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ABSTRACT: We study the equilibrium wetting behavior of immiscible multiphase systems
on a flat, solid substrate. We present numerical computations which are based on a vector-
valued multiphase-field model of Allen−Cahn type, with a new boundary condition, based on
appropriately designed surface energy contributions in order to ensure the right contact angles
at multiphase junctions. Experimental investigations are carried out to validate the method and
to support the numerical results.

1. INTRODUCTION

The wetting behavior of liquids on solid surfaces has long been
of interest to academic and industrial communities. More than
200 years ago, Young1 presented a correlation between the
equilibrium contact angle of a droplet surrounded by an
immiscible fluid on a flat, chemically homogeneous, solid
surface and the interfacial tensions in the liquid/solid/gas
system. Among theoretical works2−4 and experimental
investigations,5−10 numerical simulations have been established
in the last 2 decades as powerful methods for the description
and analysis of wetting phenomena.
It is well-known that the equilibrium shape of a droplet in

contact with a solid surface is the one that minimizes its total
interfacial energy at a fixed volume. Such a phenomenon can be
seen as a free boundary problem, where the interface between
two immiscible fluids (e.g., fluid droplet and surrounding air) is
free and can change its shape in order to minimize its surface
energy. In the last years, diffuse interface methods have become
very popular to model such kinds of problems. Those consider
the interface between two immiscible fluids to have a nonzero
thickness endowed with physical properties, such as surface
tension. Phase-field models are particular diffuse interface
models, and their concept can be traced back to van der
Waals.11 For an overview on phase-field models and their
applications, we refer to a number of selected review
articles.12,13

In the context of wetting phenomena, Cahn14 was the first to
present a phase-field model with a wetting condition for a liquid
in contact with a container wall. He extended the free energy
formulation in the Cahn−Hilliard model15 by a surface energy
term, describing the interaction between the liquid and the
solid wall. A discussion of Cahn’s model and an asymptotic
analysis can be found in refs 16 and 17, respectively. In order to
ensure the right contact angles at the solid/liquid boundary,

several so-called surface energy and geometric formulations
were discussed in the literature,18−25 to name a few. To ensure
the volume conservation and the time-dependent relaxation
dynamics of the liquid phase, the authors used a Cahn−Hilliard
model. However, the proposed wetting conditions in the cited
phase-field works are related to liquid/gas/solid systems, where
the liquid phase consists of only one droplet and the
equilibrium contact angle, θe, given by Young’s law, is explicitly
incorporated in the various formulations of the boundary
condition. But what will happen if two or more droplets in
contact with each other are placed on a solid surface? Which
equilibrium shapes and contact angles will appear? To the best
of our knowledge, so far there has been no phase-field approach
capable of answering these questions.
The aim of this work is to present a new phase-field model

with an integrated, physically motivated boundary condition to
describe wetting processes of multiphase droplet ensembles in
contact with flat and chemically homogeneous substrates.
Instead of prescribing equilibrium angles, the boundary
condition is consistently formulated in terms of the respective
surface energies within an extended free energy functional and
is derived by variational principles. Recent investigations26−28

in various fields of application, where wetting is the crucial
process, show the importance of understanding wetting
behavior of immiscible multiliquid systems.
We emphasize that we are only interested in the equilibrium

shapes and the equilibrium contact angles of the considered
wetting systems. Therefore, we use an Allen−Cahn model with
preserved volume fractions,29,30 instead of a Cahn−Hilliard
model. Due to the fact that both models are minimizing the
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total free energy of the system, even though along different
kinetic paths, they will lead to the same equilibrium solutions.
However, the Allen−Cahn equations are easier to handle
numerically, and therefore, the simulations will take fewer
numerical time steps to reach the equilibrium state.
Furthermore, we present an accurate boundary condition,
ensuring the right contact angles at triple as well as
multijunction points. Following the approaches given in refs
14 and 19, we write the total free energy = ∫ Ω f dΩ + ∫ ∂sΩ fw
ds, where fw is a specific wall free energy, which only depends
on the phase-field values at the solid wall (∂sΩ), the physical
properties of the phases, and the liquid/solid surface tensions.
For multidroplet systems, the different equilibrium contact
angles at multijunctions need not to be given explicitly in the
boundary condition formulation. However, we show that the
well-designed wall free energy contribution ensures the right
contact angles at those critical points. The appropriateness of
our model is supported by theoretical and experimental
investigations.
The structure of the paper is as follows: in section 2, we

