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Chapter 2

MECHANICAL EFFECTS IN THE CAHN-HILLIARD
MODEL: A REVIEW ON MATHEMATICAL RESULTS

Harald Garcke
Universtit Regensburg

Abstract

We review mathematical results on the Cahn-Hilliard equation with elasticity (the
Cahn-Larché system). Pattern formation during spinodal decomposition is discussed
as well as existence and uniqueness results. Furthermore, the relation of the Cahn-
Hilliard equation to a sharp interface model (a modified Mullins-Sekerka problem) is
studied. Recent applications of a degenerate Cahn-Larché system to model surface
diffusion in the presence of elastic interactions are outlined. Finally, a finite element
method to numerically approximate solutions of the Cahn-Larché system is presented.

1 Introduction

The Cahn-Hilliard model was introduced [13, 15] to describe spinodal decomposition, i.e.
the demixing of a homogeneous alloy which is quenched under its critical temperature
B.. Above the critical temperature the homogeneous state (i.e. a constant concentration
of the alloy components) is stable, but cooled underneath its critical temperature this state
becomes unstable and the system locally tends to decompose into two or more phases.
Later it was noticed that the Cahn-Hilliard equation also describes the rearrangement of
phase boundaries after regions of different phases have been formed. This has been shown
with the help of numerical simulations (see ¢.g. Elliott [27] and the references therein)
and by formally matched asymptotic expansions (see Pego [72]). Also the coarsening of
particles, i.c. regions occupied by the same phase, can be modelled by the Cahn-Hilliard
cquation (see [53] and [41]). This process 1s called Ostwald ripening.

The original Cahn-Hilliard model takes the chemical free energy and energy contribu-
tions due to capillary effects into account. But also mechanical effects can have a pro-
nounced influence on both the process of spinodal decomposition and on the movement of
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phase boundaries. In particular the shape of the phase boundaries will change and if the
clasticity tensor in the two phases is different, the coarsening process can either accelerate,
slow down or even stop (see [35]).

In this paper we consider the case of a binary alloy, i.e. two alloy components are
present (for the treatment of multi-component alloys see [37, 38]). Denoting by c; and ¢
the concentrations of the components we will use the concentration difference ¢ = ¢; — ¢ as
variable which determines the concentrations due to the constraint ¢; +¢3 = 1. As second
unknown field we introduce the displacement vector u(z,x), which describes that a point x
in the reference configuration will be at the point x + u(z,x) at time 1. The linearized strain
tensor is given by

E(u) = 3(Vu+ (Vu)")

where V is the spatial gradient and (Vu)T is the transpose of Vu. The free energy of the
system is then given by

E(c,u) =§{ {1|Ve|* +wy(e) + W (e, E(u)) } dx

where Q C R? is the region under consideration, y > 0 is a small interfacial parameter,
y : R — R is the non-convex free energy density and W : R x R?*¢ — R is the clastic
energy density. A homogencous free energy density v for a mean field model at a fixed
absolute temperature is

w(e) =B {(1+)n(l+c)+(1-c)in(1—c)} + B (1-¢?). (1)

Here 6, is the critical temperature and R is the gas constant scaled by the (constant) molar
volume. For 6 below the critical temperature 6, the energy density y has two global minima
¢, ¢, and hence a non-convex form. Two approximations to y are frequently used. For
shallow quenches, 1.e. 0 << 6 < 6, one takes the quartic polynomial

vic)=b(c*—a*)?,0<a<1,b>0 (2)

and for deep quenches, i.c. 6 close to zero the double obstacle potential

RO 11 _ :
w(c):{T(l ey (3)

oo elsewhere

has been suggested by Blowey and Elliott [8].
The elastic energy density is usually taken to be a quadratic function of  and introduc-
ing the stress free strains (or eigenstrains) Z(c) we write

W(C,E):%(E—f((?)):C(c)(Zﬁf(c)). (4)

C(c) is the fourth rank elasticity tensor and the :—product is the inner product between
linear mappings, i.c. 4 : B = tr(4” B) for mappings 4 and B (here 1 denotes the trace of a
mapping). The elasticity tensor C is assumed to be symmetric and positive definite which
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implies that I is zero, if and only if £ = E(c) meaning that for a concentration c the strain
E(c) is the energetically favourable strain. For £ usually an affine linear ansatz (Vegard’s
law) is used, 1.e. N

E(c) = E+Fre.

where %, E* € R4 are symmetric. The eigenstrains describe e.g. the elastic misfit be-
tween the two alloy components. In general the clasticity tensor can be different for the
alloy components and therefore we allow for a c—dependence of the elasticity tensor C. For
an isotropic material we obtain

C(c)E = 2u(c)E +Ac)tr(E)Id

where the Lamé moduli 1 and A depend on the concentration c.
For a material with cubic symmetry we have

C(c)E = 2u(c)E+Me)trEld + 4 (c)diag E

where diag  is the matrix that you obtain, if you set all off-diagonal entries to zero. In
general C is an arbitrary fourth rank tensor C (¢) = (Cij#;2(¢)) and using the symmetry
conditions

Cijij = Cijpr = Ciijp = Cpyy

one can compute that for ¢ = 3 there are 21 degrees of freedom in C which of course in
general will be restricted by crystal symmetry.

For example in a cubic system we obtain that Cini =G = Caaaa, Ciijj = Cij (for
i, J,x mutually different), Cy333 = C313) = Ci212 and all other entrics in C either follow from
the above by symmetry or they are zero. Sometimes a fourth rank tensor in R? is denoted
by Ci; (Voigt notation). In this case the indices I, j take values 1,2,3,4,5, 6 and they stand
for the pairs 11,22,33,23.31,12 in the original notation. This means in a cubic system we
only need to specify Cy, C)» and Cyy. All other parameters are determined as above. For a
discussion of other symmetry classes we refer to Gurtin [48]. We will also always assume
that C(c) is positive definite and bounded uniformly in ¢.

Taking mechanical effects in the Cahn-Hilliard model into account we obtain the system

de = V-(bVw), (3)
W= %:—YAC-FW'(C)—J—WC(C,E(M)), (6)
0 = 2 = VWl TW). (7)

which we sometimes also call the Cahn-Larché system (see [16, 55]). Here %‘g denotes
the first variation of £ with respect to ¢ and W is the partial derivative with respect to ¢
(the same notation holds with respect to u). Furthermore, b is the nonnegative mobility
coefficient which in general can depend on the concentration ¢. In Sections 2,3and 6

for the ease of presentation we will set 5= 1. The chemical potential w is the diffusion
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potential and is given by the first variation of energy with respect to concentration. The
quantity S = W ¢ 1s the stress and hence (7) are the mechanical equilibrium equations from
the theory of elasticity.

