Woue, 1 (1, ).

Thus, if the stationary wave solution U°® connects A(j) to A(k), then Uyt — = A(j)
and ugy, . = A(k). In addition w3, , = Wut, — » which implies continuity of the limits
of the chemical potentials across T,
The second matching conditions are
im (U(2, z, 5) = (ugue, + (2, ) + Vi, 4 (2, 5) * ¥(t, 5)2)) = 0,

z—>t

lim (Wl(ts 2, S) - (wéut,i(t: S) + Vngut,i(ts S) : V(t, S)Z)) = 0’

z-t

with V,wJ, + (2, s) being the Euclidean gradient of Wout, + (%, ) evaluated at the point
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s e I'(¢). In particular, this implies that
lim 8,W(t, 2, 5) = Ve Wout, + (£, 8) * ¥(£, 9),

z—>t oo

and thus

1jz=+o00 __ 0 (1] R
6zW §=—oo _Vx(wout,+ _wout,—) V.

Triple junction expansion and matching to the transition layer solutions in R?

We now assume that the space dimension n is equal to 2. We construct a solution
in the neighbourhood of a triple point, where three phases meet, each phase corre-
sponding to one of the three different values A(j), A(k) and A(l). We follow the idea
of [30] and [5]. Assume that Ti(t; ), Tu(t; ) and T;(t; ) are three smoothly
evolving curves that meet exactly at one point m,(t; €). We use (a, b) for any of the
three pairs (j, k), (k, ) and (1, j). On each T,(t; &), we choose the normal Valt, 5 €)
to point into the A(b)-phase. We introduce the moving rescaled coordinates
y(t, x; 8):=(x — my(t; &))/e.

We make the ansatz

wy(t, % 8)= Y UL, y(t, x:8), Wwylt,x;8)= Y, WL y(L X3 ¢),
K=0 K=0
with %° € ¥ and #¥21, X0 ¢ TS, We substitute this into the Cahn—Hilliard system
and then expand y in powers of .
The O(1/£?)-equation of (I) reads

0=A%°.

We want #° to be bounded, and thus Liouville’s Theorem gives #7°(t, y) = #7°(2).
The 0(1/¢)-equation of (II) reads

0= —A2° + f@°).

We are looking for a solution of this equation that connects A(j) to A(k) at + 0
across I, A(k) to A(l) at +oo of Ty and A(l) to A(j) at + oo of I}; in the form of
the associated one-dimensional stationary wave solutions. Such a solution exists
only if the angle condition :

0 0 0 _
05V + OV + 0v;; =0

is satisfied. This identity admits a solution if and only if the coeflicients o, fulfil
G + Oy = G, fOr any cyclic permutation (a, b, ¢) of (j, k, ). But since, in the present
‘case, g, can be characterised as d(A(j), A(k)) for some suitably chosen weighted
distance d involving the potential ¥ (see [31), here this constraint is always met. In
the case of the prototype potential  (and in fact any symmetric potential) the angle
condition takes the equivalent form

Vi = Vit V= W= — 5= cos 120°.
Existence of solutions %° provided the angle condition is met is shown in [4] for

the case of a symmetric potential and two spatial dimensions. For a formal argument
showing the necessity of the angle condition, we refer to [5]. For completeness, we
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include the derivation of the necessity in an Appendix. Since the angle condition is
necessary for the first-order term to exist, it plays the role of a compatibility condition.

Triple junction lines and quadruple junction points in R3

The formal asymptotic expansion near a triple line can be carried out following the
same ideas as near a triple point in R% We only have to introduce an additional
coordinate s in the direction of a triple line where three bulk phases together with
three surfaces meet. We find that in the plane perpendicular to the triple line the
above two-dimensional analysis holds true and that the lowest order term in the
expansion does not depend on s. As a result, we find the angle condition in the plane
perpendicular to the triple line.

At a quadruple point in R® where four bulk phases meet, a similar expansion as
at a triple point in R? can be performed. But the whole geometry near a quadruple
point is already determined by the geometry around triple lines (cf. the second part
of Section 3) and thus no new information is contained in this expansion.

Boundary layer expansion

The boundary layer expansion can be performed as in [30], resulting in a Neumann
condition for w and a right-angle condition for the intersection of the surface with
the fixed boundary.

3. The limit problem and its geometric properties

The formal asymptotic expansion suggests a geometrical model as the limit of the
Cahn-Hilliard system. This problem consists in determining a decomposition of Q
into bulk regions (see (A) below), surfaces (see (B) below), triple junction lines (see
(C) below) and quadruple junctions (see (D) below). In the case of triple junction
lines, we will rule out that any of the three bulk phases meeting there locally splits
into several connected components, i.e. as we turn around a triple junction line, we
only want to meet any of the three phases once. Mathematically, this will be captured
by asking that in a neighbourhood of a triple junction line any of the three phases
occupies a connected set. The same applies for quadruple junctions. We write down
this geometrical problem in R® when there are no singularities such as merging
quadruple junctions or self-intersections of interfaces. The evolution of the interfaces
between the bulk regions is determined through a system of partial differ-
ential equations for the chemical potential w. This system can be thought of as a
generalisation of the two-phase Mullins—Sekerka problem.