introduce the modified phase-field model and derive an
accurate boundary condition to simulate the wetting behavior
of single droplet as well as multidroplet systems in contact with
a flat, solid surface. The numerical discretisation scheme is
described in section 3. In section 4, we first show that the new
model recovers analytical results for single droplet systems well.
Next, we will discuss numerical results for selected model
systems consisting of immiscible droplet ensembles on a flat,
solid surface surrounded by a gas phase. Finally, we compare
and discuss numerical and experimental investigations of
wetting structures observed for the real system consisting of a
purified water droplet in contact with a poly-α-olefin oil
droplet, where both fluids are placed on a flat, glass plate. A
summary and conclusion is the subject of the last section.

2. PHASE-FIELD MODEL FOR MULTIPHASE SYSTEMS

In order to model wetting of immiscible multidroplet
configurations on solid surfaces, we consider a general system
consisting of N phases that can differ in their physical states.
Each of the N − 1 phases refers to a liquid droplet and the Nth
phase represents the surrounding gas phase. We introduce a
vector-valued continuous order parameter ϕ(x,t) = (ϕ1(x,t), ...,
ϕN(x,t)), where each component ϕα(x,t), α ∈ {1, ..., N},
describes the state of the phase α in time and space. Since the
volume of the droplets should be conserved, as we assume no
evaporation, and no condensation and no chemical reaction
take place, we will use a volume-preserved, diffuse interface
formulation of a phase-field model for multiple order
parameters, based on a Ginzburg−Landau energy density
functional. A detailed description of the model can be found in
refs 29 and 30. We write the energy density functional in the
following form

∫ϕ ε ϕ ϕ
ε

ϕ ϕ= ∇ + + Ω
Ω

⎜ ⎟
⎛
⎝

⎞
⎠a w g( ) ( , )

1
( ) ( ) d

(1)

where Ω is the spatial domain and ε is a small positive
parameter, related to the thickness of the diffuse interface, in
which each order parameter ϕα(x,t) varies continuously
between two different physical states, ϕα(x,t) = 0 (in gas)
and ϕα(x,t) = 1 (in liquid). Additionally, we postulate the
constraint

∑ ϕ =
α

α
=

tx( , ) 1
N

1 (2)

The gradient energy density, a(ϕ,∇ϕ), can be formulated in
terms of a generalized gradient vector qαβ = ϕα∇ϕβ − ϕβ∇ϕα

by

∑ϕ ϕ γ ϕ ϕ ϕ ϕ∇ = | ∇ − ∇ |
α β

αβ α β β α
<

a( , ) 2

(3)

where γαβ is the surface energy density of the α/β boundary.
The vector qαβ is the normal to the α/β interface. For our
applications, we choose a multiobstacle potential w(ϕ) of the
form

∑ ∑ϕ
π

γ ϕ ϕ γ ϕ ϕ ϕ= +
α β

αβ α β
α β δ

αβδ α β δ
< < <

w( )
16

2
(4)

with a higher order term ϕαϕβϕδ that can be calibrated by the
constant γαβδ to suppress artificial third phase contributions
along binary phase boundaries. The last term in the energy
density functional is the bulk energy density g(ϕ), that ensures
the volume preservation of each droplet. We use the expression

∑ϕ χ ϕ=
α

α α
=

g h( ) ( )
N

1 (5)

with appropriate weights χα = χα(t), which is discussed in ref
29. The function h(ϕα) interpolates the phase-field values along
the interfaces from zero to one. For the simulations we choose

ϕ ϕ ϕ ϕ= − +α α α αh( ) (6 15 10)3 2
(6)

such that the first derivatives vanish in the bulk.
In order to model the interaction between the liquid droplets

and the solid surface in a physically consistent manner, we
extend the free energy formulation in eq 1 by an adequately
designed solid−fluid interfacial energy density, fw, which only
depends on the fluid composition at the solid substrate. This
way, the new free energy formulation reads