The set of equations then has to be completed by appropriate boundary conditions which
can be e.g. periodic boundary conditions or Neumann boundary conditions for w and ¢ and
a prescribed normal stress at the boundary for the u—equation.

For the system (5)-(7) an appropriate formulation of the second law of thermodynamics
holds. For isothermal systems the second law can be stated as a dissipation inequality for
the free energy. And in fact one computes that the following inequality holds

% (JIVel +w(e) + W (e, E)) < V- (yVedie+ Sou — Jw) ®)

where J = —bVw is the mass flux. Hence the increase of free energy does not exceed the
total power expended plus the energy inflow which is an appropriate form of the second
law (see [37, 38] for more details). For appropriate boundary conditions the free energy
inequality (8) will give important a priori estimates (see Section 3).

In the forthcoming sections we will review mathematical results on the Cahn-Larché
equation obtained by the author in recent years, some in collaboration with colleagues
which will be mentioned in the text. First we will discuss the influence of elastic effects
on spinodal decomposition which is the process in which after quenching below the critical
temperature different phases form. We will see later in Section 2 that the morphology that
develops will depend crucially on the elastic properties of the materials.

In Section 3 we will present existence and uniqueness results for the Cahn-Hilliard
equation. Here we will make use of the gradient flow structure of the system. The Cahn-
Hilliard equation is a diffuse interface model, i.c. interfaces between regions of different
phases are modelled by an interfacial layer across which the physical fields vary contin-
uously. At later stages in the evolution when regions consisting of different phases have
been formed the rearrangements of these regions can also be described by a sharp inter-
face model, i.c. phases are separated by hypersurfaces across which some fields may jump.
The relation of the Cahn-Larché model to a sharp interface model will be discussed in
Section 4.

In Section 5 we will discuss a recent application of the Cahn-Larché equation with
degenerate mobility as a model for surface diffusion in the presence of elastic interactions.
This model has important applications, ¢.g. void migration in microelectronic interconnects
can be described with the help of this approach. Finally, we will briefly discuss approaches
to numerically solve the Cahn-Larché system.

The presentation in this paper is rather informal. We will not always state results and
proofs with full rigour but we will always refer to the literature for the complete statement
of theorems and proofs,
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2 Spinodal Decomposition

In this section we consider the phase separation process. We consider initial conditions for
the concentrations which are slight perturbations of a homogeneous unstable state. This is
the situation one encounters in applications when a formerly stable homogeneous state is
quenched undemeath its critical temperature 8,.. The state then can become unstable and
in this case phases form which are distinguished from each other by a different chemical
concentration. Typically the phases form regions of small diameters and a microstructure
consisting of many regions form. If the elasticity tensor or the eigenstrains are anisotropic,
one will observe that the phase boundaries will predominantly align with certain directions
(see e.g. [40, 42]). It is the goal of this section to analyze this phenomenon and to un-
derstand why certain patterns form. We will do this with the help of a linearized stability
analysis for the Cahn-Larché equation around a homogeneous state. We will also state a
theorem (see [40]) which roughly says that we will see certain patterns with a probability
close to one.

In our analysis we will solve linearized equations with the help of the Fourier trans-
formation. Therefore we consider periodic boundary conditions and study a rectangular
domain

Q= (0,2m) x --- x (0,2m).

We also assume that
E(c) = E*c

which just means that we choose a reference state in which the two components have equal
concentration. Furthermore, we only consider the case of homogeneous elasticity, i.c. C
does not depend on the concentration ¢. If we linearize the Cahn-Larché system around a
constant stationary state (¢,u) = (¢, 0), we obtain (we also denote the linearized variable
in the concentration equation by ¢)

de = (-A)(YAc—y'(cw)e+E":S), 9)
0 = V5, (10)
S = C[E(u)—TE"c] (11)

We can now eliminate u in the equation for the concentration, if we introducc an operator
L by
L X = X,
¢c — E*:S§
where

X ={eecl*(Q) lgj;Cdx: 0}

and S is given by a solution of (10), (11) with periodic boundary conditions. Hence (9) can
be written as

dic = (—=A)(YAc — ' (em)e + L(c)). (12)
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The operator £(c) can be computed by Fourier transformation. For the Fourier mode
Ou(x) = €™ . i being the imaginary unit,
with
K= (Xi,...,%4) € 24
one obtains (see [52, 40])
L(pc) = L(x) @i
where
L(k)=E": (C[Z(x)S" kK] - §7)

where 5% := C[E*] and Z(x) is the inverse of

d
s (x) = (zci_,irnnKij) .
in=l,...d

jm

An important observation is that L is homogeneous of degree 0 which implies that £ is a
pseudo-differential operator of order 0. The function L can be computed more explicitely
in certain cases, e.g. if C is isotropic or has a cubic symmetry (see [40]). In the particular
case of cubic symmetry one obtains that certain directions K € Z¢ are stronger amplified by
L than others. This has important consequences for (12). If we consider solutions to (12) of
the separation of variables form

e(x,t) = f{1)e,

we obtain
f() = o aeR,
with
Moy = [P (=¥IxP = 9" (em) +L(x)).

If ¢,, is such that y’(c,,) < 0, one obtains in the case without elasticity that all k with
a certain wave length are amplified the most. Now in case of anisotropic elasticity also
the direction of K plays an important role when we want to determine the most unstable
waves. It tums out (see [16, 40] and the references therein) that in case of cubic anisotropy
cither dircctions parallel to the coordinate axes or direction parallel to the diagonals of the
coordinate axes are amplified more by the influence of elastic interactions. Which of the
two cases occur depends on the parameter AC := Cj; — Cj2 — 2Ca4. One speaks of positive
anisotropy if AC > 0 and of negative anisotropy if AC < 0. We demonstrate the effect of
different AC’s in the Figures 1, 2 and 3. In all figures we show on the left with dark colour
which Fourier modes in the (K,%2)—plane are amplified the most. We see for example
that in the isotropic case no directions are preferred. This is as in the case of the Cahn-
Hilliard equation, 1.¢. in the case that no elastic effects are incorporated. In case of cubic
elasticity either the coordinate axes (in case of negative anisotropy) or the diagonals (in
case of positive anisotropy) and here only modes with certain wave lenghts are amplified
the most.
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A

Figure 1: The most amplified eigenmodes (left) and a typical pattern (right) for isotropic
elasticity (AC = 0)

Using methods developed by Maier-Paape and Wanner [63] it is shown by Garcke,
Maier-Paape and Weikard [40] that with a probability close to one, the dynamics of ran-
domly chosen initial data in the neighborhood of a uniform mixture will be dominated by
an invariant manifold which is tangential to the most unstable eigenfunctions of the lin-
earized operator. For a precise statement of the result sce [40]. For example in the case
of cubic anisotropy it was shown that the most unstable eigenfunctions reflect the cubic
anisotropy and therefore, the anisotropy will influence the dynamics quite drastically. This
shows in particular that elastic effects are not only important at later stages of the evolution,
but they also determine the morphology after spinodal decomposition (see Figures 4, 5 for
numerical solutions of the Cahn-Larché system).

