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Abstract. Three geometric interface laws for the evolution of curves are considered. They

include the motion by surface di�usion and the conserved mean curvature ow. All these

laws decrease length and preserve the area of the region enclosed by the curve. We present

local existence results and show that a global solution exists if the initial curve is close to a

circle. Furthermore it is shown that a global solution converges to a circle.

1 Introduction

In this paper we study geometric evolution laws which describe the motion of interfaces. We

assume that the interface at time t is given by a hypersurface �

t

which is the boundary of

a region. All evolution laws we will discuss have the common property that they preserve

the volume of the region enclosed by �

t

and decrease the perimeter. Two laws with this

property are the motion by surface di�usion

V = �D�

S

� (1.1)

and the conserved mean curvature ow

V =M (�� �

�v

) : (1.2)

Here V is the normal velocity of the evolving surface, �

S

is the surface Laplacian, � is the

mean curvature, �

�v

is the average mean curvature on �

t

, D is a di�usion coe�cient and M

is a mobility coe�cient. The motion by surface di�usion was �rst derived by Mullins [26]

to describe surface dynamics for phase interfaces when the evolution is purely governed by

mass di�usion in the interface. A further discussion and a derivation of motion by surface

di�usion in the spirit of Gurtin [21] is given by Davi and Gurtin [13]. The conserved mean
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curvature ow is a modi�cation of the mean curvature equation V = � which guarantees

that the volume of the region enclosed by �

t

is preserved. Gage [17] showed that convex

curves in the plane which evolve according to 1.2 remain convex and converge to a circle as

time tends to in�nity and Huisken [23] generalized this result to higher dimensions.

Recently Cahn and Taylor [7, 8] showed that the motion by surface di�usion and the

conserved mean curvature ow are formally linked by the intermediate laws

J = �Dr

S

w ;

V = �div

S

J ;

V =M(� + w)

(1.3)

Here J is the mass ux, w is a potential, r

S

is the surface gradient and div

S

is the surface

divergence. These three laws are equivalent to the motion

V = �

S

�

1

M

�

S

�

1

D

�

�1

� : (1.4)

One expects for M �! 1 that the solutions of the intermediate motions converge to a

solution of motion by surface di�usion (1.1), whereas the limit D �! 1 should be the

motion by the di�erence of mean curvature and average mean curvature (1.2).

So far we discussed sharp interface models, i.e. two phases are separated by a hyper-

surface. Another possibility of modeling phase transition phenomena are phase �eld models

which are based on a Ginzburg{Landau functional. In phase �eld models a continuous real

valued order parameter u is introduced, which is assumed to attain prescribed values in the

pure phases. These values are the minima of the Ginzburg{Landau functional

W (u) =

Z




jruj

2

+W (u) dx (1.5)

whereW is usually a smooth double well potential, e.g. W (u) = (1�u

2

)

2

and 
 is a bounded

domain in IR

n

. In these models the regions where u is approximately �1 correspond to the

two phases and the region in between these sets is the interfacial region. For a further

discussion on phase �eld models see Langer [25] and Caginalp [5].

All the above sharp interface models are related to phase �eld models. Well known is

the relation between the nonlocal Allen{Cahn equation

"u

t

= "�u�

1

"

�

W

0

(u)�

Z




W

0

(u)=

Z




1

�

(1.6)

and the motion by the di�erence of mean curvature and average mean curvature. Rubinstein

and Sternberg [28] used formal asymptotics to show that in the limit "& 0 solutions of (1.6)

converge to solutions of the conserved mean curvature ow (1.2). For a rigorous result in

radial symmetry see the work of Bronsard and Stoth [4].

Not as much is known about the relation between the ows (1.1) and (1.4) to phase �eld

models. Cahn, Elliott and Novick{Cohen [6] used formal asymptotics to show that solutions

of the Cahn{Hilliard equation with a concentration dependent mobility

u

t

= r � (B(u)rw) ;

w = �"

2

�u+W

0

(u) :

(1.7)
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converge to solutions of motion by surface di�usion. Their result is for a mobility B(u) =

max(1� u

2

; 0), the scaling � = "

2

t, a potential

W (u) =

�

2

((1 + u) ln(1 + u) + (1� u) ln(1� u)) + (1� u

2

)

and in the limit �& 0 (the so called deep quench limit).

This result is in contrast to the case in which B is a positive constant. Formal asymptotic

results by Pego [27] suggest that the solutions of the Cahn{Hilliard equation with constant

mobility converge to solutions of the Mullins{Sekerka problem, i.e. the chemical potential w

ful�lls in the limit

�w = 0 for x 2 
 n �

t

;

w = � for x 2 �

t

;

V = [n � rw]

+

�

for x 2 �

t

and rw � n = 0 on @


where �

t

is the interface and [ : ]

+

�

denotes the jump across �

t

. Recently Alikakos, Bates and

Chen [1] gave a rigorous proof of Pego's result under the assumption that a smooth solution

of the Mullins{Sekerka problem exists. Both the Mullins{Sekerka ow and the motion by

surface di�usion are volume preserving and perimeter decreasing, but a main di�erence is

that the Mullins{Sekerka ow is nonlocal, i.e. the velocity in each point on �

t

depends on

data away from this point.

A crucial assumption in the formal asymptotics of Cahn, Elliott and Novick{Cohen [6]

is the fact that the mobility is zero in the pure phase (i.e. B(u) = 0 if juj = 1). Therefore

di�usion is only allowed in the interfacial region, which guarantees that in the limit " & 0

the di�usion is restricted along the sharp interface. But di�usion along a sharp interface

results in motion by surface di�usion (see [26]). If the mobility is allowed to be zero the

Cahn{Hilliard equation becomes a fourth order degenerate parabolic equation. We refer to

[14] for an existence result in this case.

We expect that the order parameter analogue of the intermediate laws is a viscous Cahn{

Hilliard type equation of the form

u

t

= �r � (B(u)rw) ;

"u

t

=M

�

"�u�

1

"

W

0

(u)� w

�

:

As before the mobility should depend on u and be zero if juj = 1. It seems as if the results

of Cahn, Elliott and Novick{Cohen can be generalized to this case. We point out that so

far there are no rigorous results concerning the convergence of the (viscous) Cahn{Hilliard

equation to the motion by surface di�usion (to the intermediate motion (1.4) respectively).