∫
∫

ϕ ε ϕ ϕ
ε

ϕ ϕ

ϕ

= ∇ + + Ω

+

Ω

∂ Ω

⎜ ⎟
⎛
⎝

⎞
⎠a w g

f S

( ) ( , )
1

( ) ( ) d

( ) dw
s (7)

where

∑ ∑ϕ γ ϕ ϕ ϕ ϕ= +
α

α α
α β δ

α β δ
= < <

f h m( ) ( )
N N

w
1

s
(8)

The α/solid surface tensions are denoted by γαs for each phase
α ∈ {1, ..., N}. The higher order term m∑α<β<δ

N ϕαϕβϕδ in the
wall energy formulation suppresses the occurrence of a
nonphysical third phase in the interface between two liquid
phases.31 For the simulations we choose m = 3.
The surface integral in the above equation represents the

solid−liquid and solid−gas interactions. At equilibrium, the
total free energy is at its minimum. The interface structure is
obtained by minimizing the free energy functional eq 7 using
methods of variational calculus. We use a steepest descent
method which results in the following system of partial
differential equations, for all phases α ∈ {1, ..., N}
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ε ϕ ϕ ϕ ϕ
ε

ϕ ϕ

λ τε ϕ

∇· ∇ − ∇ − −

− = ∂ Ω

ϕ ϕ ϕ ϕ

α

∇

=
α α α α

a a w g( ( , ) ( , ))
1

( ) ( )

int

, , , ,

: rhs

1

1

(9)

with the natural boundary condition

ε ϕ ϕ ϕ λ− ∇ − − = ∂ Ωϕ ϕ∇

=
α α

a n f( , ) ( ) 0 on, w,

: rhs

2 s

2 (10)

In the simulations, we set the relaxation parameter τ = 1. The
notation a,▽ϕα

, a,ϕα
, w,ϕα

, g,ϕα
, and f w,ϕα

is used to indicate the

partial derivatives ∂/∂▽ϕα
and ∂/∂ϕα

of the functions a(ϕ,▽ϕ),

w(ϕ), g(ϕ), and f w(ϕ), respectively. The divergence of the
vector field a,▽ϕα

(ϕ,▽ϕ) is denoted by ▽ · () and the time

derivative ∂ϕα
(x,t)/∂t is denoted by ∂tϕα

. The normal to the wall,

∂sΩ, is denoted by n. λ1 and λ2 are Lagrange multipliers,
according to the constraint in eq 2.

∑ ∑λ λ=
*

=
*α α=

*

=

*

N N
1

rhs ,
1

rhs
N N

1
1

1 2
1

2
(11)

Here, N* is the number of present phases in a particular
computational cell (i, j, k). We define a phase α as the active
phase if ▽ϕα

(i, j, k) ≠ 0. The boundary condition eq 10

stipulates that the liquid layer is always at equilibrium at the
solid substrate, and the dynamic contact angle θD remains the
same as the one at equilibrium, θe, as described by Jacqmin.19

However, to study the contact line dynamics, the presented
boundary condition must be modified in order to include the
contact angle hysteresis and to allow θD to deviate from θe.
Such wetting conditions are used when the phase-field model is
coupled to a fluid flow model, as shown in refs 19 and 32.
Given the objectives of the present work, we do not consider
the effect of the contact angle hysteresis.
Moreover, we emphatically point out that, in contrast to

other surface energy or geometric wetting formulations, no
contact angles are explicitly prescribed in the formulation of the
boundary condition. The evolution (eq 9) and the wetting
condition (eq 10) only contain the involved liquid/gas, liquid/
liquid, liquid/solid, and gas/solid surface tensions, which
interact with each other in order to ensure the right equilibrium
contact angles at all critical points of a wetting system.