DeriNtTION 3.1 (multi-phase Mullins—Sekerka system). Let {o,cR:1<a<b< N}
be given, constant surface tensions. We say that (Q,),-,.. ~<[0, T] x Q with
Qpi=Use 0, {5} X Qu(s) is a strong solution of the multi-phase Mullins—Sekerka
problem, if
® for every t € [0, T] the sets Q,(t) = Q are open, disjoint. and Q = UY_, Q,(¢);
¢ for all xeQ and for all te(0, T) there exists r>0 and 7> 0 such that for
Us=(t—r,t+1) X B,(x):
(A) UcQ, for some a;
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or
(B) UnQ,NnQ, is a smoothly evolving surface s %) for two distinct a
and b and UnQ, = & for all ¢ #a, b;
or
(C) UnQ,nQ,nQ, is a smoothly evolving triple junction curve s T&(s) for
three distinct a, b and ¢, UnQ,, UnQy, UNQ, are connected and
. UnQu= foralld+#a,b,c;
or
(D) UnQ,n0,nQ,nQ; is a smoothly evolving quadruple point s Mg.q(s)
for four distinct a, b, ¢ and d, UnQ,, UnQ,, UnQ,, UNQ, are connected
and UnQ, = for all e#a, b, ¢, d;
e for all x € dQ and all ¢ € (0, T) there exists r >0 and 7 > 0 such that (A), (B) or
(C) above holds true with B,(x) substituted by B,(x)nQ in the definition of U;
e for all xeQ and t=0 the above holds true with (t — 1, t + 1) substituted by
[0, 7) in the definition of U;
e for every te(0,T), there exists a continuous w(t,"):Q—TX with
w(t, -) € C}(Q, (1)) for all b, such that

Aw=0 inQ,, (3.1)

o,w=0 on (0Q)rN 0o, (3.2)
[Viwlir,, * Vo = —Vap[t]ir,, 0N Top, (3.3)
w+ [ulir,, = —OapKas 00 i, (3.4)
Ve v=0 on (0Q)rNndl,, (3.5)
OupVap + OpcVoe + 0caVea =0 0N Iy, (3.6)

with u =A(b) in Qb and where 1—:tb = U(x,t):propertyBrf:lc;t and I_‘abc = U(x,t):propertyC
rgo.

In the above, v, is the spatial normal, x,, is the sum of principal curvatures
and v,, is the normal velocity of the surface I, the normal pointing from €2,
to Q, and [f]jr(x):=1lim,_of(x + hv) — f(x — hv) denotes the jump in normal
direction across a surface I.

REMARKS 3.2. (i) The relations (3.1), (3.2) and (3.3) are the continuity equation for
the chemical potential w, relation (3.3) being a kinetic condition of Stefan-type and
relations (3.4), (3.5) and (3.6) are the Gibbs-Thomson law. Relation (3.6) is also
known as Young’s law.

(i) We point out that the proposed model is consistent with the asymptotic
analysis. Relation (3.1) results from the first term of the outer expansion of w,
relations (3.2) and (3.5) from the boundary layer expansion of w and u, relation (3.3)
from the second-order term of the transition layer expansion of w together with the
matching condition, relation (3.4) from the second-order term of the inner expansion
of u and the compatibility condition and relation (3.6) from the compatibility
condition of the first-order term in the triple point expansion of u.

(iii) In the case of the prototype potential, only the a-th and b-th component of
[u]r,, are nonzero, and we may rewrite the interfacial conditions (3.3) and (3.4)
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componentwise as
Viwdir,, * vy =0 fori#a,b,
[VewsJir,, * Vo= —va(1 = N&) and [V,w,Jir, * Vao = 01— NO),
Wy = W), (1 = N6) = — 0¥,

Consequently, we find [V.(w,+w,)]ir,, * V=0 and [Vi(w,—w,)]ir,, * Vap =
—2v4(1 — N§). Thus the i-th component of w (i # a, b) and the sum of the a-th and
b-th component of w satisfy Aw,;=0 and A(w,+w;)=0 in Q,uQ,, respectively,
whereas the difference of the a-th and b-th component of w is proportional to the
curvature on I, and the jump of its normal derivative on I, gives the velocity.

(iv) If the potential is symmetric, then ¢ =g, on each interface, and the triple
junction condition (3.6) transforms into the condition that the surfaces meet at a
120° angle.

(v) An analogous definition can be made for a two-dimensional problem with
bulk phases separated by interfacial lines which may meet in triple junction points.

Quadruple junction points in R?