3 Existence and Uniqueness Results

3.1 The Gradient Flow Structure

In case that the elasticity tensor depends on the concentration ¢ (this is called the case
of inhomogeneous elasticity) the mathematical analysis for (5)-(7) becomes sophisticated,
because a term quadratic in Vi enters the equation for the chemical potential: Existence and
uniqueness results for different variants of the system (5)-(7) have been given independently
by Carrive, Miranville and Pi¢trus [18], Bonetti et al. [10] and Garcke [37, 38]. In this
review we will shortly discuss the results of [37, 38] which obtains results for (5)-(7) with
the boundary conditions

Ven=0,Vw-n=0,52=0 (13)

where 7 is the outer unit normal to Q.
The approach to show existence in [37] is based on an implicit time discretization of
(5)-(7) and uses the fact that (5)-(7) can be interpreted as a gradient flow. To make this
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Figure 2: The most amplified eigenmodes (left) and a typical pattern (right) for negative
anisotropy (AC < 0)

precise we need to introduce the A~ !-scalar product. We define the spaces
y={zcH Q)| [z=0}
Q
and

D={fe(H(Q) |{1./)=0}

where (H'(€2))* is the dual space of H' () and (-, ) is the duality pairing between H'(Q)
and (H'(€2))*. Now the Green’s operator G (or the inverse negative Laplacian operator) for
(—A) with Neumann boundary condition is defined via

G : Doy
S 6/

where G f fulfills
(VGf,V0) =N
for all { € H'(Q). Now the H~!-scalar product is given by

(f1,/2)-1:=(VG/1,VG o)z forall fi,/»€D.
Now it follows that the equations (5), (6) can formally be reformulated as

<t;,88—f>——(§.arc)_, forall Led. (14)

Let us shortly review the concept of gradient flows. For a functional £ on a space X and
an inner product (-,-)y on X we say that a time dependent function ¢ with values in X is a
solution of the gradient flow equation to £ and (-,-)y if and only if

<C, aa—f> =—(L.0ic)x forall L€V,
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Figure 3: The most amplified eigenmodes (left) and a typical pattern (right) for positiv
anisotropy (AC > 0)

where Y is a dense subspace of X. Hence, (14) shows that the equation (5), (6) realize the
gradient flow of £ in the H~'-scalar product (with respect to the variable c).
3.2 Existence for Smooth Potentials

The aim of [37, 38] was to show existence of weak solutions to (5)-(7) by using the gradient
flow structure of the evolution. In fact the following result was shown in [37, 38].

Theorem 3.1 Assume Q C RY is a bounded domain with Lipschitz boundary, y is of the
Jorm (2), W is of the form (4) and a c® € H'(Q) is given such that Jy(c?) < ee.
Q

Then there exists a weak solution of (5)-(7) with the properties
(i) ceC®i([0,T)L(Q)),
(ii) drc € LX0,T; (H(Q)"),
(iti) u€ L=(0,T,H" (Q,R")),
(iv) c(0) = ¢,

Remark 3.1 For a precise definition of weak solution and Jor more general assumptions
Jor which the theorem is true we refer to [37, 38).

We will not give a detailed proof of the theorem. Instead we will outline the main ideas,
The proof uses an implicit time discretization of (5)~(7) to obtain approximate solutions.
Existence of solutions to the time-discrete problem can be shown with the help of the direct
method of the calculus of variations. Here, it is important to use the gradient flow struc-
ture of the problem in order to obtain that the time discrete problem is the Euler-Lagrange
equation of a certain functional.
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Figure 4: Patterns after spinodal decomposition without elasticity; modulus of the Fourier
coefficient (left) and sign of the concentration difference ¢ (right). If one includes homoge-
neous elasticity the patterns are similar.

Using the gradient flow property we obtain natural a priori estimates from the fact that
the free energy E is a Lyapunov functional. The remaining part of the proof then uses
compactness arguments in order to pass to the limit in the time-discrete problem. For the
detailed proof we refer to [37, 38]. Here we only briefly discuss the implicit time discretiza-
tion and the use of the gradient flow structure.

The implicit time discretization (the backward Euler scheme) for (5)-(7) can be written
in the weak form

SE o B Cm_c,m—l
<Cr6—c‘(c u )>—(C:‘——AI )_i forall{€ Y, (15)
g3 mo, 1 d ;
n,a(c ") Yy=0 forall neH (QRY). (16)

It can be verified that the above two identities are the Euler-Lagrange equations of the
functional
E™N(d,v) = E(d.v)+ 55 1d —"7'|12).

The goal now is to minimize £ on the set X? x X- where
=] ird

X0 :={ce H(Q)| fe= [},
Q 19

X = {ue H(Q,RY) | there exist b € R
and a skew symmetric 4 € R7*¢  such that u(x) = b+ A4x},

and X; is the space perpendicular to X,

We start with m = 1 which corresponds to the time At and then solve iteratively for
m = 2.3.... to obtain time discrete solutions, which we choose as absolute minimizers of
EMA ot times 2A1,3A¢, . ..
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Figure 5: Cubic anisotropy of the elasticity tensor; modulus of the Fourier coefficient (left)
and sign of the concentration difference c. (right)

The existence of an absolute minimizer follows by the direct method of calculus of
variations where we obtain coercivity with the help of the inequalities of Korn and Poincaré.

As mentioned above an absolute minimizer of E”4" fulfills the Euler-Lagrange equa-
tions (15) and (16). Now we define

mo_ o m—1
Mﬂ*:g(c_Aj‘)+x’" (17)

where

!{{W'( ")+ We(e”, E(u™))}

is a constant Lagrange multiplier. Now (5)-(7) give that the discrete solutions are solutions
of the implicit time discretization of (5)-(7).

