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20.1
Introduction

Phase-field models have been successfully used to describe solidification phenom-
ena. Most models studied so far have been restricted to single-component systems
or isothermal multicomponent systems. In this chapter, we develop in a systematic
way phase-field models for nonisothermal, multicomponent, multiphase systems
which also allow for convection. In particular, we want to allow for arbitrary phase
diagrams.

In phase-field models, interfaces have a positive interfacial thickness, and quan-
tities such as surface tension or surface energy density do not enter the models in
a direct way. This is in particular true in cases where more than two phases appear.
Therefore, a calibration of parameters in the model can be difficult. So far, only
ad hoc approaches have been used, see, for example, [1, 2]. In this paper we will
present models in which the calibration of parameters can be achieved directly. In
particular, we can avoid a third phase field attaining nonzero values in an interface
between two phases.

The outline of the chapter is as follows. We first review some basic facts of
phase-field models for multicomponent systems. In Section 20.3 we describe how
Ginzburg-Landau energies for multiphase systems can be constructed in a way
guaranteeing that in an interfacial layer between two phases only two phase-field
functions appear. This is an important issue not shared by energies that have been
used so far. In Section 20.4, thermodynamically consistent phase-field models for
convective multicomponent systems are developed. Related sharp-interface models
have been discussed in [3). We will finish with some comments concerning the
well-posedness of multiphase-field systems.
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20.2
Phase-field Models for Multicomponent, Multiphase Systems

We are going to formulate a model that allows for N components whose concen-
trations will be described by a vector ¢ = ()Y, and M phases, where the local
phase concentration is given by a vector ¢ = (#a)M_,. Both vectors have to fulfill
the constraints

N M
Zq:l and Z¢>q=1

i=1 w=1

For the free energy of the system, we make the ansatz

AT, 4) = L (F(Tc, d) + T(ea(d, V) + Lw(d))

where f is the bulk free-energy density, T is the absolute temperature, and the
a- and w-terms describe the interfacial free energy of the phase boundaries.
Defining the internal energy density e = f + Ts with the entropy density s = —fr,

the energy flux Jo, and the mass fluxes |1, ..., J; we obtain the conservation laws
e
= e :
P Jo (20.1)
dac; ,
EI—V'L‘, [=1,...,N {202)

The fluxes are assumed to be linear in the thermodynamic driving forces and we
hence postulate

1 e — i
Jo = Ln(T.c. V() + 3 LT 409 (2 )

=1

N

. ;

Ji = Lo(T.c.9)V{z) + 2 LTV (_%)
J=1

Here, (Lj(T,c, ¢o)}£‘;.=0 is a symmetric and positive semidefinite matrix with

ZL Lj=0. The conservation laws have to be coupled to equations for the
phase field as follows, see [4, 5]:

ew(d, V)

0,
0 5(7 - v, (6.9
fou(T.c )

1
= g, (. V) — EW.¢U(¢) = T

x (20.3)

where w is possibly an anisotropic kinetic term and ) is a Lagrange multiplier, see
also Section 20.3. To be able to separate the kinetics of the different interfaces, we
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developed a kinetic term of the form

0, V) = w0 + ) @ap(aVebp — b Vbe) (204)
w<fi
with wys(q) = 0 if q = 0. The wys can be direction dependent, and with the help
of Equation 20.4 we are able to have a specific constitutive form for each possible
interface. Examples are

_ g0 lal3
waﬁ{q)— aff 1+Erxﬁ 3:|:4|q14 — Ty

or

o a )
wu(9) = Tp (1$§§ﬁ(lql " )) !

with |qlf = Y0, q* and |q|* = (Ef=1 qul)z. The first example corresponds to
cubic anisotropy, whereas the second one leads to a facetted anisotropy with 7us
corners &‘Q‘,ﬁ, e ,gﬂ,, see [4, 5]. For possible ways to incorporate anisotropy in the
interfacial energy, we refer to Section 20.3.