The motion by mean curvature

V = �

is the asymptotic limit of the Allen{Cahn equation

"u

t

= "�u�

1

"

W

0

(u)

where W is a double well potential or has a double obstacle form. The motion by mean

curvature and its relation to the Allen{Cahn equation has been intensively studied (see
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[2, 3, 9, 12, 15, 16, 18, 20, 22] and the references therein). In the case of motion of curves

it is known that a initial curve will become asymptotically circular and shrinks to a point

in �nite time. In higher dimensions other singularities are possible and in this case classical

methods break down. For example if one starts with a dumbbell in IR

3

a so called pinch{

o� can occur. The motion by mean curvature was studied with several methods (direct

mapping, viscosity solutions, varifolds) and the maximum principle was a basic ingredient

in crucial arguments. In the case of the velocity laws (1.1){(1.4) no maximum principle is

valid. This is the reason why many of the methods used for studying the mean curvature

ow cannot be used for the motions (1.1){( 1.4).

In this paper we study the sharp interface models in the two dimensional case, i.e. the

evolution of curves in the plane. The velocity laws (1.1){(1.4) become

V = �D@

ss

� ;

V = M(� � �

�v

) ;

and V = @

ss

�

1

M

@

ss

�

1

D

Id

�

�1

� :

where @

s

is the derivative with respect to the arc{length. We will prove a local existence

theorem for these geometric motions. Furthermore we show global existence if the initial

curve is close to a circle. In the case that a global solution exists, we also prove that the

evolving curve converges to a circle. These results show that circles are asymptotically stable.

We refer in this context to the work of Coleman, Falk and Moakher [11] who used formal

perturbation analysis and numerical simulations to study the stability of cylinders. Their

results strongly indicate that cylinders are not asymptotically stable.

This paper is organized as follows. In section 2 we introduce a regularized version of (1.2)

and (1.4) in order to get approximate solutions for these motions. We show local existence

for this problem. The same proof also gives local existence of solutions for the motion

by minus the second derivative of the curvature. In section 3 we derive energy identities

for the regularized problem. These energy identities enable us to pass to the limit in the

regularized problem and we obtain the existence of a local solution to the original problems

(see section 4). Parabolic regularity theory is used in section 5 to show that solutions become

instantaneously smooth. In section 6 we prove global existence for the motions (1.1){(1.4)

if the initial curve is close to a circle. Under the assumption that a global solution exists we

show that the evolving curve converges to a circle as time tends to in�nity.

We will give the proof for the intermediate motions (1.4) in detail and because the results

for the motions (1.1) and (1.2) are proved with similar methods, we just state the di�erences.

2 Local existence for the regularized problem

We rewrite the evolution problem for the intermediate motion as follows

V = Dw

ss

; Dw

ss

= M(�+ w) in �; (2.1)

� \ ft = 0g = �

0

where �

t

is the curve at time t, �

0

is a given simple connected closed curve and � :=

[

t�0

�

t

� ftg.
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There are di�erent ways to parametrise evolving curves (see for example Gurtin [21]).

In this section we shall express an evolving curve � as a graph over a �xed reference curve

M

0

. But later it will be also convenient to use a parametrisation with the property that the

tangential component of the velocity vector vanishes (see section 3).

Before we formulate a regularized version of the intermediate motion let us introduce

some notations which we need to parametrise an evolving curve as a graph over a given

reference curve. We choose a simple connected curveM

0

2 C

4

close to �

0

. Let

X

0

: I �! M

0

; � 7�! X

0

(�) (I � IR a compact interval)

be an arc{length parametrisation of M

0

. Then we obtain

�

0

(�) = X

0

�

(�); �

0

�

= �

0

(�)n

0

(�); n

0

�

(�) = ��

0

(�)�

0

(�) (2.2)

where n

0

is the unit normal such that (�

0

;n

0

) is positively orientated and �

0

is the curvature

of M

0

with the sign convention for the curvature is chosen such that the Frenet formulas

(2.2) hold. We de�ne

M

0

�

0

:= fx 2 IR

2

�

�

� dist(x;M

0

) < �

0

g :

Then the mapping

Y : I � (��

0

; �

0

) �!M

0

�

0

; Y (�; h) := X

0

(�) + hn

0

(�) ;

is a di�eomorphism if �

0

is small enough (see [19]). We assume for further use that �

0

k�

0

k

1

<

1

2

. Every function d : I ! (��

0

; �

0

) de�nes a simple connected curve X as a graph overM

0

in the following way

X(�) = X

0

(�) + d(�)n

0

(�) :

For such a curve we obtain

X

�

= (1� d�

0

)�

0

+ d

�

n

0

:

The tangent � and the outward normal n are

� =

1

J

[(1 � d�

0

)�

0

+ d

�

n

0

] ;

n =

1

J

[�d

�

�

0

+ (1� d�

0

)n

0

]

where

J := jX

�

j =

q

d

2

�

+ (1� d�

0

)

2

is the arc{length. The curvature � becomes

� =

1

J

2

X

��

� n =

1

J

3

�

(1� d�

0

)d

��

+ 2�

0

d

2

�

+ d

�

d�

0

�

+ �

0

(1 � d�

0

)

2

�

: (2.3)

An evolving curve we can describe as a function

d : [0; T ]� I �! (��

0

; �

0

)

which is periodic in �. Then we get the outward normal velocity as

V = X

t

� n =

1� d�

0

J

d

t
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where X(t; �) := X

0

(�) + d(t; �)n

0

(�) :

To get approximate solutions we introduce a higher order term �"�

ss

(0 < " � 1) in the

�rst equation of the intermediate motion law (2.1). This leads to

V = w

ss

� "�

ss

; w

ss

� w = � : (2.4)

where we assumed for simplicity D = 1 and M = 1, but all following proofs are valid in the

general case as well. In terms of d the �rst equation in (2.4) now becomes

1 � d�

0

J

d

t

= w

ss

� "�

ss

(2.5)

with � as in (2.3). Since @

s

=

1

J

@

�

we can rewrite equation (2.5) as

d

t

+ "J

�4

d

����

= F [d] := F

1

[d] + "F

2

[d] : (2.6)

Here

F

1

[d] :=

J

1 � d�

0

w

ss

;

where w is the solution of w

ss

�w = � with periodic boundary conditions. The operator F

2

is de�ned by

�

ss

=

1 � d�

0

J

5

d

����

�

1� d�

0

J

F

2

[d] :

For � > 0 we de�ne

M

�

:=

n

d 2 C

1

(I)

�

�

� kdk

C

1

(I)

< � ; d is periodic

o

:

To apply a local existence result by Xinfu Chen [10] for a problem similar to (2.6) we have

to prove the following lemma.

Lemma 2.1: There exists a constant C depending on M

0

and �

0

such that for all d 2

M

�

0

\H

3;3

(I) \H

2;6

(I) the inequalities

kF

1

[d]k

2

L

2

(I)

� k�k

2

L

2

(I)

� C

�

kd

��

k

2

L

2

(I)

+ 1

�

(2.7)

and

kF

2

[d]k

2

L

2

(I)

� C

�

1 + kd

���

k

3

L

3

(I)

+ kd

��

k

6

L

6

(I)

�

(2.8)

hold. Furthermore we get for all " 2 (0; 1]

kF [d]k

2

L

2

(I)

� C

0

�

1

"

+ "

2

�

kd

���

k

3

L

3

(I)

+ kd

��

k

6

L

6

(I)

�

�

(2.9)

with a constant C

0

depending on M

0

and �

0

.