We denote by (c},,w?,,u},) the solution at time mAs that we obtam by solving the
implicit time dlscretlzanon with time step Az. Then by taking (¢!, % =) as a comparison
function when minimizing £”% we obtain

E(cf %) + gl — 2 < B ).

Using this inequality iteratively and using the definition of wj, (which we extend to a func-
tion wy, that is defined for all 7 by piecewise constant extensxon) we obtain

E(cf,uf)+ 1 f |Vwa > < E(c,u0).
0

This is the main a priori estimate needed in order to pass to the limit Az — 0. One important
step is to show strong convergence of Vi in L2(Q7) in order to pass to the limit in the term
W appearing in the equation for the chemical potential w. We point out that in the case
of inhomogeneous clasticity W, contains quadratic terms in V. How to handle this and
how to pass to the limit in the discrete equations in order to show that limits of the discrete
solutions solve (5)-(7) is shown in [37, 38].
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3.3 Existence for Logarithmic Potentials

If the free energy density W is given by the logarithmic form (1) the mathematical analysis
becomes more involved. Then the equation for the chemical potential reads

w=—yAc+ B (In(1+c) —In(1—c)) — RO.c+ We(c. E(u)) (18)

which means that the equation for the chemical potential contains a term that becomes
singular if ¢ — 1. On the other hand this term guarantees already in the Cahn-Hilliard
equation without elasticity that the solution remains between —1 and 1 which 1s the range
of values that are physically meaningful (see [31]). If one chooses a smooth potential like in
Subsection 3.2 this is not guaranteed due to the lack of a maximum principle for parabolic
equations of fourth order.

In the case without elasticity one can use the convexity of the logarithmic term in W
in order to get enough information on the logarithmic term in (18) for an existence result
(see [31]). In the case with elasticity this is not so easy. The term W, (c, E(u)), stemming
from the elastic part of the energy, contains quadratic terms in Vu and hence this term is
controlled only in L' (€2r). This is not enough to get good control on the logarithmic term.
As often, L'-control of a term is critical and we need only a little bit more information
to proceed. This can be achieved by showing first a higher integrability result on Vu by
extending results of Giaquinta and Modica [45] to elasticity systems. Here we also need to
extend the local results of [45] to a global version, i.e. we also need to derive estimates at
the boundary. To be a bit more precise:

There exists a p > 2 not depending on ¢ such that solutions to (7) fulfill

Vu(t) € LP(Q, R )

and
V()| (o meixay < &(]|Vuu(t)

where ¢ does not depend on c.
This result is then a basic ingredient to show the following existence result.

2@ mexay + lle(®) ey +1)

Theorem 3.2 Let the assumptions of Theovem 3.1 hold but with \y of the form (1). Further-
more we assume that§co € (—1,1).
Then there exists a weak solution of (5)-(7) with the properties

(i) ¢ e C([0,T].L3(Q)),
(ii) d,c € L2(0,T;(H'(Q))*),
(iii) u e L=(0,T;W'»(Q,RY)),
(iv) ¢(0) =",

(v) there exists a ¢ > 1 such that In(1+c¢), In(1 —c) € L9(Qr).
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In particular; ¢ € (—1,1) almost everywhere,

The theorem is proved with the help of approximation problems in which we modify
by smooth functions, a priori estimates (in particular using the higher integrability of V),
compactness results and passing to the limit in the regularized problem. To show (v) it is
crucial that the logarithmic singularity in Y is convex. For details we refer to [37, 391

3.4 Uniqueness for Homogeneous Elasticity

One speaks of homogencous elasticity, if the elasticity tensor C does not depend on the
concentration c. In this case it is possible to show uniqueness. Let us briefly outline formally
how this is possible. Here again the H~! gradient flow structure will be used.

Let us assume there are two solutions (e1,wr,u7) and (c2,w2,u2) of (5)-(7) that fulfill
the boundary conditions (13). Then we compute, using properties of the //~! scalar product
derived in Subsection 3.1 and the fact G, (c; —¢») = —(w) —wy)

%%”CQ—CE”?;I = (e2—e,9(c2—c1))-y
= (VG(ez—¢1),VG((c2— 1)),z
(c2—e1,G0(ea—c1)),2

—(((,‘2 —C], W2 —W])]_z

= —[IV{ez—c))llf2 —g{{w’(c‘z) —¥(e))(e2~er)

—S{'E((ug —u1)—E(c3—c1)) : C(E(uz —u))~E(ca—c1))

where we used the mechanical equilibrium (7) and the linearity of W, and W  to obtain the
last identity. Now we can use the fact that for the homogeneous free energy densities (1) or
(2) the inequality

(W (e2) =W (e))(e2—c1) = —cyles — oy |2

holds, to obtain for ¢ :=c) — ¢; und 7 := U — i
||z||_.(r)+f{'||VE I+ (20 ~E@) : (2@ - (o)) < Cwofllﬁlliz-

Since

IIe

= (Vgeve)
IVGe||2|| Ve,
3llel12, + 8] Ve 2,

IA A

we obtain ¢ = 0 with the help of Gronwall’s inequality.
In [37, 38] this argument has been made rigorous and one obtains
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Theorem 3.3 Assume Q C R? is a bounded domain with Lipschitz boundary, \y is either of
the form (1) or (2), W is of the form (4) where C does not depend on c.

Then there exists a unique weak solution of (3)-(7), (13) for given initial data =
H'(Q).

Remark 3.2 For the above theorem to hold ¢® has to fulfill [w(c") < o in the case that
Q
is of the form (4) and —1 <+¢® < 1 in the case that \y is of the form (2).

Remark 3.3 i) Uniqueness in the case of inhomogeneous elasticity is not known so far.

ii) Precise regularity results for the Cahn-Larché-system are not known. Bootstrap ar-
guments are difficult at least in the case of inhomogeneous elasticity. This is due to the
quadratic term W g in the w-equation.

4 The Sharp Interface Limit

4.1 The I'-Limit of the Free Energy

In the Cahn-Hilliard and Cahn-Larché models the interface is diffuse, i.e. phases are sep-
arated by a thin diffusional layer. We now study the sharp interface limit, i.e. the limit of
vanishing interfacial thickness. To study this limit we use the following scaling in the free
energy

E¥(c,u) :=Z‘£ (%'VC‘|2+ ,l!w(c) +W(c,£(u))) .