3. NUMERICAL METHODS

We use a finite difference method on an equidistant Cartesian
mesh with an explicit Euler time marching scheme to solve the
set of phase-field equations 9 and the natural boundary
condition (eq 10) numerically. We denote the time iteration by
n with n = 0, ..., Nt and the space coordinates by (i, j, k) with i =
0, ..., Nx; j = 0, ..., Ny; and k = 0, ..., Nz. The phase-field
variables are defined at the center of each cell. Since we are only
interested in the equilibrium shape of the wetting system where
∂tϕα

= 0, for all phases α ∈ {1, ..., N}, and since we stipulate that

the liquid layer at the solid surface is at equilibrium for any time
step, we substitute ∂tϕα

= 0 in the boundary condition eq 10 to

get

∑ ∑

∑

∑ ∑

ϕ ε γ ϕ γ ϕ

γ ϕ ϕ ϕ

γ ϕ ϕ ϕ

∂ = −
*

− + −
*

+

α
β

β α

αβ β αβ
δ β

β δ

δβ β δβ

α ϕ α
β δ α

β δ

β δ

α
α ϕ α

β δ α

β δ

β δ

=

≠

*

=

≠

*

≠

<

*

=

*

≠

<

*

α

α

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟
⎛

⎝
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⎛

⎝
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⎞

⎠
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⎠
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N

n
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N
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1
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1

( )

t

N N

N

N N

1 , 1

s ,
,

1
s ,

,

(12)

∑

∑ ∑

λ ε γ ϕ

γ ϕ ϕ ϕ

=
*

+
*

+

δ β

β δ

δβ β δβ

α
α ϕ α

β δ α

β δ

β δ

=

≠

*

=

*

≠

<

*

α

⎛

⎝
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⎞

⎠
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⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

N
n

N
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q
1

2
1

( )

N

N N

2
, 1

1
s ,

,

(13)

For a better readability, we use the notation ϕα((i, j, k),tn) :=
ϕα,ijk
n , and without loss of generality, we set the solid boundary

∂sΩ := {(i, j, k) ∈ Ω|j = 0} with the normal vector n = (0,1,0)T.
Hence, eq 12 can be discretized as

∑

∑

∑

∑ ∑

ϕ ϕ ε γ ϕ

γ ϕ

γ ϕ ϕ ϕ

γ ϕ ϕ ϕ

= + Δ

−
*
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−
*

+

α α
β

β α

αβ β αβ

δ β

β δ
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α ϕ α
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α
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≠
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=
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≠
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=
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≠

<
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α

α
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⎝
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⎠
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⎝
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⎛

⎝

⎜⎜⎜⎜

⎞

⎠
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t q

N
q

t h m

N
h m
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1
( )

( )

1
( )

i k
n

i k
n

N

i k
n

j

N

i k
n

j

i k
n

N

i k
n

i k
n

N

i k
n

N

i k
n

i k
n

, 0
1

, 0
1

, 0

, 1
, 0

s , , 0
,

, 0 , 0

1
s , , 0

,
, 0 , 0

(14)

Here, (qαβ)j denotes a suitable approximation of the y-
component of qαβ at the solid boundary. The y-component
of qαβ is given as

ϕ
ϕ

ϕ
ϕ

=
∂

∂
−

∂
∂αβ α

β
β

αq
y y

( )j i k i k, 0 , 0
(15)
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and depends on the unknown gradients of ϕα and ϕβ at the
solid boundary. In order to approximate this quantity, we first
linearly extrapolate and temporarily store new phase-field values
ϕα,i(−1)k
n , i ∈ {0, ..., Nx}, k ∈ {0, ..., Nz}, into ghost cells, located

underneath the solid wall, according to

ϕ ϕ ϕ ϕ= − +α α α α−
⎜ ⎟
⎛
⎝

⎞
⎠

1
2

1
2

4i k
n

i k
n

i k
n

i k
n

, ( 1) , 0 , 1 , 2 (16)

and then we compute an approximation of the phase-field
gradient normal to the boundary (without loss of generality in
the y-direction) as

ϕ ϕ ϕ∂
∂

≈
−

Δ
α α α −

y y2
i k

n
i k

n
, 1 , ( 1)

(17)

In this manner, the approximations of the gradients are located
at the center of the boundary cells (i,0,k), where the boundary
condition is executed.