Proof: From (2.3) and d 2 M

�

0

it follows (where we have in mind that �

0

k�

0

k

1

<

1

2

)

k�k

2

L

2

(I)

� C

�

kd

��

k

2

L

2

(I)

+ 1

�
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Furthermore the solution w of the equation w

ss

�w = � with periodic boundary conditions

ful�lls the energy estimate

kw

ss

k

2

L

2

(I)

+ kw

s

k

2

L

2

(I)

� Ck�k

2

L

2

(I)

which proves the �rst assertion. The second inequality follows directly from the de�nition

of F

2

by an application of H�older's inequality. Now we apply Young's inequality to get

kd

��

k

2

L

2

(I)

� C

�

1

"

+ "

2

kd

��

k

6

L

6

(I)

�

which together with (2.7) and (2.8) gives (2.9).

2

Now we state the local existence result for the regularized motion (2.4). We assume that

�

0

is given as �

0

=

n

Y (�; h)

�

�

� h = d

0

(�); � 2 I

o

:

Theorem 2.2: Assume that d

0

2 C

4

(I) \M

�

0

=2

and " 2 (0; 1]: Then

a) there exists a time T > 0 (depending on ") such that the equation (2.6) has a solution

d 2 L

1

(0; T ;H

2

(I)) \ L

2

(0; T ;H

4

(I)) \H

1;2

(0; T ;L

2

(I)) \ C

0

([0; T ];M

�

0

)

with d(0) = d

0

.

b) there exists a �

1

> 0 depending on M

0

(but independent of ") such that a solution of

(2.6) with regularity as in a) can be extended as long as

sup

0�t�T

kd(t)� d

0

k

C

1

(I)

< �

1

:

The proof of this theorem follows the same line as the proof of Theorem 2.5 in [10]. One

linearizes the equation, shows apriori estimates and uses Schauder's �xed{point theorem.

The basic estimates are proved in Lemma 2.1. For details we refer to the paper of Xinfu

Chen [10].

Remark 2.3: 1) Under the same assumptions on d

0

we can prove existence for the motion

V = � � �

�v

� "�

ss

with �

�v

:=

R

�

t

�=

R

�

t

1. In this case F

1

is de�ned as

F

1

[d] := �� �

�v

:

We get

kF

1

[d]k

2

L

2

(I)

� C

�

1 + kd

��

k

2

L

2

(I)

�

:

and the proof remains the same.

2) If we choose F

1

[d] � 0 and " = 1 the same method gives a local existence result for the

law

V = ��

ss

:
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Furthermore one can allow an anisotropic law of the form

V = �@

ss

�



where

�



:= ((�) + 

00

(�))� : (2.10)

Here  is a smooth function de�ned for the normal angle � which describes anisotropy in

the interfacial energy. Under the assumption that (�) + 

00

(�) > 0, we can prove the same

result as above for the anisotropic law (2.10). Therefore one has to observe that an estimate

analogous to (2.7) holds for the anisotropic motion. Then one gets local existence as outlined

in the proof of Theorem 2.2. For further details on anisotropic laws see Gurtin [21] and Cahn

and Taylor [7, 8].

2

3 Energy Identities for the Regularized Problem

To prove local existence for the limit problem (i.e. " = 0 in (2.4)), we show in a �rst step

that the regularized problems have a common existence interval. On this interval we show

energy estimates uniformly in " which enable us to pass to the limit. The key for both of

these arguments are the energy identities derived in this section.

Let � be the evolving curve which solves (2.4) with initial condition d

0

. The existence of

such a solution is guaranteed by Theorem 2.2. In this section we assume that d

0

is smooth,

which gives via a bootstrap argument that � is smooth as well. In the following we choose

a parametrisation

X

�

: [0; 1]� [0; T ] �! IR

2

;

(p; t) 7�! X

�

(p; t)

of � such that

X

�

t

(p; t) �X

�

p

(p; t) = 0

for all (p; t) 2 [0; 1] � [0; T ]. If we express the curvature �, the arc{length J

�

:= jX

�

p

j and

the normal velocity V in the variable (p; t) we get

J

�

t

= �J

�

�V ; (3.1)

�

t

= V

ss

+ �

2

V ; (3.2)

d

dt

Z

�

t

f =

Z

�

t

f

t

�

Z

�

t

f�V ; (3.3)

and f

ts

= f

st

� f

s

�V (3.4)

where we have used

f

s

:=

1

J

�

f

p

and

Z

�

t

f :=

Z

1

0

f(p; t)J

�

(p; t)dp

for a real valued function f de�ned on �. Using the parametrisation X

�

we can interpret f

as a function of p and t. The identities (3.1){(3.4) are proved in Gurtin [21].
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The following theorem states energy identities for the regularized problem. By L(t) we

mean the length of the evolving curve at time t.

Lemma 3.1: A smooth solution of

V = w

ss

� "�

ss

; (3.5)

w

ss

� w = � (3.6)

ful�lls the energy identities

a)

d

dt

L(t) = �

Z

�

t

�(w

ss

� "�

ss

) = �

Z

�

t

(w

2

ss

+ w

2

s

+ "�

2

s

) ;

b)

d

dt

Z

�

t

�

2

+ 2"

Z

�

t

�

2

ss

+ 2

Z

�

t

�

s

w

sss

=

Z

�

t

�

3

V ;

c)

d

dt

Z

�

t

(w

2

s

+ w

2

ss

+ "�

2

s

) + 2

Z

�

t

V

2

s

= 2

Z

�

t

�

2

V

2

+

Z

�

t

�V ("�

2

s

+ w

2

s

� w

2

ss

) :

Proof: If we choose f � 1 in (3.3) and use identities (3.5) and (3.6) we get

d

dt

L(t) = �

Z

�

t

�V = �

Z

�

t

�(w

ss

� "�

ss

) = �

Z

�

t

(w

2

ss

+ w

2

s

+ "�

2

s

):

In order to prove assertion b) we di�erentiate

R

�

t

�

2

with respect to t to get

d

dt

Z

�

t

�

2

= 2

Z

�

t

��

t

�

Z

�

t

�

3

V = 2

Z

�

t

�(V

ss

+ �

2

V )�

Z

�

t

�

3

V = 2

Z

�

t

�V

ss

+

Z

�

t

�

3

V :