The whole geometry and dynamics near a quadruple point is already given by the
geometry of the higher-dimensional objects. In particular, the angles between the
triple lines meeting at a quadruple point are determined by the angle conditions
which hold on the triple lines themselves. For simplicity, we will only explain the
symmetric case here. At a quadruple point m(t) necessarily four triples lines Iy,
Timt> Timj and T, meet. For any of these triples (a, b, ¢), we denote the tangent to
T, by T, pointing away from the quadruple point. At any triple line I, three
surfaces T;, T}, and T, meet. The angle condition at the triple line I, implies
Vab * Voe = Vpe * Vea = Vea * Vap = —3. Using the three normals at each triple line, we can
represent the tangents to the triple lines: ‘

Vg XV 2
Tjk = M = V3 Vie + Vias
Vim + Vit 2
Thmi = m = W Vian X Vi,
Vim X Vinj 2
Tlmj = m = W Vim X ij,
Vim X Vi 2
Tjmk = —~—|va % mGl = ijm X Vg~
We recall that v, = —v,, is the normal to any surface I, pointing from phase a to

phase b. The well-known formula (a xb)-(cxd)=(a-c)b-d)—(a-d)b-c) for
scalar-and vector products implies

4
Tkt * Thml = 5 (Vi * View) Vit * Vo) — (ij * V) Vit * Viem))-

; y = R Y oy __1.,1_
USINg vig * V= —Vig * Vip =3 and Vg * Vpy = Vo * (— Vit — View) = —3 + 5 = 0, we finally
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obtain
1

Tkt * Toml = — §

In a similar way, it is possible to compute that the scalar products of all other
combinations of tangent vectors at the quadruple point is equal to —31. This implies
that the angle between the triple lines at a quadruple point is such that its cosine
equals —3. This angle is well known in the theory of minimal surfaces. A system of
surfaces which locally minimises the area consists of minimal surfaces which meet
at triple lines where they satisfy a 120° angle condition, and these triple lines again
meet in quadruple points with an angle whose cosine is —3. We refer to [24] for a
nice description.

Finally, we just state the law that holds at a quadruple junction when the surface
tensions are not identical:

05T jk1 + Otomt Timt + Otomj Timj + O jmic Tjmie = 0

where é might be thought of as the surface tensions supported by a line singularity
and which relate to the interfacial surface tensions via the formula

z

O = (2 > 0oy 0 — Z 0'a4b) .
abe= jkLkLj, Ljk ab=jkKkLLj
The term in brackets is non-negative if the surface tensions fulfil the subadditivity
condition o, + 0y, = 0.

Geometric properties
For simplicity of presentation, we only discuss the case of the prototype potential,
i.e. we assume symmetry and the special form of the stable phases 4(j). We note the
following geometric properties at the triple lines or points, which formally follow
from the definition.

(i) Due to (3.4) we may add the three identities w, — w, = —1,,06/(1 —SN) at any
point m on a triple line and obtain

Kjk+Kkl+Klj=0 at m.

(i) We may determine the velocity of triple lines and points. Let T}, be a triple
line with tangent 7;,. We parametrise I';;(¢) by m(t, -) such that m « 7;; = 0. At the
triple line T, three interfaces Iy, I}; and I;; meet, keeping the 120°-angle condition.
Since m stays on any of the interfaces I',,, we obtain

me Vab = Ugp fOI' (a7 b) = (j5 k)’ (k’ l)’ (17 j)'

Since Vg, Vpe=—3, We have 1 =(3)Va +30pc)Var + 3)0pc +30)Vs. We add
these identities over any cyclic permutation of (j,k, 1) and obtain
3 = (3) Zap.0) Vab (2Vap + 3)Vpe + (3Vea). Since vy = — vy — vy, this simplifies into

m=(3) X ap) VapVap. Using the formula (3.3) for v,, gives the evolution law for the
triple line

1
Z ([Vx(wb - Wa)]r,,b - vab)vab’

M= ——=
(1 _Na)(a,b)
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where summation is over (a, b) = (j, k), (k, 1), (1, j). The same formula is true for the
evolution of a triple point in R2

(iii) In addition, we may calculate some nonlocal quantities in R Obviously the
total area of the individual phases is conserved. Furthermore, we find that the total
length of the interfacial curve decreases: due to the angle condition (3.5) the formula
for the change of total length is

d d
d_L(t):c_i- 2 fi(rab)': Z j KapVap d0 + Z Mk * Tap-
L L @b) @h) T

(a,b)

We substitute the relations (3.3) and (3.4) into this formula and obtain

d 1
;l_tL(t) = ; z J‘ w* [5vabw]|rub do + mjk, . Z Tab-
(a,b) JI, (a,b)
Due to the angle condition (3.6), the last term vanishes. We note that I, UT;,
together with the appropriate portion of 4Q is the boundary of Q,. Thus, using the
Neumann condition (3.2) we may rewrite this as

d 1
ZI;L(t)= —;Zb: LQ,, (w-Vw) -+ n,do,

where n, is the exterior normal of Q,, and Vw is the limit of Vw from the interior
of Q,. Thus the Divergence Theorem implies that

iL(t)= —l2j div (w - Vw) dx.
dt 65

Q
Using the bulk differential equation (3.1) finally gives

d 1 X
E;(z)_— LlVWI dx.