4. RESULTS AND DISCUSSION
For systems consisting of a single droplet on a homogeneous,
flat substrate surrounded by gas, we show that similar to the
wetting conditions mentioned in refs 18−22, 25, 33, the new
boundary condition also leads to Young’s law. For such
systems, the higher order term on the left-hand side of eq 8
vanishes and the wall energy contribution can be written as

ϕ γ ϕ γ ϕ γ γ ϕ γ= + = − +α α β β α β βf h h h( ) ( ) ( ) ( ) ( )w s s s s s

(18)

Here, we use h(ϕβ) = 1 − h(ϕα) =: 1 − h(ϕ). The gradient
energy density in eq 3 reduces to

ϕ γ ϕ∇ = |∇ |αβa( ) 2
(19)

and the natural boundary condition in eq 10 simplifies to

εγ ϕ γ γ ϕ
ϕ

= ∂
∂

+ − ∂
∂

∂ Ωαβ α βn
h

0 2 ( )
( )

ons s s
(20)

An analysis of eq 20 across the liquid/gas interface along the
solid boundary, as presented by Xu et al.,33 shows that the
boundary condition leads to Young’s law, which describes the
equilibrium contact angle for such wetting systems.
4.1. Experimental Investigations and Numerical

Results. In this section, we compare numerical and
experimental results of single droplet and multidroplet systems,
as a validation of the presented multiphase-field model.
Regarding the investigations on the purified water/poly-α-
olefin (Klüber Lubricaton, Munich, Germany) system (simply
called water/oil system), we first carry out experiments on the
wetting behavior of each liquid on a silanized glass plate (called

solid) separately, to determine the unknown water/solid, oil/
solid, and air/solid surface tensions as essential input
parameters for the simulations.
All experiments are carried out on microscope glass slides

(VWR International, Radnor, PA). The glass slides are cleaned
using piranha etch, a mixture of hydrogen peroxide and sulfuric
acid (in the mixing ratio 5:1), to remove all the organic
contamination and to provide a reproducible surface chemistry.
The piranha cleaning is carried out for 12 h at room
temperature. After cleaning, the surface is silanized using
tridecafluoro-1,1,2,2-tetrahydrooctyl trichlorosilane (97%; abcr,
Karlsruhe, Germany) and 2 μL of the silane is placed in a
disposable aluminum bowl using disposable capillary pipettes.
The bowl and the slides are put into a glass desiccator, which
then is evacuated. After 12 h, the silanization process is finished
and the glass slides are placed in an oven at 100 °C for 24 h.
After this baking procedure, the contact angle measurements
are carried out within 6 h. The measurements on silanized glass
slides are performed with the sessile drop method. As
equipment, an OCA-15 from Dataphysics (Filderstadt,
Germany) is used.

4.1.1. Single Droplet Systems. At room temperature, we
explore the equilibrium contact angles of water and oil
surrounded by air and deposited on a solid substrate. Using
the sessile drop method, we measure the equilibrium contact
angles θwa = 112° ± 3° for water and θoa = 81° ± 3° for oil. The
water/air and oil/air surface tensions are γwa = 72.2 × 10−3 N/
m and γoa = 25 × 10−3 N/m, respectively. After exploring the
contact angles of both systems experimentally, we determine
the simulation parameters (γas − γws) and (γas − γos) indirectly
by using Young’s law. Here, γws, γos, and γas describe the water/
solid, oil/solid, and air/solid surface tensions, respectively. The
numerical results displayed in Figure 1a,b confirm the
experimental issues. The contact angle measurements of the
simulation results are performed by applying the fitting method
suggested in ref 33. Furthermore, we measure the water/oil
surface tension experimentally and obtain the value γwo = (37 ×
10−3) ± (5 × 10−3) N/m. The corresponding simulation of a
water droplet surrounded by oil maintains an equilibrium
contact angle θwo = 147.2° ± 1° (see Figure 1c). This result will
be taken into account in a further discussion below.

4.1.2. Multidroplet Systems.
Model Systems. To examine the accuracy of the model

solutions for multiphase wetting systems, we study different
model systems with two immiscible droplets α and β in contact
with each other, surrounded by air and deposited on a flat, solid
substrate, as illustrated in Figure 2. We perform simulations
with different surface tension settings, as described in Table 1.