The identity (3.5) and integration by parts gives

Z

�

t

�V

ss

=

Z

�

t

�(�"�

ss

+ w

ss

)

ss

= �

Z

�

t

"�

2

ss

�

Z

�

t

�

s

w

sss

:

To prove c) we want to multiply V = w

ss

� "�

ss

by �

t

and integrate over �

t

. The terms we

get are

Z

�

t

V �

t

=

Z

�

t

V (V

ss

+ �

2

V ) = �

Z

�

t

V

2

s

+

Z

�

t

�

2

V

2

;

Z

�

t

��

ss

�

t

=

Z

�

t

�

s

�

ts

=

Z

�

t

�

s

(�

st

� �V �

s

) =

1

2

d

dt

Z

�

t

�

2

s

�

1

2

Z

�

t

�V �

2

s

;

Z

�

t

w

ss

�

t

=

Z

�

t

w

ss

(w

ss

� w)

t

=

Z

�

t

1

2

d

dt

w

2

ss

�

Z

�

t

w

ss

w

t

=

=

Z

�

t

1

2

d

dt

w

2

ss

+

Z

�

t

w

s

w

ts

=

Z

�

t

1

2

d

dt

w

2

ss

+

Z

�

t

1

2

d

dt

w

2

s

�

Z

�

t

�V w

2

s

=

=

1

2

d

dt

Z

�

t

�

w

2

ss

+ w

2

s

�

+

1

2

Z

�

t

�V (w

2

ss

+ w

2

s

)�

Z

�

t

�V w

2

s

:

9



Using the above identities we derive

d

dt

Z

�

t

�

w

2

ss

+ w

2

s

+ "�

2

s

�

+ 2

Z

�

t

V

2

s

= 2

Z

�

t

�

2

V

2

+

Z

�

t

�V ("�

2

s

+ w

2

s

� w

2

ss

) :

This completes the proof of Lemma 3.1.

2

Remark 3.2: For the motion V = �� �

�v

� "�

ss

we get with a similar calculation

d

dt

L(t) +

Z

�

t

(�� �

�v

)

2

+ "

Z

�

t

�

2

s

= 0 ;

d

dt

Z

�

t

�

2

+ 2"

Z

�

t

�

2

ss

+ 2

Z

�

t

�

2

s

=

Z

�

t

�

3

V

and

d

dt

Z

�

t

�

(�� �

�v

)

2

+ "�

2

s

�

+ 2

Z

�

t

V

2

s

= �

Z

�

t

(�� �

�v

)

2

�V +

Z

�

t

"�V �

2

s

+ 2

Z

�

t

�

2

V

2

:

2

4 Local existence for the limit problem

In this section we are going to prove the following theorem which states a local existence

result for the intermediate motions.

Theorem 4.1: Assume d

0

2 M

�

1

=2

and

R

�

0

�

2

0

is bounded. Then there exists a time T > 0

such that the evolution problem

V = w

ss

w

ss

�w = �

� \ ft = 0g = �

0

9

>

=

>

;

(4.1)

has a solution d 2 C([0; T ];M

�

1

) with d

t

2 L

2

(I � (0; T )) and d

��

2 L

1

(0; T ;L

2

(I)).

We assumed as before that �

0

is de�ned as a graph overM

0

with the distance function d

0

.

We want to approximate solutions of (4:1) by solutions of the motion which is regularized by

�"�

ss

. Therefore we approximate the distance function d

0

with C

1

functions d

"

0

2 M

�

1

=2

such that

d

"

0

�! d

0

in H

2;2

(I)

and "

Z

�

0

(�

"

0

)

2

s

� 1 (4.2)

This is possible since the facts that

R

�

0

�

2

0

is bounded and d

0

2 M

�

0

imply d

0

2 H

2;2

(I).

The inequality (4.2) is just a matter of scaling. Now we can apply Theorem 2.2 to get the

existence of a solution �

"

to the evolution problem

V

"

= w

"

ss

� "�

"

ss

w

"

ss

� w

"

= �

"

�

"

\ ft = 0g = �

"

0

9

>

=

>

;

(4.3)

10



where �

"

0

is de�ned through d

"

0

.

Let [0; T

"

) be the maximal existence interval of a solution of (4:3). In the next step we

show that there exists a time T

�

> 0 and an "

0

> 0 such that T

�

� T

"

for all " 2 (0; "

0

].

This is done by deriving estimates for kd� d

0

k

C

1
and using assertion b) of Theorem 2.2.

Furthermore we prove on [0; T

�

] energy estimates uniformly in " which enable us to use a

compactness argument to show that a subsequence of solutions of the regularized problems

converge to a solution of the limit motion (4.1).

Let �

"

be a solution of (4.3). Then we de�ne the quantities

A

"

(t) = L

"

(t) +

Z

�

"

t

(�

"

)

2

+

Z

�

"

t

�

"

w

"

ss

+ "

Z

�

"

t

(�

"

s

)

2

;

B

"

(t) =

Z

�

"

t

�

�

"

w

"

ss

+ "(�

"

s

)

2

+ 2"(�

"

ss

)

2

+ 2�

"

s

w

"

sss

+ 2(V

"

s

)

2

�

where L

"

(t) is the length of �

"

t

. From Lemma 3.1 we get

d

dt

A

"

(t) +B

"

(t) =

Z

�

"

t

(�

"

)

3

V

"

+ 2

Z

�

"

t

(�

"

V

"

)

2

+

Z

�

"

t

�

"

V

"

�

"(�

"

s

)

2

+ (w

"

s

)

2

� (w

"

ss

)

2

�

: (4.4)

In the following two Lemmas we are going to derive estimates for A

"

and B

"

.

Lemma 4.2: There exists a positive constant C

0

such that for all � > 0

d

dt

A

"

(t) +B

"

(t) � C

0

(

p

"+ �)A

"

B

"

+ C

�

A

2

"

holds with a positive constant C

�

depending on �.