In this scaling the interfacial layer is of a thickness proportional to y. For simplicity we
assume in this section that  is of the form (2) with @ = 1 and W is of the form (4). Our
first goal is to derive the limit of £7 as ytends to zero. It turns out that the notion of I'-limes
is appropriate in order to pass to the limit y — 0. We will study solutions of the variational
problem
(PY). Find a minimizer (c,u) € H'(Q) x X of EY subject to the constraint fc = m
Q

where m € (—1,1) is a given constant,
We will see that solutions of (PY) converge along subsequences to minimizers of the
functional
EY: LN (Q) x Xt - RU{e0}

with
oH" N (H{e=1}NQ)+ [W(c,E(u))
Q
E%c,u) = if ceBV(Q.{-1,1}) and Fe=m,
Q
oo otherwise.

o0

Hereo= [ (3(Z(y))* +w(z(y)))dy where z is a solution of

—oo

2"+ y(z) =0 with z(—ee)=—1 and z(e=)=1.
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One easily computes that

&= —f]l v/ 2y(s)ds.

Theorem 4.1 Let the assumptions stated above hold. Then it holds:

i) Forall (c™,u™)eny € H'(Q) x XL with % — ¢ jn L] (2) and u™ — u in L*(Q,RY)
as Yx tends to zero, it holds

E%(c.u) < lim infEYs (™ ).

K—o

i) Forany (c,u) € L' (Q)NX% and any sequence Yx 0, K €N, there exists a sequence
(e¥, 1™ )en € H' (Q)NX;; with ¢™ — ¢ in L' (Q) and u¥ — u in 12 (Q,RY) as v\, 0
such that

E%(c,u) > lim sup E¥™ (¢, u’).

K—oa

iti) Let (c',u) be solutions of problem (PY). Then there exists a sequence Y« — 0, ke N,
and a (c,u) € L*(Q) x X such that

ek — ¢ in L*(Q),
u* — u in  H'(Q,RY)

and (¢, u) is a global minimizer of E°.,

Remarks: a) The results i) and ii) of the preceding theorem state that £° is the I'-limit
of E7.

b) Result iii) gives that minimizers of EY approximate minimizers of a functional for
partitionings of Q under a volume constraint. This functional contains a term taking inter-
facial energy — in fact just the perimeter of the interface — into account and a term measuring
the energy resulting from elastic stresses.

¢) Regularity theory for minimizers of £ is an area which is totally unexplored yet (see
Lin [58] for related results).

4.2 The Sharp Interface Limit of the Cahn-Larché System

In the preceding subsection we studied the sharp interface limit purely on a variational
basis, i.¢. one studies the convergence of the free energy as the interfacial energy tends to
zero. Another goal would be to pass to the limit in the Cahn-Larché system itself. On this
only results based on formally matched asymptotic expansions (see [56]) and a result for
stationary solutions which are energy minimizing are known (see [37]).

Let me first mention the asymptotic limit of the Cahn-Hilliard equation. It is well
cstablished that in the limit Y — 0 the chemical potentials wY tend to a limit w and the ¢Y



58 Harald Garcke

tend to function ¢ which takes values 1. The set '=09{c = 1} N (Q x (0,0)) is the free
boundary which we write as
F= U I x {t}.
>0
The limit (w,T) solves the following free boundary problem (for simplicity we always as-
sume that I', CC Q)
(MS) Mullins-Sekerka problem:

Aw = 0 in Q\I;, , 1>0,

Vw-n = 0 on 0Q , t>0, (19)
oKk = 2w on I i =0,
2V = —[Vw]-v on r, , t>0

where ¥ is the normal velocity of the interface (where the normal is pointing into the region
{ec=1}), x is the sum of the principal curvatures of T, (which we will call, as frequently
used, different to its original meaning the mean curvature) and v is the normal pointmg
into the set {c¢ = 1}. We take the sign convention that a ball with ¢ = —1 inside and ¢ = 1
outside has negative curvature. By [g] we always denote the jump of a quantity g across the
interface. More precisely we set

lg)(x) = lim(g(x+8v) — g(x —&v)).
60

For the moment we consider the case W = 0. Then an absolute minimizer ¢ of £ 9 solves
(19) with a constant w. An absolute minimizer of E? has constant mean curvature and w
is up to the constant § equal to this mean curvature (see Giusti [46]). If we now consider
absolute minimizers ¢! of £Y, a constant Lagrange multiplier stemming from the mean value
constraint appears. We have

YA+ 3y (c") = w'

where wY is a constant. In fact (¢¥,w") is a solution of the Cahn-Hilliard equation. It was
shown by Luckhaus and Modica [60] that the Lagrange multipliers w' of a converging
sequence ¢! — ¢ in L?(€) converge to a constant w which is up to the factor § the mean
curvature of the hypersurface d{c = 1} (which of course is a minimizer of £ 0y,

Now we consider the case W # 0. If (¢, u) is a minimizer of E? it can be shown that a
constant Lagrange multiplier w exists such that (see [37])

oK+ Vv [Wid— (V) Wglv=2w. (20)

The quantity v- [ 1d — (Vu)” W z]v modifies the law that minimizers are constant mean
curvature surfaces. Equation (20) and the non-cquilibrium analogue (25) can be interpreted
as a generalized Gibbs-Thomson equation (see [33], [54], [17] and [57]).

If we consider absolute minimizers (¢¥.u") of EY, we also obtain Lagrange multipliers
wY which fulfill (in a distributional sense)

—yAcT + %\P”(CY) + W, EW)) =w.
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It is now also possible to show that the Lagrange multipliers wY converge (along subse-
quences) to a Lagrange multiplier w of the sharp interface variational problem. More pre-
cisely we obtain (see Garcke [37]):

Theorem 4.2 Let Q be a domain with a C'-boundary and let (" ") € H(Q)NXL be
a solution of the variational problem (PY) with Lagrange multipliers w'. Then for each
subsequence (Y¢)xer ™, 0 such that

ek — ¢ in  LY(Q),
u" —u in LHQ,RY)

it holds
wh — w,

where w is the Lagrange multiplier for the absolute minimizer (c,u) of E (see (20)).

Let us finally state the full moving boundary problem for the case with elastic effects. A
triple (w,u,T) solves the generalized Mullins-Sekerka problem if the following conditions
are fulfilled.