Figure 1. (a) Equilibrium shape of a water droplet surrounded by air, forming an equilibrium contact angle θwa = 112.4° ± 1°, (b) equilibrium shape
of an oil droplet surrounded by air with an equilibrium contact angle θoa = 80.7° ± 1°, and (c) equilibrium shape of a water droplet surrounded by
oil, establishing an equilibrium contact angle θwo = 147.2° ± 1°.
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Applying Young’s law at the triple points P1, P2, and P3, we
get the following system of equations, which describes the
equilibrium contact angles θαa, θβa, and θαβ as

γ θ γ γ= −α α αcosa a as s (21)

γ θ γ γ= −β β βcosa a as s (22)

γ θ γ γ= −αβ αβ α βcos s s (23)

Substitution of the surface tensions of Table 1 into the eqs
21−23 results in the theoretical contact angles listed in Table 2.

For simplicity, we set γαs = γβs in the different model systems to
ensure a theoretical contact angle θαβ = 90° at the triple point
P3. A 2D simulation with asymmetric liquid/solid surface
tensions (i.e., (γβs − γαs) ≠ 0) shows a contact angle θαβ ≠ 90°
(see Figure 4). In real applications, the surface tensions are
pairwise different in general, driving a partial or total
engulfment of one droplet by the other. 2D simulations do
not reflect this effect, such that 3D simulations are
indispensable to get the proper equilibrium shapes, as shown
in Figure 7c.

The simulations of the three and four immiscible droplet
systems are performed by setting all the involved surface
tensions equal to unity. As expected theoretically, the three
contact angles, at the triple junction in the three droplets case,
adjust at values 120° ± 1°, as shown in Figure 5. The triple

junction is the intersection point of the three 0.3 isolines, where
the three immiscible liquid phases coexist and exhibit the
phase-field value ϕα = 1/3, α ∈ {1, 2, 3}. The same result is
obtained in grain growth computations with isotropic grain
boundary characteristics,31 a process which is also driven by
surface tensions. Furthermore, the instability of the quadruple
junction in the four droplets configuration is observed by
Garcke et al.31 in the context of moving grain boundaries in
multigrain systems, where all grains exhibit the same surface
tension, and is deeply discussed in the work of Srolovitz et al.34

These authors, in particular, present a stability condition for the
quadruple junction which is not fulfilled by the chosen surface
tension setting. Therefore, the splitting of the quadruple
junction into two triple junctions, that occurs in the simulation,
is in accordance with the theoretical prediction (see Figure 6).

Figure 2. Scheme of two immiscible droplets surrounded by air and in
contact with each other.

Table 1. Dimensionless Surface Tension Values for Three
Different Wetting Systems

system γαs γβs γas γαs γβa γαβ

1 0.8 0.8 0.3 1 1 0.6
2 1 1 1 1 1 0.6
3 0.75 0.75 1 0.5 0.5 0.6

Figure 3. 2D equilibrium shapes of three different wetting systems
consisting of two immiscible droplets.

Table 2. Theoretical Contact Angles (in deg) Computed
Using Young’s Law and Measured Contact Angles (in deg)
from the Simulation Data of the Model Systems

theoretical measured

system θαa θβa θαa θαa* θβa* θαβ*

1 120 120 90 119.7 ± 1 119.7 ± 1 90 ± 1
2 90 90 90 90 ± 1 90 ± 1 90 ± 1
3 60 60 90 60.2 ± 1 60.2 ± 1 90 ± 1

Figure 4. 2D equilibrium shape of two immiscible droplets with
different liquid/solid surface tensions.

Figure 5. Top view on the surface of simulated 3D droplets: (a) initial
shape of three immiscible droplets surrounded by air and deposited on
a flat, solid surface, (b) equilibrium shape at the end of the simulation,
and (c) 0.3 and 0.6 isolines of the two-phase boundaries (outward to
inward). The 0.3 isolines intersect at the triple junction where we
measure three equilibrium contact angles close to 120° ± 1°.
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Water/Oil System. After the validation of the phase-field
method combined with the appropriate wetting condition by
means of the composed model systems, we will now consider
the water/oil system mentioned at the beginning of this section.
We depose two 5 μL immiscible droplets on the solid substrate
simultaneously, and use colored oil to distinguish both liquids
and to visualize the interface between them. Due to the
hydrophilicity of the oil droplet, we experimentally observe how
oil spreads along the substrate to finally border the water
droplet by a thin layer. At equilibrium, we experimentally
measure a contact angle of 81° ± 3° at the oil/air/solid contact
line. This value is in agreement with the result presented in
Figure 1b, where the equilibrium shape of an oil droplet
surrounded by air is studied. Since no further experimental data
of, for example, contact angle at the water/oil/solid contact line
or the radius of the water/oil interface are available, a
quantitative comparison between numerical and experimental
results remains a challenge for future investigations. Never-
theless, a qualitative comparison of the equilibrium profiles in
Figure 7a,b asserts a very good match of the experimental and