Proof: We have to estimate the right hand side of (4.4) in terms of A

"

and B

"

. First of all

let us derive an estimate for kV

"

k

L

1

(�

"

t

)

. Because

R

�

"

t

V

"

= 0 we get

kV

"

k

2

L

1

(�

"

t

)

� CkV

"

k

L

2

(�

"

t

)

kV

"

s

k

L

2

(�

"

t

)

� CkV

"

k

L

2

(�

"

t

)

B

1

2

"

:

The evolution equation (4.3) yields

kV

"

k

L

2

(�

"

t

)

� "k�

"

ss

k

L

2

(�

"

t

)

+ kw

"

ss

k

L

2

(�

"

t

)

� C (")

1

2

B

1

2

"

+A

1

2

"

:

From these two estimates we derive

kV

"

k

L

1

(�

"

t

)

� C

�

"

1

4

B

1

2

"

+A

1

4

"

B

1

4

"

�

:

Now we can estimate the �rst term on the right hand side of (4.4)

j

Z

�

"

t

(�

"

)

3

V

"

j � k�

"

k

2

L

2

(�

t

)

k�

"

k

L

1

(�

"

t

)

kV

"

k

L

1

(�

"

t

)

� CA

"

�

k�

"

k

L

2

(�

"

t

)

+ k�

"

s

k

L

2

(�

"

t

)

�

�

"

1

4

B

1

2

"

+A

1

4

"

B

1

4

"

�

� CA

"

(A

1

2

"

+B

1

2

"

)("

1

4

B

1

2

"

+A

1

4

"

B

1

4

"

)

� C

�

("

1

4

+ �)A

"

B

"

+ C

�

A

2

"

�

11



where we used Young's inequality to get the last estimate. In a next step we estimate

j

Z

�

"

t

(�

"

V

"

)

2

j � kV

"

k

2

L

1

(�

"

t

)

k�

"

k

2

L

2

(�

"

t

)

� C

�

"

1

2

B

"

+A

1

2

"

B

1

2

"

�

A

"

� C

�

("

1

2

+ �)A

"

B

"

+ C

�

A

2

"

�

:

One can estimate the remaining terms in a similar manner, which completes the proof of the

lemma.

2

Now we state a lemma which gives uniform estimates for A

"

and B

"

on a small interval.

Lemma 4.3: If we choose "; � such that

C

0

(

p

"+ �) �

1

2(A

"

(0) + 1)

then for all t with

0 � t � min

�

T

"

; [C

�

A

"

(0)(A

"

(0) + 1)]

�1

�

the inequalities

A

"

(t) � A

"

(0) + 1

and

Z

t

0

B

"

(t) � 2C

�

t(A

"

(0) + 1)

2

hold.

Proof: We omit the index " in this proof. From Lemma 4.2 we know

d

dt

A(t) +B(t) � C

0

(

p

"+ �)AB + C

�

A

2

:

Hence

d

dt

A(t) +

 

1�

A(t)

2(A(0) + 1)

!

B(t) � C

�

A(t)

2

:

If we de�ne

~

T := supft 2 [0; T

"

) j A(� ) � A(0) + 1 for all � 2 [0; t]g

we get

A(t)

2(A(0) + 1)

�

1

2

for all t 2 [0;

~

T ] :

This implies

d

dt

A(t) � C

�

A

2

for all t 2 [0;

~

T ] :

From this di�erential inequality we can conclude that

A(t) �

A(0)

1� C

�

A(0)t

for all t 2 [0;

~

T ] :

12



Now we get

A(t) � A(0) + 1

as long as

t < min

�

T

"

; [C

�

A(0)(A(0) + 1)]

�1

�

:

The second inequality follows because the inequality

Z

t

0

B(t) � 2C

�

Z

t

0

A(t)

2

holds as long as A(t) � A(0) + 1.

2

To establish a lower bound on the T

"

we want to apply the assertion b) of Theorem 2.2,

i.e. we have to show

kd

"

(t)� d

0

k

C

1

(I)

� �

1

on a time interval [0; T

�

]. To do so we need the following lemma proved by Chen [10]. We

use the notation I

T

:= I � (0; T ).

Lemma 4.4: Assume that f 2 L

1

(0; T ;H

2

(I))\H

1

(0; T ;L

2

(I)) and f(t) is periodic for

all t. Then

a) for all 0 � � < t � T , f satis�es

kf(t)� f(� )k

C

1

(I)

� (t� � )

1=8

kf

t

k

1=4

L

2

(I

T

)

�

T

1=4

kf

t

k

1=2

L

2

(I

T

)

+ 2k(f(t) � f(� ))

��

k

1=2

L

2

(I)

�

3=2

;

b) there exists a constant C depending only on T such that

kfk

C

1;

3

8

(I

T

)

+ kf

�

k

C

1

2

;

1

8

(I

T

)

� C

 

kf(0)k

L

2

(I)

+ sup

0�t�T

kf

��

(t)k

L

2

(I)

+ kf

t

k

L

2

(I

T

)

!

:

The next lemma states that a common existence interval for the regularized motions

exists.

Lemma 4.5: There exists a T

�

> 0 and a "

0

> 0 (depending on M

0

and A(0)) such that

the evolution problem (4.3) has a solution in [0; T

�

] for all " 2 (0; "

0

].

Proof: Lemma 4.3 gives the existence of an "

0

> 0 and a � > 0 such that for all " 2 (0; "

0

]

and t with

0 � t < min

�

T

"

; [C

�

A

"

(0)(A

"

(0) + 1)]

�1

�

=: T

�

"

the inequalities

A

"

(t) � A

"

(0) + 1

and

Z

t

0

B

"

(t) � 2C

�

t(A

"

(0) + 1)

2

13



hold. The estimates on A

"

and B

"

together with

R

�

"

t

V

"

= 0 give

Z

T

�

"

0

kV

"

k

2

L

2

(�

t

)

+ sup

0�t�T

�

"

k�

"

k

2

L

2

(�

t

)

� C :

From

V

"

=

1� d

"

�

0

J

"

d

"

t

and d

"

2 M

�

0

it follows that d

"

t

is uniformly bounded in L

2

(I

T

�

"

) (for " 2 (0; "

0

]). Similarly

we derive from the estimate on �

"

that

sup

0�t<T

�

"

kd

"

xx

(t)k

L

2

(I)

� C :

Now Lemma 4.4 yields

kd

"

(t)� d

0

k

C

1

(I)

� t

1=8

C :

Since the right hand side does not depend on " we can apply assertion b) of Theorem 2.2.

to conclude the existence of a T

�

> 0 such that a solution of (4.3) exists on [0; T

�

] for all

" 2 (0; "

0

), which �nishes the proof.

2

Now we are in a position to prove Theorem 4.1. It remains to pass to the limit in the

regularized problem. To do so we want to exploit the energy estimates established in Lemmas

4.2 and 4.3.

For all " 2 (0; "

0

] we have

sup

0�t�T

�

 

L

"

(t) +

Z

�

"

t

(�

"

)

2

+

Z

�

"

t

�

"

w

"

ss

!