(GMS) Generalized Mullins-Sekerka problem:

Aw=0 in Q\T, (>0, 1)

V- Wegle,E(u)) =0 m Q\T, t>0, (22)

Vw-n=0 on dQ, t >0, (23)

(Weln=0 on 3Q, (>0, (24)

oK+ [WId— (Vu) W g]v = 2w on T, >0, (25)
2V =—[Vw]-v on T, t>0, (26)

] =0 on T, 130, (27)

(Wev] =0 on T, t=0. (28)

This sharp interface problem was derived in [56] from (5)-(7) with the help of formal as-
ymptotic expansions. We remark that the set of equations can be simplified if we formu-
late them in a distributional sense. Then we would ask for functions u : [0,7 | = HY(Q),
c:[0,7] = BV(Q,{-1,1}) and w: [0, 7] — H'(Q) such that (25) is fulfilled together with
the following equations

de =Aw inQx(0,7). (29)
ViWe =0 inQx(0,7). (30)

All these equations have to hold in a weak sense. For example (26) is the jump condition
obtained from (29) which has to hold since ¢ jumps across the interface T (see [37] for
details). The jump condition (27) results from the fact that u(¢) € H' (€2) and (28) is the
Jump condition resulting from (30). In the habilitation thesis [37] also a weak formulation
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of (25) is formulated which generalizes a weak formulation of Luckhaus [59] to the case
with mechanical effects. This formulation has the feature that mechanical effects enter into
the weak formulation only through bulk terms which makes the analysis of the elasticity
term much easier.

Remark 4.1 i) It can be computed that the energy E 0 decreases in time for a solution of
(21)-(28). In fact we have

2 [ 5 (e = l}ﬂﬂ)—i—fW(c,,E(u))} Vw2 =0.
t Q Q

i) Existence of solutions to (21)-(28) is still an open problem. For related results in the sit-
uation without elasticity we refer to [22], [61], [12], [43] and [73]. A rigorous asymptotic
analysis for ¥\, 0 in the case without elastic effects has been given by [1], [21] and [76].

5§ Surface Diffusion and Elastic Interactions

5.1 Surface Diffusion in the Presence of Stress and Electromigration

The Cahn-Hilliard equation can be interpreted as a phase field model, i.e. a model in which
an interface between different phases is described with the help of a new continuum field
(the phase field) which varies smoothly across the interface and which attains fixed but dif-
ferent values in the pure phases. The phase ficld approach has been applied successfully in
a number of application areas. In particular it has been successfully used to model the so-
lidification of pure substances. We refer to Chen [19] and Boettinger, Warren, Beckermann
and Karma [9] for recent reviews on the phase field approach. The main goal of this sec-
tion is to demonstrate that a Cahn-Larché system with a degenerate mobility can be used to
model surface diffusion in the presence of elastic stresses. In this context the Cahn-Larche
system is just a phase field model with ¢ as the phase field which takes the values +1 in the
two physically different states. In the applications we have in mind, ¢ = 1 will correspond
to solid and ¢ = —1 will correspond to vapour.

We would like to model situations in which the free surface of a solid changes its shape
due to the diffusion of atoms along the surface. If this process is driven by capillarity,
Mullins [70] (see also [23]) proposed the surface diffusion flow

V =-V,-D;V (oK) (31)

where V' is the normal velocity of the evolving free surface, V- is the surface divergence,
D, is a constant related to the surface diffusivity, V; is the surface gradient, ¢ is the sur-
face tension and x is the mean curvature. If an interface is governed by the evolution law
(31), atoms will move along the surface from regions with small curvature to regions with
a higher curvature (see Figure 6). This law governs the evolution of interfaces in many
applications, but often additional effects have to be accounted for (see below).
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Figure 6: Surface diffusion from regions with small curvature to regions with higher curva-
ture

It was shown by Cahn, Elliott and Novick-Cohen [14] with the help of formally matched
asymptotic expansions that the surface diffusion flow is the asymptotic limit of the follow-
ing degenerate Cahn-Hilliard equation

Yoe = V-(2Db(c)Vw),
E G%(—“{Ac-k%qf(c)).

Here b(c) = max(0,1 — ¢?) and  is given by the double obstacle form (3) (where we take
RO. =1 for simplicity). For the mathematical analysis of the degenerate Cahn-Hilliard
equation we refer to [29] and for existence and stability results for the surface diffusion
flow we refer to [30] and [34]. We only remark that the degeneracy of b for ¢ ¢ (—1,1)
leads to severe difficulties in the analysis of this fourth order degenerate parabolic equation.

The motion of voids in interconnects in integrated circuits and the evolution of the
surface of a thin film in heteroepitaxial growth is driven by surface diffusion, but now
additional effects have to have accounted for. In the latter case elastic stresses arise due to
the elastic mismatch between the film and the substrate. These lead to an instability of an
initially planar film (see [2], [47] and also [36] for a recent review). For void motion elastic
stresses are important, but also transport phenomena due to a drift resulting from an clectric
field will play a role (electromigration).

Recently phase field models based on the Cahn-Hilliard theory have been proposed to
model these phenomena [62, 7, 26, 3, 4, 5]. Let us briefly discuss how these phenomena
modify the surface diffusion law (31). If we denote by W1 (E) the elastic energy density of
the solid and by ¢ the clectric potential, we obtain

V =V;-DVi(—ox+ W (E(u)) + ap).

The second term on the right hand side leads to a flux of atoms from regions on the surface
with high clastic energy to regions on the surface with less elastic energy (see Figure 7). If
the constant ¢, is negative the third term leads to diffusion in the direction opposite to the
electric field (see Figure 8). The phase field model studied in the papers [3, 4] is now given
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Yore = V-(EDb(c))Vw, (32)
w = oi(—yAc+ %\p(c)) +1d(e)E(u) : E(u) + o (33)
where
d(s):=co+ (1 —co)(1+5)

is an interpolation function with ¢g = ¢q(y) — 0 asy — 0. These equations are coupled to a
quasi-static equilibrium for u, i.e.

V-§5=0,S=Wg(c,E(u)) =d(c)CE(u)

where
W(c, E(u)) = 3d(c)CE(u) : E(u).

The above equations are coupled to boundary conditions which we take to be (although
other boundary conditions are possible)

Ven=0,Vw-n=0,51=8n

where S is a given tensor describing outer applied stresses. For variants of this model (which
have been proposed earlier) we refer to [62, 7, 26].

rs /.I‘T“‘ ™.
[ R
\ void N
\’\\ flux F| high
B ./ elastic
\-\_1_:-;’." energy

ouler stresses

Figure 7: Surface diffusion driven by elastic energy. Atoms diffuse away from regions with
high clastic energy.