In [4, 5] it was shown that the above system (Equations 20.2, 20.2, 20.3) is
thermodynamically consistent. In fact, it was shown that an entropy inequality in
the local form

a v 1 & L 2 HiY o i D
g6 eal0,99) = Swt) = = gho+ 3 (=)l +e L awn

i=1 gt

holds. One goal of this work is to develop Ginzburg—Landau energy densities, that
is, the functions @ and w, such that realistic interfacial energy densities can be
incorporated, see Section 20.3, and to generalize the model (Equations 20.2-20.3)
to incorporate convection (Section 20.4).

20.3
Multiphase Ginzburg-Landau Energies

We use Ginzburg—Landau type energies of the form
F= [ (cofd,74) + L) dx
o

in order to model interfacial energies. In the sharp-interface limit, this energy
can be related to classical energies on interfaces. An ad hoc generalization of
the double-well potential for two-phase systems to the multiphase case leads to
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Fig. 20.1 Behavior of the phase-field vector across an inter-
face. In general, third-phase contributions occur.

interfaces in which more than two phase fields are nonzero. Of course, such
third-phase contributions, in general, are physically unrealistic.

The behavior of the phase-field vector across an interface is shown in Figure 20.1
where ¢;,...,ey are the standard basic vectors. The behavior of ¢ across the
interface when considered in the phase space

M
G:= cbeRMqub“:l, ¢520, B=1,....M

o=1

can be interpreted as a geodesic with respect to a weighted distance in RM, see [6].
We wish to construct Ginzburg-Landau energies with the following properties:
1. Avoidance of third-phase contributions: In an interface from
phase « to phase § only the phase fields « to f are different
from zero.
2. Simple calibration of surface energies and model
parameters: in particular, we want explicit relations between
surface energy densities and parameters in the
Ginzburg—Landau energy.

The interfacial energy of an interface can be computed as

1
Vap = Zir,;f { [1 Vw(p)a(p. p' @ v)dy

where we take the infimum over all vector-valued functions p in the interval
[—1,1] with p(—1) = €, and p(l) = ¢z. From the corresponding Euler-lagrange
equations, we compute after a suitable reparametrization

d
Wa(d) + ae(d, 00 @ V) — (@ ve(d, 0 D V)V) = % (20.5)

with a vector-valued Lagrange parameter . = A(1,...,1) and a critical point ¢(z).
This is the equation which one obtains to leading order in an inner expansion
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(a) (b)

Fig. 20.2 Phase profiles of a phase-field computation with

N =3 at time t = 0.0 (a) and ¢t = 0.2 (b) and the product
of all three phase fields at time t = 0.2 (c). Away from the
triple junction, the product of the phase fields is zero, that
is, only up to two phase fields are different from zero.

close to an interface, see [6]. In the case of an obstacle potential, that is, in the case
where w is set to be infinity outside of the set G, one has to replace Equation 20.5
by a variational inequality ([1, 2]). We now look for solutions of Equation 20.5 that
fulfill (1) and (2), and in [3, 7] we derived specific conditions on the functions a and
w. Here we just state a few examples for possible a and w and give the result of
a numerical computation for the phase-field equation, see Figure 20.2 and [3] for
more details.

20.3.1
Some Examples of Ginzburg—Landau Energies

For a multiphase system with a = a(V) as the gradient energy density and w as
potential energy, we obtain for the case of equal surface energy densities yop = ¥

M M
WV =23 (Voul* and wie) =93 ¢;| D opn
=1 a=1 p=é
Ao

whereas in the case of unequal surface energy densities the following functions
fulfill all the desired properties:

1
a(V) = -3 Z Yep Vo - Vi and
a<fp
W) =9 vupbli+9 Y Vepsbalsdi
w=f w<fib

where Yups = Vas + Vs — Yop- If we want to consider anisotropy, we choose gradi-
ent energies a that depend more generally on V¢ but also depend on ¢, see [6].
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Typical choices are

a(®, V) = D dupoup(Pa Vs — 95 Vbe) and

a<f

wig) =9 ¢leh|1+8 ) %
a<p sela,p)

We suppose here that the functions a,4 are two-homogeneous.
An example for an obstacle potential is

A, V) = Y VepAup(u Vs — $sVebs) and
o, f
16
W) =5 Yebubpt D Vapsdatbsds
wef w= A< §

where w is defined to be infinity if ¢ ¢ G. Here, the coefficients y,pg; have to be
chosen appropriately large. We refer to Refs (3, 7] for more information on the
results in this section.