[}
For a nonsymmetric potential, we obtain that the weighted length
a5 O (T5) decreases and in R? the result is that X, o H?(I,,) decreases.

4. Weak formulation for the multi-phase Mullins—Sekerka system

In order to give a weak formulation of the problem, we first give a notion of an
admissible partition of Q. To any partition of Q into N phases, there is associated a
vector of characteristic functions x = (x)p=1,...n» SO that y, is the characteristic
function of phase b. Vice versa, a vector of characteristic functions, with the property
that for any spatial point exactly one of the x,’s is 1, gives a decomposition of Q
into N phases. We will ask this vector to be of bounded variation, or equivalently,
ask any of the sets that make up the decomposition of Q to be of finite perimeter.
This concept implies the following definition of admissible partitions:
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For any y € K, we may define the system of generalised normal vectors

- \2
=
[Vl

We assume that for a,b=1,..., N we are given non-negative constants o,,, with
6..=0 and o, = g;,, which satisfy

e M(|Vyl) forb=1,...,N.

aacéaab+abc
forall a,b,c=1,...,N.

DEFINITION 4.1. Assume that y° = (49),-1
We say that

~ € K and set u®:=XZN_, A(b)y?.

.....

1= plp=1,...n € L*(0, T, K)

is a weak solution of the multi-phase Mullins—Sekerka system for the initial data ¥°, if
there exists an associated vector of weighted chemical potential differences

w=Wp)p=1,....v € L*(0, T; H'(QY),
such that for u:==X}_, A(b)y,

T T
f J —u - 0,¢ dx dt — J u®¢(0, ) dx + f f Vw-Védxdt=0 - (4.1)
o Jo o 0o Jo
for all £ =(&)y=1,...,n € (CF(O, T) x Q)", and

T N T N
> aabj (div{—v- - ViWu, = J‘ > f Vw-u-{pdxdt (4.2)
o 0 b=1Jo

0 ab=1,a<b =1

for all { € (C([0, T) x Q))* with div{=0in Q and ¢ - v=0 on 0Q. Here

1
Pai=75 (IVxal +1Vel =1V (xa + 2x5)1)

and v:=Vy,/|Vy,| on the support of u,,.

REMARKS 4.2. (i) A weak formulation of the Gibbs-Thomson law (4.2) was
introduced by Luckhaus [26]. '

(ii) Following VolI'pert [37], we have Vy,/|Vy,| + Vx,/|Vis| = 0 almost everywhere
with respect to the measure p,,.

(iii) In addition, we point out that the chemical potential at each time is only
unique up to the addition of a constant.

The next proposition shows in the case of three phases with a single triple line
that a smooth weak solution satisfies the strong formulation of the multi-phase
Mullins—Sekerka problem. This proof easily extends to the situation of more phases
with finitely many triple lines that may or may not meet in quadruple junctions.

PROPOSITION 4.3. Assume that the space dimension is 3 and that y e L*(0, T: K) is a
weak solution of the multi-phase Mullins—Sekerka system. Assume that the follow-
ing structure assumptions hold true: y, =0 for b¢ {j, k,1} and y,#0 for b=j, k
and l. For b=j, k and I, set Q,(t):=={xy(t,")=1} and T,(t):=0Q,(t)nQ, and for
(a,b)=(j, k), (k, 1) and (1, j), set T;y:=T,NT,.
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We assume that I;(t) are smoothly evolving curves, that meet at exactly one smoothly
evolving triple junction curve Ty,(t) and that intersect the fixed boundary in a smoothly
evolving curve. We choose the (spatial) normal v,, on T, to point into Q,. We define
the curvature K ,:=divr. , v,;, and the normal velocity v,, on T,,. In addition, we assume
that for all b=j, k and | the associated vector of chemical potentials satisfies

w(t, ) € (C*(Q, ()N COQ)"  for all te [0, TT.

Then for any t there exists a constant vector c(t) e RY such that y = (xy)p=1,... y and
W— ¢ =(Wy—Cpp=1,...,n IS a strong solution of the multi-phase Mullins—Sekerka system.

Proof. 1f not otherwise specified, we use b for j, k and [, (a, b) for (j, k), (, l) and
(1, j) and (a, b, c) for (j, k, I) and its cyclic permutations.