numerical equilibrium shape images. As illustrated in Figure 8,
we also notice that the oil does not spread along the glass plate
underneath the water droplet, neither in the experiment nor in
the simulation. However, a linear combination of the eqs
21−23 shows that the contact angle at the water/oil/solid line
depends on the two contact angles at the oil/air/solid and
water/air/solid contact lines by

γ θ γ θ γ θ− =α α β β αβ αβcos cos cosa a a a (24)

The subscripts α, β, a, and s denote water, oil, air, and solid,
respectively. Since all the involved surface tensions, as well as
the contact angles θαa and θβa, are given in section 4.1.1, using
eq 24, we analytically compute θαβ ≈ 147.6°. By analyzing the
phase boundaries along a cut in the middle of the simulation
domain (see Figure 7c), we obtain a numerical angle of 146° ±
1°. The plausibility of this result can be based on the fact that
the oil completely surrounds the water droplet within the plane
of the solid substrate, as presented in Figure 7c. Furthermore,
the resulting contact angle is in reasonable agreement with the
computation in Figure 1c, related to the same wetting
configuration (water surrounded by oil). Compared to the
analytical result, the wetting angle at the water/oil/solid contact
point in the simulation exhibits a discrepancy of less than 2%.

5. CONCLUSION

We present a multiphase-field model with a new wetting
condition based on a surface energy formulation, which enables
one to simulate the wetting phenomena of single droplet as well
as immiscible multidroplet systems on a solid surface. We show
that the formulation of the boundary condition is consistent
with other formulations used in the literature for the wetting
process of a single droplet. So, the key advantage of the
generalized formulation is the ability to simulate the wetting
behavior of immiscible multidroplet systems, and as shown, the
presented numerical results agree with both the theoretical
predictions as well as the experimental issues. The proposed
model can be applied to predict the behavior of droplets on
superhydrophobic surfaces, where the structured substrates are
lubricant-impregnated.28 To investigate the rolling off of the
droplets (i.e., the contact line dynamics), the phase-field
approach can be coupled to a two-phase fluid flow model32,35

combined with extended boundary conditions in order to take
the wall relaxation (i.e., contact angle hysteresis) into account.
Further, we will also investigate the flow of two immiscible and
incompressible fluids in a porous medium, including the
wetting morphologies at the solid structure. The wetting
properties of compound droplets on chemically heterogeneous
surfaces will also be a topic of forthcoming computational
investigations.
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Figure 6. Top view of 3D phase-field simulations: (a) initial shape of
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Figure 7. A qualitative comparison of the experimental and numerical
equilibrium shapes. (a) Side view of the experimental photograph, (b)
side view of the simulated droplet pair, and (c) plane along the middle
slice through the droplets.