+

Z

T

�

0

Z

�

"

t

�

�

"

s

w

"

sss

+ "(�

"

ss

)

2

+ (V

"

s

)

2

�

� C :

Since

R

�

"

t

V

"

= 0 and d

"

2 C([0; T

�

];M

�

1

) the identity

V

"

=

1� d

"

�

0

J

"

d

"

t

implies that d

"

t

is uniformly bounded in L

2

(I

T

�

). Similarly we can use the estimate on �

"

to

conclude that d

"

��

is uniformly bounded in L

1

(0; T

�

;L

2

(I)). This implies the existence of a

subsequence (which we still denote by d

"

) such that

d

"

�! d weak{� in L

1

(0; T

�

;H

2

(I))

and d

"

t

�! d

t

weakly in L

2

(I

T

�

) :

An application of Lemma 4.3 yields

kd

"

k

C

1;

3

8

(I

T

�)

+ kd

"

�

k

C

1

2

;

1

8

(I

T

� )

� C

and therefore we get for a subsequence

d

"

�! d in C

1��;

3

8

��

(I

T

�

)

and d

"

�

�! d

�

in C

1

2

��;

1

8

��

(I

T

�

)
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for all � 2 (0;

1

8

). This implies J

"

�! J uniformly.

It remains to show convergence in w

"

. The estimate on

R

�

"

t

w

"

ss

�

"

implies that w

"

ss

and

w

"

s

are uniformly bounded in L

1

(0; T

�

;L

2

(I)). The identity w

"

= �

"

� w

"

ss

yields that the

same is true for w

"

.

For a subsequence we get

w

"

�! w weak-� in L

1

(0; T

�

;L

2

(I)) ;

w

"

s

�! w

1

weak-� in L

1

(0; T

�

;L

2

(I)) ;

w

"

ss

�! w

2

weak-� in L

1

(0; T

�

;L

2

(I)) :

Since J

"

�! J uniformly we can conclude w

1

= w

s

and w

2

= w

ss

. Finally we want to pass

to the limit in

V

"

=

1� d

"

�

0

J

"

d

"

t

= w

"

ss

� "�

"

ss

and w

"

ss

� w

"

= �

"

(4.5)

The estimate

Z

T

�

0

Z

�

"

t

"(�

"

ss

)

2

� C

gives that

"�

"

ss

�! 0 strongly in L

2

(I

T

�

) :

Besides this we use the convergence properties we have proved for d

"

; J

"

and w

"

to conclude

V = w

ss

a.e. in (0; T

�

) � I :

Now we remember that we can express the curvature �

"

in terms of d

"

and J

"

as follows

�

"

=

1

(J

"

)

3

�

(1 � d

"

�

0

)d

"

��

+ 2�

0

(d

"

�

)

2

+ d

"

�

d

"

�

0

�

+ �

0

(1� d

"

�

0

)

2

�

:

The convergence properties of d

"

and J

"

imply

�

"

�! � weakly in L

2

(I

T

�

) :

Therefore we can pass to the limit in (4.5) to get

w

ss

� w = � a.e. in (0; T

�

)� I :

This completes the proof of Theorem 4.1.

2

Remark 4.6: The uniform estimate for

R

T

�

0

R

�

"

t

�

"

s

w

"

sss

imply that

R

T

�

0

R

�

"

t

(�

"

s

)

2

: is uni-

formly bounded. Therefore we get for a subsequence �

"

s

�! �

s

weakly in L

2

(I

T

�

) and hence

R

T

�

0

R

�

t

(�

s

)

2

is bounded. Similarly we can conclude that

R

T

�

0

R

�

t

(V

s

)

2

is bounded.

2
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Remark 4.7: Under the same assumptions as in Theorem 4.1 we can establish an existence

result for the conserved curvature ow

V = �� �

�v

:

We use the regularization V = � � �

�v

� "�

ss

to get approximate solutions. Then we can

exploit the identities stated in Remark 3.1 to establish estimates similar to Lemmas 4.2 and

4.3. These estimates can be used to conclude that the regularized problems have a common

existence interval. Passing to the limit in the regularized equation is then similar as in the

proof of Theorem 4.1.

2

5 Regularity Results

From now on we assumeM

0

2 C

1

. This is not a very restrictive assumption. For example

for every C

2

{initial curve �

0

we can �nd a C

1

{curveM

0

in a neighborhood of �

0

such that

�

0

can be parametrised as a graph overM

0

.

In the following we show that curves evolving to the intermediate law become instanta-

neously smooth.

Theorem 5.1: Assume d 2 L

1

(0; T ;H

2

(I)) \ H

1

(0; T ;L

2

(I)) \ C([0; T ];M

�

0

) de�nes a

solution � = fX(t; �) jX(t; �) := X

0

(�)+ d(t; �)n

0

(�)g of the motion V = w

ss

; w

ss

�w = �.

Then

d 2 C

1

([T

1

; T ]� I)

for all 0 < T

1

< T .

Proof: We write the motion as follows

V = �+ w and w

ss

�w = � :

In terms of d the �rst equation becomes

d

t

=

1

J

2

d

��

+

1

J

2

(1 � d�

0

)

h

2�

0

d

2

�

+ d

�

d�

0

�

+ �

0

(1� d�

0

)

2

i

+

J

1� d�

0

w : (5.1)

Our goal is to apply parabolic regularity theory. The function v = d

�

is a generalized solution

of

v

t

=

�

1

J

2

v

�

�

�

+ (a

1

+ a

2

w)v

�

+ a

3

w + a

4

w

�

+ a

5

where a

1

; ::; a

5

are appropriate functions which depend smoothly on (�; d; d

�

). Since d; d

�

are H�older continuous and w;w

�

2 L

1

parabolic regularity theory (see Ladyzhenskaya et al.

[24], Chapter III, x12) gives

v

�

2 C

�;

�

2

([T

1

; T ]� I)

for an � > 0 appropriate and all T

1

2 (0; T ). This implies that � is H�older continuous on

[T

1

; T ]� I. Using w

ss

�w = � we can conclude that w

��

is H�older continuous. A bootstrap

argument now gives the claimed assertion.
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Figure 1:

2

Remark 5.2: For the motion V = � � �

�v

we can establish the same regularity result,

i.e. d 2 C

1

([T

1

; T ]� I) for all T

1

> 0. The proof is similar to the one for the intermediate

motion. We just have to use the facts that � 2 L

1

(0; T ;L

2

(I)) implies �

�v

2 L

1

(0; T ) and

that �

�v

does not depend on the space variable.

2

6 Global existence for perturbations of a circle

All three motions (1.1){(1.3) have the common property that circles are the only simple

connected curves which are stationary. Furthermore all motions decrease the length of �

t

and preserve the area of the region enclosed by �

t

. Therefore one would expect that a curve

which evolves to one of the these motions will converge to a circle as time tends to in�nity.

This is in fact true for the motion V = �� �

�v

if the initial curve is convex (see Gage [17]).

But an example by Gage [17] indicates that, in general, simple curves which evolve by the

law V = �� �

�v

may not remain simple.