20.4
Convective Phase-Field Models

In many applications, phase transitions occur in interaction with fluid flow.
Therefore one is interested in a mathematical description of phase transitions in
convective systems. For isothermal single- and multicomponent systems as well
as for nonisothermal one-component systems much work has already been done
[8—11], Finally, a wide selection of topics and references is presented in [12].

In this section, we derive a phase-field model and a sharp-interface model for
multicomponent systems with convection in a nonisothermal regime.

20.4.1
Conservation Laws and Entropy Inequality

To postulate the classical balance laws, we assume that R = R(t) is an arbitrary
material volume. Thus mass conservation is given by

d
= edx=0 20.6

Using Reynold's transport theorem we obtain

do
e . -0
j;?(r} ( T +V (Qv)) dx
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Since R(t) is an arbitrary material volume, we obtain the local version

de +V-(ev) =0 (20.7)
at

We proceed by postulating that changes in the total momentum of R{t) are due to
forces k acting in the volume and acting on the surface. The latter forces are caused
by mechanical interactions along the boundary 9R(t), such as frictional forces or
shear forces. Thus the momentum balance is given by

i[ ovdx = TypdH* ! +f ek dx (20.8)
dt Jr BR(Y) Rt

where vy is the outer unit normal to 3R(t) and dH*"! denotes integration with
respect to the (d — 1)-dimensional surface measure. Now we can derive in a
standard manner (see e.g. [13]) the momentum balance, in the local form, using
Reynold’s transport theorem and the mass balance (Equation 20.7), that is:

g(%Jr(Dv)v) =V.T+ok (20.9)

where V - T is the divergence of the stress tensor T (for a definition see e.g. [13]).
We now postulate that the total energy of R(t) consists of internal energy (with
density E) and kinetic energy depending on the material velocity v. Furthermore,
we assume that changes of this total energy are due to work by the volume force
density k and stress forces Tvy as well as the energy fiux density J. Finally, we will
neglect external heat sources. Thus the energy balance is given by

3 e (+3)
— E4+-v|7) dx 20.10
= 7,/’ Je vrdH*! +f (Tvg) - vdH4! +[ olk-v)dx
aR() aR(H) Rit)
The first term on the right hand-side describes energy outflow with energy Aux
density Jg, the second term accounts for the work by the surface stress, and the third

term accounts for the work by the body forces. The energy identity in its local form
is given by

G Iv]* v|* o
E(Q(E+T))+V-(QV(E+ —?) + =T v)_Qk-v

and using Equations 20.7 and 20.9 we have

0ME+v-VE)y=—-V J,+T' :Vy (20.11)
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We complete our balance laws by the conservation of species assuming that concen-
tration changes are due to the concentration fluxes J;. We note that no chemical
reactions take place. Then the conservation of species is given by

d
—f ocidx=— [ J-vedHé! (20.12)
dt Jrp BR()

where J,, i = 1,..., N, denotes the mass flux of component i. Again, using Reynold's

transport theorem we obtain

Q(%?+V-Vc;)+V-j:0 (20.13)

For the fluxes J, we require Y. J =0 in order to guarantee the constraint
YN, 6 = 1 during the evolution. Besides, an important requirement of ireversible
thermodynamics is that the second law of thermodynamics holds. This fundamental
law follows from the following entropy inequality:

d

g [ esaxz— [ Joowr (2014)
dt Jagy AR(Y)

which has the local form
S
Q(E%-V-VS)-I-V"ISZO (20.15)

Here J, denctes the entropy flux. Using the notion of material derivatives, we
obtain our system of balance laws:

Dig=—¢V.v (20.16)
0Dici=-V-] (20.17)
oDyv=V T+pk (20.18)
oD E=-V ., +T":Vy (20.19)

supplemented by the entropy inequality

DL 8E —V ]z (20.20)