Figure 8. The oil (magenta) engulfs but does not spread along the
glass plate underneath the water droplet. (a) Reflections of oil and
water on the glass plate are clearly visible in the regions R1 and R2,
respectively. (b) Bottom view of the simulation along the solid surface.
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unter voraussetzung stetiger Dichtean̈derung. Z. Phys. Chem 1894, 13,
657−725.
(12) Anderson, D.; McFadden, G.; Wheeler, A. Diffuse-interface
methods in fluid mechanics. Annu. Rev. Fluid Mech. 1998, 30, 139−
165.
(13) Boettinger, W.; Warren, J.; Beckermann, C.; Karma, A. Phase-
field simulation of solidification 1. Annu. Rev. Mater. Res. 2002, 32,
163−194.
(14) Cahn, J. Critical point wetting. J. Chem. Phys. 1977, 66, 3667−
6672.
(15) Cahn, J.; Hilliard, J. Free energy of a nonuniform system. I.
Interfacial free energy. J. Chem. Phys. 1958, 28, 258−276.
(16) de Gennes, P. G. Wetting: Statics and dynamics. Rev. Mod. Phys.
1985, 57, 827−863.
(17) Modica, L. The gradient theory of phase transitions and the
minimal interface criterion. Arch. Ration. Mech. Anal. 1987, 98, 123−
142.
(18) Ding, H.; Spelt, P. D. M. Wetting condition in diffuse interface
simulations of contact line motion. Phys. Rev. E 2007, 75, 046708.
(19) Jacqmin, D. Calculation of two-phase Navier−Stokes flows
using phase-field modeling. J. Comp. Phys 1999, 155, 96−127.
(20) Jacqmin, D. Contact-line dynamics of a diffuse fluid interface. J.
Fluid Mech. 2000, 402, 57−88.
(21) Khatavkar, V.; Anderson, P.; Meijer, H. Capillary spreading of a
droplet in the partially wetting regime using a diffuse-interface model.
J. Fluid Mech. 2007, 572, 367−387.
(22) Lee, H.; Kim, J. Accurate contact angle boundary conditions for
the Cahn−Hilliard equations. Comput. Fluids 2011, 44, 178−186.

(23) Papatzacos, P. Macroscopic two-phase flow in porous media
assuming the diffuse-interface model at pore level. Transp. Porous
Media 2002, 49, 139−174.
(24) Seppecher, P. Moving contact lines in the Cahn−Hilliard
theory. Int. J. Eng. Sci. 1996, 34, 977−992.
(25) Villanueva, W.; Amberg, G. Some generic capillary-driven flows.
Int. J. Multiphase Flow 2006, 32, 1072−1086.
(26) Bormashenko, E.; Pogreb, R.; Balter, R.; Gendelman, O.;
Aurbach, D. Composite non-stick droplets and their actuation with
electric field. Appl. Phys. Lett. 2012, 100, 151601−151604.
(27) Friberg, S. Selective emulsion inversion in an equilibrium Janus
drop. 1. Unlimited space. J. Colloid Interface Sci. 2014, 416, 167−171.
(28) Smith, J. D.; Dhiman, R.; Anand, S.; Reza-Garduno, E.; Cohen,
R. E.; McKinley, G. H.; Varanasi, K. K. Droplet mobility on lubricant-
impregnated surfaces. Soft Matter 2013, 9, 1772−1780.
(29) Nestler, B.; Wendler, F.; Selzer, M.; Stinner, B.; Garcke, H.
Phase-field model for multiphase systems with preserved volume
fractions. Phys. Rev. E 2008, 78, 0116041−0116047.
(30) Garcke, H.; Nestler, B.; Stinner, B.; Wendler, F. Allen−Cahn
systems with volume constraints. Math. Models Methods Appl. Sci.
2008, 18, 1347−1381.
(31) Garcke, H.; Nestler, B.; Stoth, B. A multiphase field concept:
Numerical simulations of moving phase boundaries and multiple
junctions. SIAM J. Appl. Math. 1999, 295−315.
(32) Salgado, A. J. A diffuse interface fractional time-stepping
technique for incompressible two-phase flows with moving contact
lines. ESAIM, Math. Model. Numer. Anal. 2013, 47, 743−769.
(33) Xu, X.; Wang, X. Derivation of the Wenzel and Cassie equations
from a phase field model for two phase flow on rough surface. SIAM J.
Appl. Math. 2010, 70, 2929−2941.
(34) Srolovitz, D. J.; Holm, E. A.; Cahn, J. Modeling microstructural
evolution in two-dimensional two-phase microstructures. Mater. Sci.
Forum 1992, 94−96, 141−158.
(35) Abels, H.; Garcke, H.; Grün, G. Thermodynamically consistent,
frame indifferent diffuse interface models for incompressible two-phase
flows with different densities. Math. Methods Appl. Sci. 2012, 22,
1150013-1−1150013-40.

Langmuir Article

dx.doi.org/10.1021/la500312q | Langmuir 2014, 30, 4033−40394039