There are two a prion estimates for the above system which are crucial. One 1s the
decay of the free energy which reads as follows (for o = ()

d

T [Gzz't {%Wc\z—!— ;],\%’(C)} +W(c,E(u)) — E(u): S| + %lj_'b(C)leF 20,
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Figure 8: Surface diffusion driven by an electric field. Here an example where the diffusion
is against the electric field.

This a priori estimate was the basic ingredient in the analysis for the Cahn-Larché system
with constant mobility (see [37, 38, 39]). In the case that the mobility depends on the
concentration and degenerates this estimate is not enough for a successful mathematical
analysis. Already in the case without elasticity one needs a so called “entropy” estimate
(basically another integral estimate) to obtain enough information to show existence of a
solution. If we try to obtain such an estimate in the case with elasticity, we obtain (for
simplicity we take D, = gando= 3

V2 [G(e)+ 12 [IAcl < [ Vel + & 9 [ (34)
dt g Q Q Q

where G is a function such that
|

G"(s) = o)

The above estimate follows relatively straight forward using the properties of W, y, b and G,

integration by parts and Young’s inequality. The main problem is now to control the ri ght

hand side of (34). The term [ |Ve|2dx is controlled via the energy inequality. The difficult
Q

part is to control the last term which is quartic in E(u),
Let us demonstrate formally how this can be done in two space dimensions. The first
attempt would be to use the Gagliardo-Nirenberg inequality which for d = 2 gives

IVully < (uuuiz.znwfz ; 1) . (35)

Then we can use regularity theory for the displacement u. In fact 1 solves the system

V-(CE()) = %CE(H)V@'(C}
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and hence if a H*?-regularity theory is known for the system V- (CE(u)) = r.h.s. one
obtains from (35) (using again a Gagliardo-Nirenberg inequality) that

2
).

This is not enough to control the right hand side in (34). In fact the growth is just critical.
To obtain sufficient estimates it is necessary to first show that

[Vullts < €01+ lAc

Je > 0 such that Vu € L*™(Q).

This can be done e.g. with methods as in [39]. Then a sharper variant of the Gagliardo-
Nirenberg inequality yields that there exists a 6 > 0 such that

ult < o[2)2-8 _
S{IVISc((S{IAI) +1)

Hence we have a subcritical growth of [ |£(u)|3 on the right hand side in (34) and we can
Q

proceed.

These arguments are purely formal. For a rigorous existence result in two space dimen-
sions which is obtained by showing convergence of a finite element method we
refer to [3].

5.2 Numerical Simulations for Void Migration

Electro- and stressmigration along interfaces plays a crucial role in the failure of metallic
interconnects in microelectronic devices. A theoretical understanding of these phenomena
is therefore of great practical interest. In this subsection we will present some numer-
ical simulations for void migration obtained by solving the model presented in Subsec-
tion 5.1 with the help of a finite element method (for details we refer to [3], [4] and [5]).
All numerical simulations in this section are a result of a collaboration with John Barrett
and Robert Niirnberg (Imperial College, London) and the computations were performed by
Robert Niimberg.

In Figurc 9 a numerical experiment is shown for stressmigration alone, i.e. we solve
(32), (33) with oo = 0. In the experiment shown in Figure 9 we started with two voids,
isotropic elasticity and tensile forces to the right and to the left (for more details on the
setup of the numerical experiments we refer to [3], [5]). At the bottom to the right the elastic
energy is displayed and one clearly sees that material is transported away from regions with
high elastic cnergy. We remind the reader that the material transport though is only along
the interface. The mass diffusion finally leads to a cut in the interconnect (Figure 9).

In Figure 10 we start with one void and have tensile forces at the top and at the bottom.
We illustrate by grey shades the strength of the clastic energy and it is clearly seen in this
figure how mass transport due to a high elastic energy at some parts of the interface leads
to a severe change in shape. We refer to [3], [5] for more drastic examples also showing a
crack-like behaviour,
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Figure 9: (§ = ((', g)) Zero level sets for c(x,7) at times t = 0, 10~5, 2 x 107°, 2.5 %
107, 5% 1072 and elastic energy at time t=10-5.

In Figure 11 we show the combined effect of clectro- and stressmigration. We start
with a circular void on the right and the other shapes are the solution at different times,
The electric field induces a mass transport from the right to the left leading to the migration
of the void to the right. The elastic field leads to a deformation of the void (see [6] for
computations with electro- but no stressmigration).

5.3 Heteroepitaxial Thin Film Growth

Also in heteroepitaxial growth of thin solid films, diffusion of atoms along an interface
(surface diffusion) is driven in such a way that an energy which contains surface energy
as well as clastic energy decreases. Here elastic stresses result from an elastic mismatch
between the substrate and the film (see Figure 12). For a discussion of the sharp interface
model we refer to Gao and Nix [36] and Spencer, Davis and Voorhees [75]. The normal
velocity of the sharp interface is now given by

V=V -DiVy(—ox+3C(E() - E) : (E(u) — E))

where E is the mismatch strain between film and substrate, where we choose the unstressed
substrate lattice as reference configuration. In this context we either specify Dirichlet
boundary conditions for u at the film-substrate interface (rigid substrate) or we need to
solve an elasticity system in the substrate as well.
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Figure 10: Elastic stress field for small elastic constants at times r = 0, 2 (above) and for
larger elastic constants at times ¢ = 0, 0.1 (below).

In the Cahn-Hilliard phase field model we now obtain
e =V (8Dsb(c))V {cﬁ(—w +1y/(0)) + 3d' (c)C(E(u) — E) : (E(@) — %)] .

This equation coupled to an elasticity system has been studied by Barrett, Garcke and
Niirnberg [5]. A similar model has been studied earlier by Eggleston [25] and Eggleston
and Voorhees [26].

In the Figures 13, 14 we show how an initially planar film becomes unstable due to
the presence of elastic forces. There are actually parts of the film where the film height
becomes zero. When this happens the energetics of the film —vapour— substrate triple
point becomes important. In fact in experiments a wetting layer in front of a zero contact
angle forms (see [74]) and the correct modelling of this issue together with simulation in
three space dimension is work in progress.

