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Preface

These lecture notes are dedicated to the mathematical modeling, analysis and computation of
interfaces and free boundary problems appearing in geometry and in various applications, rang-
ing from crystal growth, tumor growth, biological membranes to porous media, two-phase flows,
fluid-structure interactions, and shape optimization. Classical methods from partial differential
equations as well as from differential geometry, together with modern methods like the theory of
maximal regularity or measure theoretic approaches, now allow for a systematic mathematical the-
ory for interfaces and free boundary problems in many settings. Also, numerical methods based on
parametric approaches, level sets or phase fields are now mature enough to deal with interesting
phenomena. However, in many applications, quite complex couplings between equations on the
interface and equations in the surrounding bulk phases appear, which are still not well understood
so far.

We first give an introduction to classical methods from differential geometry and systematically
derive the governing equations from physical principles. Then we will analyze parametric approaches
to interface evolution problems and derive numerical methods which will be thoroughly analyzed.
In addition, implicit descriptions of interfaces such as phase field and level set methods will be
analyzed. Finally, we will discuss numerical methods for complex interface evolutions and will
focus on two phase flow problems as an important example of such evolutions.

Some parts of the lecture notes have been first used by the first and the third authors in courses
they gave to doctoral students of the DFG research training group 2339 IntComSin: Interfaces,
Complex Structures, and Singular Limits in Continuum Mechanics — Analysis and Numerics. The
complete material of this book has been presented at an Oberwolfach seminar in November 2022.
We thank the Oberwolfach Research Institute for Mathematics (MFO) for giving us the opportunity
to give the lecture series in the Oberwolfach seminar series. We thank all the participants of the
seminar for actively taking part in the seminar. Due to their many suggestions for improvements,
we were able to substantially enhance the presentation. We would like to thank Paul Hiittl, Jonas
Haselbock and Dennis Trautwein for proofreading. We would like especially to thank Eva Riitz and
Vera Theus for typesetting parts of the notes and Jifi Minarcik for creating many of the figures in
this book.
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