20.4.2
Exploitation of the Entropy Principle

In order to obtain phase-field-type equations that are derived from free energies
including gradients of the phase fields we include V¢ in the list of variables which we
base our constitutive theory on. Since in classical phase-field theories time derivatives
of the phase ficld enter the entropy inequality (see [4, 9]) or the energy balance (see
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[14]) we also include the time derivative D ¢ into the list of variables. Precisely, we
assume that S, E. T, J;. J;.. . ., Jy depend on the variables

Y=(0,¢, Ve, Vv.T,VT, 4, V,Di ), (20.21)

where T is the absolute temperature. Analogous to the ideas of Liu and Miiller (see
[15, 16]), we now use the method of Lagrange multipliers to derive restrictions on the
constitutive relations that are enforced by the entropy inequality. Under suitable
conditions, the existence of Lagrange multipliers can be guaranteed such that

oDy S+ V- Jo—rpleDiE+ V- Jp =T :Vv)—hy(Dio+ eV -v) (20.22)

N

~ 3 heDici+ V- J)— A @Dv=V T~k =0

i=1
holds forall fields (o, c, v, T, ¢), see [3]. In the following we will assume that Ay = %
which can be obtained by an appropriate normalization of the temperature (see Alt
and Pawlow [17] or arguments according to Miiller, see [16], pp. 16, 184). Defining
the free energy F = E — TS, we obtain from Equation 20.22 after multiplying by —T:

oD F+ YV (Jp=TJ)+oSD T+ Js VT = T: Vv+ Thy(Dio +0V - V)
N
+TY gleDici+V - J)+Thy-(@Div—-V-T-K =<0  (2023)
i=1

Using the chain rule for material derivatives, we derive

/3
o (F@ + fQET) Dio+o(Fr+ 8D T+ eFyr D VT +o(Fe + Tad) Dic

+0(Fye: Dy Ve+ Fuy: D VV+Eg - Did+ Fp : D Vo + Fp, - Di ¢)
+V-UE—T]S)+]S-VTWT:Vv+TAQQV-v

N
+TY 4oV Ji+Th (@Dv=V.-T-k =0

=]

where Fr, Fyr, and so on. denote the derivatives with respect to variables
corresponding to T, VT, and so on. Since this inequality has to hold for all fields
with ¢ € £V and ¢ € TM, we obtain that the terms appearing linear will vanish.
Hence we obtain

_efy
T

1
Vi = —THNF,C

A = ,S=—Fr, Fyr =0

MVFyc=0, Fyy =0, IMFp, 4 =0, 4 =0
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where X is the projection on TEX, and for a matrix A = (Aj)iz1..k,j=1....d We
define

K
1
(TFA), = ay — % >y
k=1

for K € {M, N}.
Using the commutator rule and defining the chemical potentials 0’ = IINF  as
well as p = (—1, b') we obtain the inequality

O(Fg Db+ Fup: VD) — (T + F o0l + Foy & V) : Vv

N N
+V- (JE—TJS—ZuJ,) +Js YT+ J-Vui <0

=1 i=1

= M

where we have set Fyy @ V = Z Fyy, & V. For simplicity we set =T+
[ i=1 T

F,0%1 + Fyy ® Vo, and after elementary calculations we obtain

N
(0Fs— Y+ (0Fvg)) Dib—S:Vv+Js YT+ Ji- Vi (20.24)

i
N

+v (JE - TJs— ZJ“'Ji +eF vy Dy ¢) <0
i=1

Since MMF p, 4 = 0 we have

0= (HMF-Dt¢) = HMF.G,.DN

W6
Hence l'lMu,;_D‘.j, =0and pip, ¢ - 05, Dy =0, and then V. does not depend on
V Dy ¢. In order to obtain a model with Fyy # 0, we need that
N
J=Jg=Th— Y ui
i=1

depends on D ¢. We do not aim to derive the most general models and hence we
assume that Jis affine linear in D, ¢ (see also [18]), that is

J=J +J'Di¢
where J', J* do not depend on D, ¢. Then we obtain

JP=—0Fvy
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We assume the representation