Due to the structure and smoothness assumptions of this proposition,
0,u =1, A(b)0,x, and 8, ), = — v, d# >, where v, is the velocity of T}, in the direction
of v;. Since I, may be decomposed into I, and T}, we obtain that

Ou=— Z [u]ir,, Vas d”ira,,-
(a,b)
In addition,
z AW!Qb + Z [VW]lrab Vab d”—,r b 6v w d%ian.
(@.b)

Using this, we deduce from (4.1) the equation

Ou—Aw=0.
This thus implies
Aw=0 1in Q,,
d,w=0 ondQ,
[Vwlir, * Voo = —[ulr,, v 0D I

The first equation is relation (3.1) of the strong formulation of the multi-phase
Mullins—Sekerka system, the second equation is relation (3.2), and the third equation
is relation (3.3).

Now we proceed with (4.2). Under the smoothness assumptions of this
proposition, pi; =d#?%r and (div{—v - V{v)=divr( on I,;,. Thus we obtain

ab(C) J (le C -V VCV):uab = J ler c d%z

Tap

= j divr,, v (C * vep) d#> + J‘ (-t dA#.
Tas

Tap

In the second identity, we used the formula
J divp{ do#? = -[ divpn(( - n) d#? + f {-rdHt,
r r or

where 7 is the normal to I lying in the tangent plane of I
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Now we assume that the test function { satisfies { - v=0 on 0Q. Then we get
Ly(8)= J X div (W - u)0) dx
Q
=- J w-u)l -V =— J w-w-n,d#?
Q Iy

=— J‘ W't v, d#*+ j W w vy d#>
Tap

Tpe

Putting everything together, we obtain the formula

Y, 6uEa()— i L) =), J (Garkap + W+ [u]ir,, W * V) d#?
b=1 Tap

(a,b) (a,b)

+Y 0w |  Ctadf 4| LY aTedAn

(a,b) 2] PR R QY[ 9] i (a,b)

We conclude that for any (a, b) and all ¢ there exists some constant c,,(t) such that
for all ¢

—OgpKgp =W " [u]ll",,b +Cp ON 1—‘aba
=V ondl,noQ,

Y 0wt =0 on .
(@.b)
We note that the c,,(t) satisfy ¢;; + ¢, + ¢y =0 for all ¢. Thus the chemical potential
can be modified by a constant so that all c,, become 0.
The first equation is relation (3.4) of the strong formulation of the multi-phase
Mullins—Sekerka system, the second equation implies the right-angle condition (3.5),
and the last equation is the angle condition (3.6). [

5. Animplicit time discretisation

From now on, for the clarity of the text, we will assume that A(b)=e, for b=
1,..., N. This may always be achieved by a linear transformation. To construct
approximate solutions, we apply an implicit time discretisation. This approach has
been introduced by Luckhaus [26] for the Stefan problem and developed further
for the mean curvature flow by Almgren, Taylor and Wang [2] and by Luckhaus
and Sturzenhecker [27]. This method has also been used by Garcke and
Sturzenhecker [22] for the multiphase evolution of a single equation and by Otto
[29] for the dynamics of pattern formation in magnetic fluids. The main new features
here are that we allow for multiple junctions and that we incorporate mass conser-
vation by prescribing Neumann boundary data for the chemical potentials.

We proceed as follows: we choose a positive time step h. For ¢t < 0, we set x*(£):=°.
Since the limit flow has the property that the volume of the individual phases is
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conserved, we introduce

K‘0==Km{j‘ xdx = j x"dx},
Q Q

where the set K of admissible partitions of Q was defined at the beginning of
Section 4. Thus K, contains all admissible partitions of Q with conservation of
volume of all components relative to the initial data.

Now we assume that y"(t — h) were already defined. Our goal is to define *(¢) as
the absolute minimiser of an appropriate functional.

DerFintTION 5.1, For y € K, we define

L h
évh(l, Xh(t - h))-: f Z O ap Uap +3 J- |VW|2 dxs (5'1)
Q a,b=1,a<b 2 Q

where w=(W,),=1,....x € (H(Q))" is the solution of

Xa— Xa(t —h)=hAw, inQ,

ow,
oy 0 onoQ, (5.2)

f w,dx =0.
o

REMARK 5.2. We note that if x = x"(t), then (5.2) is the implicit time discretisation
of 0,x, = Aw,.

In order to show the existence of an absolute minimiser of this functional in the
class K,, we will use the direct method. The following lemma gives the basic tools
to show compactness and lower semicontinuity.

We shall need the measure theoretic supremum VY_, u, (see [3]) of positive,
regular measures y,, which for all open subsets D = Q is given by

N N
< V u,,) (D)=sup { Us(B,) | B, = D, open, pairwise disjoint}.
a=1

a=1

Furthermore, we denote the reduced boundary of a set B (or better of an equivalence
class of sets) by ¢*B (cf. [23]).