There is also some evidence that the same is true for the two other laws. Let us consider

the ow V = ��

ss

with an initial curve where points come close to each other as in Figure

1. Such an initial curve can be chosen such that the velocity vector near the points which

lie close to each other is pointing inwards. Since �

ss

produces a fourth order term, we can

choose initial curves which yield to a normal velocity which is initially arbitrary large, with

just a minor change in the local shape of the curve. Furthermore we can make the distance

between such points arbitrarily small. Although we cannot give a rigorous counter{example

the above example suggests that in general self intersections can occur.

In this section we prove that initial curves which are close to a circle have a global

solution. This means especially that no self intersections occur. In the following section we

shall prove that global solutions in fact converge to a circle.

Let us state the global existence result for the intermediate motion. We assume that the

initial curve is given as a graph over a circle and is close to this circle.

Theorem 6.1: For every radius R

0

> 0 there exists a �(R

0

) > 0 such that for all initial

curves �

0

which satisfy

a) �

0

is given as �

0

= fd

0

(�)(cos�; sin�)j� 2 [0; 2�) and d

0

is periodic g,
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b)

R

�

0

�

2

0

is bounded,

c) kd

0

�R

0

k

C

1

([0;2�))

� �(R

0

) and

d)

R

�

0

�

0

(w

0

)

ss

� �(R

0

) where w

0

is the periodic solution of (w

0

)

ss

� w

0

= �

0

a global solution of the evolution problem

V = w

ss

; w

ss

� w = � ;

� \ ft = 0g = �

0

exists.

To prove this result we want to apply part b) of Theorem 2.2. Therefore we show that the

evolving curve remains a graph over a circle and that kd(t; :)�R

0

k

C

1

([0;2�))

ful�lls the estimate

in part b) of Theorem 2.1. Essential for the proof is a geometric lemma proved by Xinfu

Chen [10]. It states that one can parametrise a curve  as a graph over a circle provided

R



j�� �

�v

j is small enough. Furthermore this lemma estimates the distance between  and

a circle in terms of

R



j�� �

�v

j.

Lemma 6.2: Assume  is a simple connected curve with length L and that the curvature

of  lies in L

2

() and satis�es

Z



j�� �

�v

j �

1

5

:

Then there exists a point (x

0

; y

0

) 2 IR

2

and a periodic function R 2 C

1;

1

2

([0; 2�]) such that

 = f(x

0

; y

0

) +R(�)(cos�; sin�) j � 2 [0; 2�)g ;

in addition, the function R satis�es

kR(:)�

�

Rk

C

0
�

8

5

�

R

Z



j�� �

�v

j and kR

�

k

C

0
�

15

8

�

R

2

Z



j�� �

�v

j

where

�

R := j�

�v

j

�1

=

L

2�

.

To apply this lemma we need to establish an estimate for

R

�

t

j���

�v

j. The following lemma

shows that we can use estimates for

R

�

t

�w

ss

to do so.

Lemma 6.3: Let  be a simple connected C

1

{curve. Then the inequality

Z



(f � f

�v

)

2

�

 

1 +

�

L

2�

�

2

!

Z



fg

ss

(6.1)

holds for all f 2 L

2

(). Here g 2 H

2;2

() is the solution of g

ss

� g = f and L is the length

of .

Proof: We write f in a Fourier series

f(s) = a

0

+

1

X

n=1

�

a

n

cos

�

n

2�

L

s

�

+ b

n

sin

�

n

2�

L

s

��
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where s is the arc{length parameter. Solving g

ss

� g = f with periodic boundary conditions

we get

g(s) = �a

0

�

1

X

n=1

 

�

n

2�

L

�

2

+ 1

!

�1
�

a

n

cos

�

n

2�

L

s

�

+ b

n

sin

�

n

2�

L

s

��

and

g

ss

(s) =

1

X

n=1

�

n

2�

L

�

2

 

�

n

2�

L

�

2

+ 1

!

�1
�

a

n

cos

�

n

2�

L

s

�

+ b

n

sin

�

n

2�

L

s

��

:

Now we calculate

kf � f

�v

k

2

L

2

()

=

1

X

n=1

�

a

2

n

+ b

2

n

�

(6.2)

and

Z



fg

ss

=

1

X

n=1

�

n

2�

L

�

2

 

�

n

2�

L

�

2

+ 1

!

�1

�

a

2

n

+ b

2

n

�

: (6.3)

Comparing the sums in (6.2) and (6.3) gives (6:1).

2

Proof of Theorem 6.1: To make use of Lemmas 5.2 and 5.3 we have to establish an

estimate on

R

�

t

�w

ss

. We shall do this by using the identities

L(t)� L(0) +

Z

t

0

Z

�

�

�w

ss

d� = 0 (6.4)

and

Z

�

t

�w

ss

�

Z

�

0

�(0)w

ss

(0) + 2

Z

t

0

Z

�

�

V

2

s

d� =

Z

t

0

Z

�

�

�V (2�V + w

2

s

� w

2

ss

)d� (6.5)

which hold for solutions of V = w

ss

; w

ss

� w = � and can be proved in the same way as

Lemma 3.1.

Our next goal is to estimate the right hand side in (6.5). We have

Z

�

�

�

2

V

2

=

Z

�

�

(� � �

�v

)

2

V

2

+ 2

Z

�

�

(�� �

�v

)�

�v

V

2

+ �

2

�v

Z

�

�

V

2

:

The �rst term on the right hand side can be estimated as follows

Z

�

�

(�� �

�v

)

2

V

2

� k�� �

�v

k

2

L

2

(�

�

)

kV k

2

L

1

(�

�

)

� Ck�� �

�v

k

2

L

2

(�

�

)

kV

s

k

2

L

2

(�

�

)

� C

Z

�

�

�w

ss

kV

s

k

2

L

2

(�

�

)

Here we used the fact that (4�A(0))

1

2

� L(t) � L(0) where A(0) is the area of the region

enclosed by �

0

.