Je =Ji +JiDid
Is =J; +.I§Dl¢
J =)+ Dk i=1,....N

where J2, J5, J4. 2. 01 JE (=1, N) do not depend on D; ¢. Hence we obtain

N
(QF.dr — V- (eFve) + ) Vi + VTff-) Did
i=1
N
S VvV Y V- J 4+ VT J5 20

i=1
Suppose that the fluxes for D¢ ¢ have the standard form, that is, J* = 0, that is,
1 = i
B=gli=2 7
i=1

Then we obtain

N
(9F¢ — V- (@Fwe)+ Y Vil + VTJSZ) Db (20.25)
i=1
N " 1
t
—S:Vv+T2V? -_}}—Tv?.jgi:o

i=1

and this inequality must be fulfilled for all values of Dy, Vv, VER . , VL
where o = —1. If we define & = (*#,..., Bl and X = (Di 4, Vv, V) inequality
(Equation 20.25)admits the abstract form —A(X) - X < 0, which has to hold for all
tuples X € M x Ridxdix(N+1)xd) where M denotes the number of phases. Then
Equation 20.25 yields that the existence of functions such that, see [3],

A(Y): ZM 5. RY, Bi(Y') + ¥ —» %4,
Az(Y") :Rdxd = RM, BQ(Y’) :Rdxd & ded'
A}(yl) . R(N+1]xd — RM B}(Y’) :R(N+1)><d 5 Rdxd
Cy(¥) 1 B — RN+,
Cz(Y’) . Rdxd i R(N+I]xd,

C3{Yf) :R(I\Hl)xd = R(N-H)xd

which are linear for all tuples Y' = (¢,¢, V&, Vv, T, VT, b, V,D: b, V%) and these
functions fulfill

N
V- (oFve) — 0F4 —J5 VT = S o m
i=1
w
=A D¢+ AVV+ AV

= (20.26)
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S=B, D¢+ B;Vv+ B3vi;: (20.27)
Uil ... Jh) = CiDid+ CVv + c;v% (20.28)

for all tuples (D; ¢, Vv, V%). In order to fulfill the second law, the matrix

A Ay A
By B; B
C G G

is positive semidefinite on an appropriate subspace, see [3]. Equation 20.26gives
a relation between thermodynamical driving forces on the left-hand side and
the derivatives of ¢, v, % on the right-hand side. It turns out that (Equation
20.26)isa generalized phase-field equation. Equations 20.27and20.28 give very
general representations of § and the fluxes J, J;,....Jy in terms of the quantities
D; ¢, Vv and V4 where the functions B; and C; may depend on Y’ for i € (1,2, 3).
The following example shows that the usual choices for the phase-field equations,
the tensors, and fiuxes are special cases of Equations 20.26-20.28.

20.4.2.1 Example
We set Ay, Az, By, B, Cy, C; equal to zero. Furthermore, let

Ay (X) = BX)TI
By(X)Vv = 20E + A tr(E)I
eiCs(X)em = —(Ly)j_y, foralll, me (1,....d)

with positive g € R as well as 2E = Vv + (Vv)T and appropriately chosen v =
v(T, ), 2 = A(T, d) € R such that § becomes a positive definite tensor, Finally, let
(Li(T.c. ¢));.'}:0 be a symmetric and positive semidefinite matrix with Z:L Ly=10
as well as JE =J% and J? =0 for i=1,...,N. Then we extract the following
equations:

= s (o) =2
BDip=V- (TF,W) Fg (20.29)
N S
Ji =ZLH‘VTJ
j=0
Jy=App oy BTy e (2030)
s =) T T T '

ij=1

Finally, we derive from Equation 20.25 that

)

N’
—,BT(D:¢)2fS:Vv~TZVT

v <o
e S
ij=0

holds. Thus the entropy inequality (Equation 20.15) is fulfilled.
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Mathematical Analysis
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In Ref. 3, Haas considered a system of phase-field equations for which coupling
to other fields was neglected and proved an existence result, The resulting system
is nonlinear parabolic and the main mathematical difficulty lies in the fact that
quadratic terms in V¢ appear in the equation. Such equations are difficult to
handle mathematically and Haas [3] was only able to show existence of solutions

in one space dimension,
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