Lemma 5.3. (i) For all open sets D < Q, we have
j Ugp = H"H0*Q, N 0*Q, N D),
D

where Q,:={y, =1}, and

J;) i Oaplap = ( \12 /‘a) (D),

ab=1,a<b

where p,(D) =|V(Zh=1 04 2)|(D).




498 L. Bronsard et al.
(i) We have
1) 2 0,V |(Q),
where 0,/=miNy 1 Nb#aTab-

Proof. (1) Vol'pert [37] and Baldo [3] prove that for all open sets D = Q),

N
fleaI= Y AN 0*Q,n0*Q;ND)
D

j=1,j#a
and
N
JIV(X,,+)(,,)|= Y ATHO*QN0*Q;N D) + A" H0*Q, N 6*Q;N D).
D i=1,i#ab

This implies
f Uy = " H0*Q, N 0*Q, N D).
D

Using this identity, we apply [3, Proposition 2.2] to conclude.
(ii) An application of the coarea formula [23] gives

1al) = f V( > aa,,x,,) = J Py ({x
G, N
= J Pq ({x Y Oanlp é/l}> di
[¢] b=1

= o-aPSZ(Qa) = o-aIVXal(Q)' 0

As a consequence of this lemma, we may show the existence of an absolute minimiser
of &".

LeMMA 5.4. There exists x"(t) € K, such that
E'(M(1), ' (t—h) = inf &My, 't — h)).
x€Ko

N
Z Oapdp = A}) da
b=1

Proof. Let (x™)nenw <K, be a minimising sequence of &*(y, y*(t —h)). Since
(V-1 1)(Q) 2 (@) for any 1 £b < N, we may use Lemma 5.3 to conclude that
(X™)m is uniformly bounded in (BV(Q))". Using the compactness of the embedding
of (BV(Q)" into (L'(Q))", we may select a subsequence (still denoted by y™) such
that, for some y € K,

"=y in (L'(Q)N and almost everywhere.

Since all y7' are characteristic functions, and therefore bounded, we may as well
deduce that, for all 1 <p < oo,

"oy in (LAY
This implies for the corresponding w™ (cf. (5.2) of the definition of the functional &")

J IVw"‘|2dx—>J [Vw|? dx.
Q Q
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It remains to show lower semicontinuity of the interfacial energy term. Since

N N
Z o-abX;)n - Gab Xb in Ll (Q)a
b=1 b=1
we obtain for all open D = Q
N N
#a(D) = J v ( Gabxb) <liminf | |V ( X %%L") = lim inf y7:(D).
D b=1 m->o Jp b=1 m- o

We now claim that

(\N/ ua) @ < lim inf( V u,',") ©.

a=1 a=1

To see this, let B, be open and pairwise disjoint sets with UY_, B, = Q. Then

N N
3 1ma(B)< Y lim inf u¥(B,)

a=1 a=1 m
N N
<liminf ¥ u"(B,)< lim inf(\/ u:’) Q).
m->o g=1 m— o a=1

Taking the supremum over all choices of B, implies the claim. The lower semi-

continuity is now a direct consequence of the representation formula given in
Lemma 5.3(1). O

REMARK 5.5. Next, we derive the Euler—Lagrange equations for the absolute mini-
miser x*(t). Since we incorporated the volume constraint into the definition of the
set K,, we can only allow for variations which keep the volume of the individual
phases unaltered. We therefore consider a family of deformations ®(z, ) of €, given
by

®(0,x)=x and 09,®(z, x)={(®(z, x))

for x e Q and 7€ [0, 7,]. Here { is assumed to be an arbitrary smooth vector field
{:Q->R"* with div{=0in Q and { - v=0 on dQ. Since { is divergence free, defor-
mations of Q by ®(z, ) do not change the volume of the individual phases, and
variations of &*(-, ¥*(t — h)) in directions given by ® imply (cf. [23, 25]).

N N
[ 3 ou@vi—rvoma-3 | vesgac 6
Q ab=1,a<b ) a=1 JQ

for all divergence-free vector fields (.

LEMMA 5.6 (a-priori estimates). (i) For all t=m - h with me N,

: N 1t N N
sup f Y. Oaphm(D)+ EI Y IVwa(t)P dx dt < f Y. Oawia(0).
0=t=t JQ g,b=1,a<b 0 JO a=1 Q ab=1,a<b

(ii) There exists some constant C only depending on o and the initial data, such that

N
wp | 3 vawsC
Q

o=t a=1
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Proof. By construction,
EM(xM(ih), £*(( — D) < E (G — 1h), 2@ — D)h).

Since x"* and w" are piecewise constant in time, summation over i=1,...,m
implies (i).
Assertion (i) follows from Lemma 5.3. O

LemMA 5.7. There exists a subsequence h—0 and a limiting pair (y,w) with
€ L°(0, T: Ky) and w € L2(0, T; (HY(Q))Y) such that

=y in (L0, T) x Q)N and almost everywhere,
Vi* A Vy weakly in the sense of Radon measures,
wh—~w  weakly in [*(0, T; (H(Q)").