We remark that there is the hope that the formation of islands (as seen in Figure 14)
can be used to produce quantum-dot-based devices and it is the challenge to control the
formation of islands such that a large number of spatially ordered islands (‘‘quantum dots™)
form. Here theoretical modelling and numerical simulations will play an important role
(see the conclusion section of [36]).
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Figure 11: (oo = 40m, isotropic elasticity, § = (g, ?)) Zero level sets for c(x,¢) at times
t=0,1.2x1073,25x 1073, T = 3.75 x 103 (above) and the clastic energy at time T =
3.75 % 1073,

6 Numerical Approximation

6.1 The Discrete Problem

When designing a numerical method to approximate a partial differential equation it is
always a good idea to come up with a discrete problem which inherits as many proper-
ties as possible from the continuous problem. Since the continuous problem (5)-(7) has a
variational structure, it is natural to use a finite element method. The equation for the con-
centration ¢ is of fourth order. From an implementation point of view, it is desirable to use
finite elements with an ansatz space which contains polynomials with low order. Therefore
splitting methods are very popular to approximate fourth order parabolic equations (see e.g.
[28]). In a splitting method for the Cahn-Hilliard equation finite element spaces of continu-
ous piecewise affine elements are used to approximate the concentration ¢ and the chemical
potential w. We will also use this ansatz space for the displacement u.

We will assume in this section that Q is a polyhedral domain. Then we choose a quasi-
uniform family {77}, of partitionings of Q into disjoint simplices with maximal element

size h:= max{diams}, so that Q = (J,.7+ 5. Associated to 7" is the finite element space of
seTh ’
continuous piecewise affine elements

8" = {p e C'(Q) | gysis linear for all S € T} c 1'(Q).

To formulate a finite element discretization we introduce the lumped mass scalar
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Figure 12: Surface diffusion in heteroepitaxial thin film growth.

product (-,-)" instead of the L? scalar product (-,-) as follows: For vi,v2 € CO(Q) let

(viv2) = [ (niv2)
Q
where " : C%Q) — S" is the interpolation operator, such that
(m"n)(p) = n(p) for all nodes of 7.
Then a semi-implicit scheme for (5)-(7) reads as follows (we set b = 1).
We search for ¢, w” : [0,T] — S" and " : [0, T] — (5")“ such that

@M = —(Vw', Vgh), (36)
(wWo"" = (Ve V! + (W (M), " + el E() 0N, (3T
0 = (E@")—E("),C(p" E’)) (38)

holds for all ¢ € §",£" € ($")? and all 1 € [0, 7.

In order to obtain a fully discrete scheme one needs to introduce a time discretization.
The simplest implicit time discretization is the implicit Euler scheme in which the time
derivative in (36) is discretized in the following way

h
g5
(a,cj’,(p”)/’ S ( - n=1 T(ph )

Here we devided the time intervall [0, 7] into N steps with length 1, and set 1, 1= ¥/, T;.
The discrete solution at time 7, 1s denoted by ( wh 1 ) The resulting numerical scheme

.’H ﬂ’ H

has been analyzed in [42, 44]. In [42] optimal error estimates have been shown in the
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Figure 13: Instability of a nearly flat initial film. Appearance of regions with zero film
height.

Figure 14: Island formation in thin film epitaxial growth,
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case that C does not depend on the concentration (homogeneous elasticity). In the case of
inhomogeneous elasticity a convergence proof has been given in [44].

Remark 6.1 i) The fully discrete scheme has the properties that mass is conserved and
that the total discrete free energy decreases (see [42, 44]). The last property is the discrete
counterpart of inequality (8) and is an important property in the analysis of the scheme (see
[44]).

i) It turns out that the so-called 8-scheme [11, 69] leads to a more efficient but hard to an-
alyze time discretization. All the computations presented in the following are with the help
of the 6-scheme, but we made sure that computations with the implicit Euler scheme lead to
the same results although with more computational effort. The discrete linear systems were
solved with the help of the BICG and GMRES algorithms and for the nonlinear discrete
problem we used Newton’s method.

iii) For the degenerate Cahn-Larché system a more sophisticated discretization has to be
used and we refer to [3, 4, 5] for details.

6.2 Numerical Computations

In this subsection we present numerical simulations for the system (5)-(7) which were car-
ried out with the method described in Subsection 6.1. All numerical simulations were part
of the PhD thesis of Ulrich Weikard [77] (we also refer to [42] and [44]). For other ap-
proaches to solve the system (5)-(7) numerically which use spectral methods, we refer to
Chen and Shen [20], Dreyer and Miiller [24] and Leo, Lowengrub and Jou [56].

6.3 Anisotropic Homogeneous Elasticity

The first experiment (see Figure 15) shows the effect of anisotropic elasticity. The anisotropy
was chosen to have cubic symmetry with a mismatch strain which was proportional to the
identity. One clearly observes that the interfaces align along the coordinate axes.

In Figures 4 and 5 we already showed numerical computations for spinodal decomposi-
tion. The figures show the patterns arising without elasticity (see Figure 4) and with cubic
anisotropy (sce Figure 5). These patterns form at the beginning of the phase separation
process. In both figures also the dominate Fourier modes are given and these are in agree-
ment with the theory presented in Section 2. We remark that with isotropic elasticity one
would obtain the same patterns as in Figure 4. For more details we refer to [40].

6.3.1 Effects of Inhomogeneous Elasticity

If the elastic constants differ (inhomogencous elasticity), new phenomena occur. In Figure
16 we see that particles align and repell each other. The example shown is for a situation
with cubic symmetry and with different ¢lastic constants for the two components.

For the Cahn-Hilliard equation without mechanical effects one observes that only the
phase with a smaller volume fraction can form the particles. If mechanical effects are
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included in an inhomogencous way, this is not always the case, In Figure 17 to the left we
scc a situation in which the phase with a larger volume fraction (the green phase) forms the
particles on the long run although afier spinodal decomposition the other phase formed the
particles. If we interchange the elastic constants between the two components but keep the
volume fraction, we see that the phase with the smaller volume fraction forms the particles.
For more details on the numerical approximation of the Cahn-Larché system we refer to
[42], [44] and to [56].

Figure 15: Patterns arising with homogeneous, cubic anisotropy. In contrast to the Figures
4 and 5 these patterns arise at large times.

Figure 16: Alignment and repulsion of particles for inhomogeneous clasticity with cubic
anisotropy.
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Figure 17: Two simulations that show that in the case of inhomogeneous elasticity also the
phase with the larger volume fraction can form the particles (see the left simulation). In the
simulation to the right we interchanged the elastic constants of the two components.
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