Furthermore we can estimate

j

Z

�

�

(�� �

�v

)�

�v

V

2

j � j�

�v

j k�� �

�v

k

L

2

(�

�

)

kV k

L

2

(�

�

)

kV k

L

1

(�

�

)

� C

�

Z

�

�

�w

ss

�

1

2

kV

s

k

2

L

2

(�

�

)
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For the integral

R

�

�

�V w

2

ss

we get

j

Z

�

�

�V w

2

ss

j � j

Z

�

�

(�� �

�v

)V w

2

ss

j +j�

�v

j

Z

�

�

jV w

2

ss

j

� k�� �

�v

k

L

2

(�

�

)

kV k

L

1

(�

�

)

kw

ss

k

L

1

(�

�

)

kw

ss

k

L

2

(�

�

)

+ Ckw

ss

k

2

L

2

(�

�

)

kV k

L

1

(�

�

)

� C

�

Z

�

�

�w

ss

�

kV

s

k

2

L

2

(�

�

)

+ C

�

Z

�

�

�w

ss

�

1

2

kV

s

k

2

L

2

(�

�

)

� C

 

�

Z

�

�

�w

ss

�

1

2

+

Z

�

�

�w

ss

!

kV

s

k

2

L

2

(�

�

)

:

The same estimate can be established for j

R

�

�

�V w

2

s

j : These estimates together with (6.5)

give

Z

�

t

�w

ss

+

Z

t

0

 

2 �C

0

 

�

Z

�

�

�w

ss

�

1

2

+

Z

�

�

�w

ss

!!

kV

s

k

2

L

2

(�

�

)

d�

�

Z

�

0

�(0)w

ss

(0) + 2

Z

t

0

�

2

�v

(� )

Z

�

�

V

2

d� (6.6)

�

Z

�

0

�(0)w

ss

(0) + C

Z

t

0

Z

�

�

w

2

ss

d�

�

Z

�

0

�(0)w

ss

(0) + C

1

(L(0)� L(t))

where we used (6.4) to get the last inequality. Now we assume that the initial data ful�ll

C

0

�

�

1

2

+ �

�

� 1

where

� :=

Z

�

0

�(0)w

ss

(0) + C

1

(L(0) � L

1

) :

and L

1

is the length of a sphere which encloses a circle with area A(0).

(�) We claim:

R

�

t

�w

ss

� � as long as the solution exists.

1) If L(0) = L(1) := lim

t!1

L(t), then the initial curve is a circle and the motion is

stationary.

2) If L(0) > L

1

we get

R

�

0

�(0)w

ss

(0) < �. Assume now there exists a time t such that

R

�

t

�w

ss

= �. Let t

�

the �rst time at which this happens. From inequality (6.6) we conclude

Z

�

t

�

�w

ss

+

Z

t

�

0

kV

s

k

2

L

2

� � :

This contradicts V

s

6� 0 and therefore we proved (�).

Now we use the facts that

Z

�

t

j�� �

�v

j � L(t)

1

2

k�� �

�v

k

L

2

(�

t

)

� L(t)

1

2

0

@

1 +

 

L(t)

2�

!

2

1

A

1

2 �

Z

�

t

�w

ss

�

1

2
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and that we can make

R

�

t

�w

ss

as small as we want if the initial data are chosen such that

� is small enough to ful�ll the conditions of Lemma 6.2. Therefore we get the following

representation for �

t

�

t

= f(x

0

(t); y

0

(t)) +R(�; t)(cos �; sin �) j � 2 [0; 2�) and R(:; t) is periodicg

with a function R such that

kR(:; t)�

�

R(t)k

L

1

�

8

5

�

R(t)

Z

�

t

j�� �

�v

j

and

kR

�

(:; t)k

L

1

�

15

8

�

R(t)

2

Z

�

t

j�� �

�v

j :

If we now choose � small enough we can ful�ll the conditions of Theorem 2.1 part b) to

conclude that a global solution exists.

2

The following theorem states that a global solution converges to a circle.

Theorem 6.4: Assume a global simply connected solution � to the motion

V = w

ss

; w

ss

� w = � ;

� \ ft = 0g = �

0

exists. Then there exists a time T

0

such that �

t

is given by a periodic function R(:; t) :

[0; 2�) �! IR

+

in the following way

�

t

= f(x

0

(t); y

0

(t)) +R(�; t)(cos �; sin �) j � 2 [0; 2�)g

for all t > T

0

. Moreover

1.) L(t)& L

1

and 2.) kR(t; :)�R

1

k

L

1

�! 0

where L

1

(R

1

) is the length (radius) of a sphere which encloses a ball with the area A(0).

Proof: Let us de�ne L(1) := lim

t!1

L(t). We know that for all 0 � t

1

< t

2

Z

t

2

t

1

Z

�

�

�w

ss

= L(t

1

)� L(t

2

) � L(0)

holds. Therefore

Z

1

0

Z

�

�

�w

ss

is bounded. This means that we �nd for all " > 0 and T > 0

a time t

1

> T such that

Z

�

t

1

�w

ss

< ". Using Lemmas 6.2 and 6.3 we get that for " small

enough �

t

1

ful�lls the conditions on an initial curve in Theorem 6.1. As in the proof of

Theorem 6.1 we get

Z

�

t

2

�w

ss

�

Z

�

t

1

�w

ss

+ C

1

(L(t

1

)� L(t

2

)) (6.7)

for all t

1

� t

2

. The right hand side in (6.7) is arbitrarily small if we choose t

1

appropriate.

Therefore
Z

�

t

�w

ss

�! 0 when t �!1 :
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The Lemmas 6.2 and 6.3 now give

kR(:; t)�

�

Rk

C

1
� C

Z

�

t

j�� �

�v

j � C

�

Z

�

t

�w

ss

�

1

2

�! 0 :

Since area is preserved we get

lim

t!1

�

R(t) =

L

1

2�

and lim

t!1

L(t) = L

1

:

2

Remark 6.5: a) A result similar to Theorem 6.1 can also be proved for the motion

V = ��

ss

. In this case we have to replace assumption d) by a smallness condition for

R

�

0

�

s

(0)

2

. The prove is essentially the same as the one for Theorem 6.1. In the proof of

Theorem 6.1 we used the energy identities (6.4) and (6.5) to show that

R

�

t

�w

ss

remains

small. In the case V = ��

ss

we apply the identities

L(t)� L(0) +

Z

t

0

Z

�

�

�

2

s

d� = 0 (6.8)

and

Z

�

t

�

2

s

�

Z

�

0

�

s

(0)

2

+ 2

Z

t

0

Z

�

�

V

2

s

=

Z

t

0

Z

�

�

�V (2�V + �

2

s

) (6.9)

to get an estimate for

R

�

t

�

2

s

if it was initially small enough. Then one can use

R

�

t

�

2

s

to

control

R

�

t

j�� �

�v

j and the rest of the proof follows the same line as the proof of Theorem

6.1.

The identities (6.8) and (6.9) can also be used to prove the equivalent of Theorem 6.4

for the ow V = ��

ss

.

b) To prove a version of Theorem 6.1 for the motion V = � � �

�v

we have to replace

assumption d) by a condition on the magnitude of

R

�

0

(�(0) � �

�v

(0))

2

. Then we use the

identities in Remark 3.2 to show that

R

�

t

(���

�v

)

2

remains small. Having controlled

R

�

t

(��

�

�v

)

2

we can argue in an entirely analogous manner as in Theorem 6.1 (using Lemmas 6.2

and 6.3) to show that a global solution exists.

An equivalent of Theorem 6.4 for the conserved mean curvature ow is also true. Again

we can use the identities stated in Remark 3.2 to prove this fact.
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