Proof. The second and third assertions follow directly from the a-priori bounds of
Lemma 5.6 and the mean value condition | o wh = 0. To show the first assertion, we
will use the Fréchet—-Kolmogorov—Riesz ([33], [15; IV.8.Theorem 217]) compactness
criterion. The uniform boundedness of y* in (L*(0, T; BV(Q)))" guarantees control
on spatial differences:

T T
f j Ixﬁ(t,X+y)—xﬁ(t,X)|dX§|y|j JIVxﬁléCIYI,
0 Q 0 JQ

for all yeR" and Q'<=Q, such that Q'+ y < Q. Furthermore, we have for any
t=m-+handt=k-h

lh(t) — 22t — Dl gy =

t
J Aw!(s) ds
T HY Q)

1

<ot ( f AW Iy ds)r

< CtH || Whll 2,00 @y
By interpolation, these two estimates together imply the compactness of " in L!
(see [26]). O

THEOREM 5.8. Let T > 0 be arbitrary and assume that for a=1,..., N,

T T
liminff f IVl < f f |Val-
h—0 0 o) 0 Q

Then the limit y, constructed in Lemma 5.7, is a weak solution of the multiphase
Mullins—Sekerka system with initial data °.

Remark 5.9. The assumption of this theorem implies that there is no loss of perimeter
in the limit process. Similar conditions are necessary in the implicit time discretisation
of the mean curvature flow (see [2, 277]). We also refer to [22,29].

Proof of Theorem 5.8. We multiply the differential equation 0, " = Aw* (cf. (5.2) in
the definition of the functional &*) by a smooth test function & = (&,),-,

.....
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integration by parts. This gives

- f f 2 = g gy ,—IJ (O8(6) dx dt

0 —h

+j wa"-Védxdt=0.
o Jo

The strong convegence of x* and the weak convergence of w* imply equation (4.1)
of the definition of a weak solution.

The substantially more difficult part is to pass to the limit in the weak formulation
of the curvature relation. The assumption of this theorem implies that in addition
to the results of Lemma 5.7, for almost all t € (0, T),

hmf |Vxﬁ|(t)—>J [Val(2),
-0 Jao Q

i.e. for almost all ¢ there is no loss of perimeter in the limit process.
We first show that this ensures the weak-* convergence of uf, to y,; in the sense
of measure: for almost all t € (0, T),

ph ()2 pa(t)  in the dual of C(€Q). (5.4)

Then we use an argument similar to the one in the proof of the Reshetnyak Lemma
(cf. [32]). For any &> 0, we find some smooth vector field g, which, on o*Qt is a
good approximation of v*: for a=1,..., N, for almost all ¢ € (0, T) and for alle>0
there exists g, € (CF(Q))" with |g,| =1 and

lim sup f
h—-0 o

Using this we finally show that for almost all te(0, T) and all smooth vector
fields ¢

g:— |Vyh| < Ce?. (5.5)

IV "\

h—0

lim J Ve VOl = J v Vivug,. (5.6)
Q Q

Since Vw! converges weakly in [?, we may thus pass to the limit h—0 in the
Fuler—Lagrange equation (5.3) and obtain (4.2) of the definition of a weak solution.
We now finish the proof by showing (5.4) to (5.6). To show (5.4) we first show
[ oSttty — | oSty for all fe C°(Q). Since {,|Vxi - o |V2al, we conclude that for all
feC%Q) (cf. [22])

f SVl — f S1Vxal-
Q Q

Furthermore, we know that (cf. the proof of Lemma 5.3)

J‘anVﬂl: 2 quﬁb-

b=1,b#a
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Using lim inf,.o § IV (xh + x8)| = [,V (22 + 1»)| for all open D € Q implies
lim sup J Sfum = f S tap
=0 Jo Q

for all non-negative f € C°(Q).
Now assume that a strict inequality were to hold in the above. Then

f SIVya| = lim '[ SVl
Q h-0 Jo

N
= lim J z S = lim sup f Jisdy

h=0 Jo b=1,b#a b= 1b¢a k=0

< z fl‘l'ab_ J' flVXa

b=1,b#a JQ

We have a contradiction. Since the same argument applies to any subsequence, the
claim (5.4) is shown.

From the definition of [,|Vy,|, we deduce that for all &> 0 there exists a smooth
vector field g, with |g,| £ 1, such that

J‘ ge'VXa': - f dngeXang J IVXal_s-
Q Q Q

“Since Vy* converges in the weak-* topology and since for almost all ¢ there is no
loss of perimeter, we find

1im<'[ [Vl — J gs'VxZ)= J (Vatal — f 8 Via<e
h—0 Q Q Q Q
This implies

) Vit Vy
1 = —
lim Q(l AT )leal L(l 81y, aI)IanI_a

Now we use on 0*Q,

\7 R \Z ( VxZ)
8. — = e_2 & +1§2 11— &
8 =2y &1Vl
and
v (f Ve ! ) (J )1
L — Vi < : \% Vi
Lg IVx,’:IIM REdirT [Vl le"l

to obtain (5.5).
Finally, we compute

f vt ViV, — f v Vv,
o o

= f 0" —g.) * VIO + g )ty + J
o

Q

8 Vig,(uly — ta) + f (v—g.)* V(v + g:)thap-
Q
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Since p*, 5 py, and since |Vy| = V. , .4l and v" = Vy!/|Vy%| with respect to the
measure u?,, we may apply (5.4) and (5.5) to deduce (5.6). O

6. Conclusion

We have extended the Mullins—Sekerka model for phase-separation in binary systems
to a multi-phase model including triple junctions. Using formal asymptotic expan-
sions, we have related this sharp interface model to a transition layer model known
as the Cahn—Hilliard system. We then discussed some geometric properties of the
multi-phase Mullins—Sekerka flow.

We proposed a weak formulation based on integration by parts on manifolds and
we showed that smooth weak solutions satisfy the strong equations. We introduced
an implicit time discretisation using energy minimisation in each time step. Eventually
we obtained a conditional existence result.

Appendix

In this appendix, we follow the argument of Bronsard and Reitich [5] and derive
the angle condition which must be satisfied at a triple junction. In the moving
rescaled coordinate y introduced in the fourth part of Section 2, the scaled versions
of the curves I, agree to first order with their tangential half lines T,,. On T, we
have the coordinate system v,, and 7,,, and we assume the latter to point away from
the triple point. We note that these coordinate systems not only exist on T, but
may naturally be extended into all of R%. Without loss of generality, we assume that
7j is the negative of the second standard unit vector e,.

We consider a big equilateral triangle A with centre at the origin (which is the
rescaled triple point), whose edges ,,A intersect the tangent lines T;,. We assume
that 9;,A is perpendicular to Tj, while the other two edges may intersect the other
two tangent lines at an arbitrary angle. We denote the outer normal of A by
n=n, n,).

We multiply the differential equation for #° by Oy, °, integrate over the triangle
and use the Divergence Theorem:

f d,, Y(@°) dy = f A - 8, U° dy
A A
1
- J B (z/z(%") + 5 (16,28 — Iavjk%°12)) dy= L 0., 00, 20 - 0, %) dy

1
- j (.//(%0)+ = (18, A°P -1, %°|2)> ny do= — j @,,%° - 8, U°) n, do.
A 2 Jk Jjk oA J 7

To evaluate these integrals, we use the matching conditions. Indeed, let 6, and 6; be
the angle between v;, and v, and v; and v;;, respectively. We note that on the edge
duA we have n; = cos 30° and n, = sin 30°, and, if the triangle is sufficiently big, the
matching condition implies that

av,-k%o(}’) ~ (cos 0,)0,,, Up(y - va) and 5rjk%°(Y) ~ —(sin 04)0,,, URd(y * via)s
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where UY, is the one-dimensional stationary wave solution connecting phase A(k) to
phase A(l). Similar relations hold on the other edges of the triangle.
Substituting this into the above identity gives

1
J (w(U,‘:,) + 5 (6in 6, — (cos 6,) 10,,, U,?1]2> cos 30° do
FpaA

+ f (!ﬁ(U?j) + %((sin 0, —(cos 6,)*) |9,,, U?jlz) (—cos 30°) do
A

1
~ f cos Oy sin 0y |, Up|* sin 30° do — f cos 0;sin 0,10, UY;[* sin 30° do.
EIN d1,0

The edge 0,,A forms with v,; an angle o, :=6, — 120°. Thus for any function f that
only depends on the coordinate z in direction v,;, we have

fdo=
A
The same applies for d;;A, which forms the angle o;:=6; — 120° with Tﬁ.
Since the potential is symmetric, the energy of any one-dimensional stationary
wave is the same, and due to the equipartition of energy

fdz.

oS oy J7u

1 1 o 1
e dz= =10, U%? dz.
2 g 2 Gab - I//(l]alv) Z J;ﬁ 2 I z abl Z
Thus we get
cos 30° 30° sin 30° . sin 30° .
sin? 8, — CO8 T gin? 0;,= cos 0y, sin 0, — cos 6 sin 0.
COS Ol COoSs (xj CcosS ak COS aj

This simplifies into

Sin Ok = Sin 0].
Of course we obtain the same identity for any other pair (k, I) and (I, j). Thus we
may determine the angles and obtain the angle condition (ac®). But although we get
three formulae, they are not independent, and we still have to use that the three
angles have to add up to 360°. As a consequence of the angle condition, the normal

vectors add up to 0.
In the nonsymmetric case we get similar formulae.
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