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Abstract

Curvature driven surface evolution plays an important role in geometry,
applied mathematics and in the natural sciences. In this paper geometric
evolution equations such as mean curvature flow and its fourth order ana-
logue motion by surface diffusion are studied as examples of gradient flows
of the area functional. Also in many free boundary problems the motion
of an interface is given by an evolution law involving curvature quantities.
We will introduce the Mullins-Sekerka flow and the Stefan problem with
its anisotropic variants and discuss their properties.

In phase field models the area functional is replaced by a Ginzburg-
Landau functional leading to a diffuse interface model. We derive the
Allen-Cahn equation, the Cahn-Hilliard equation and the phase field sys-
tem as gradient flows and relate them to sharp interface evolution laws.

1 Introduction

The motion of hypersurfaces in Euclidean space driven by a law for the normal
velocity which involves curvature quantities plays an important role in geometry,
analysis and in many applications. The most prominent example is the mean
curvature flow, where the normal velocity of a hypersurface is given as the mean
curvature of the surface. This evolution law appears in geometry but variants
of this flow have applications in image processing and they also describe the
evolution of so-called grain boundaries in materials science.

We will explain later that mean curvature flow in some sense is the most
efficient way to decrease the area of a surface, in particular mean curvature flow
turns out to be a gradient flow of the area functional. For surfaces that bound a
region mean curvature flow typically decreases the enclosed volume. If one wants
to preserve the enclosed volume one could study a volume conserving nonlocal
mean curvature flow. A flow with the same property which has more physical
applications is the surface diffusion flow. Here, the normal velocity is given by
minus the surface Laplacian of the mean curvature.

In some physical systems the surface energy of an interface is proportional to
the total surface area of the interface. This is true for example for soap bubbles
and related variational problems lead to the geometry and analysis of minimal
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surfaces and H-surfaces. We refer to the beautiful book by Hildebrandt and
Tromba [97] and to [49], [119] for details.

We will also study the evolution of surfaces bounding a crystal. For crystals
the surface area is not the appropriate energy. Instead the surface contribution to
the energy will locally depend on the orientation of the surface in its surrounding
space. The resulting surface energy will be anisotropic and related variational
problems will lead to surfaces for which an anisotropic mean curvature will be
either zero or constant. It is of course possible to consider gradient flows of such
energies and this will lead us to the anisotropic mean curvature flow.

Often the evolution of a surface is influenced by quantities which are defined
away from the surface. We will discuss the growth of a crystal and in this case the
evolution of the crystal surface will be influenced for example by the temperature.
In fact one has to solve a heat equation for the temperature away from the surface
and in some models the temperature enters the mean curvature flow equation as
an additional right-hand side.

Typically the topology of the surface will change during the evolution. If
this happens a classical description of the surface involving parametrizations will
develop singularities and hence will break down. We will discuss two approaches
which will allow to pass through singularities. The first one involves Caccioppoli
sets which are sets for which the characteristic function is of bounded variation.
The second one is the phase field approach which describes the interface with
the help of a smooth function which in an appropriate way approximates the
characteristic function mentioned above. Another popular approach which is
suitable to deal with topology changes is the level set method and we refer to
[39, 69, 84, 130, 147].

In this overview article I can of course only describe a few aspects of curvature
driven interface evolution. I will focus on mean curvature flow, its fourth order
analogue motion by surface diffusion and on crystal growth described by the
Stefan problem with Gibbs–Thomson law. The latter is a paradigm free boundary
problem. In a free boundary problem one seeks a solution of a partial differential
equation on a domain which one has to find as part of the problem.

Curvature driven interfaces play an important role also in other areas. In
geometry one is also interested in situations where the evolution of a surface
is driven by laws involving other curvature quantities such as the Gauss curva-
ture, the scalar curvature or quantities involving the principal curvatures. Let
me finally also mention applications in which curvature driven interface evolution
plays a role. Examples are two-phase and free surface flow [137, 151], image anal-
ysis [7, 31, 32, 143], grain boundary motion [123], quantum dot formation [152],
evolution of nanoporosity in dealloying [56], void evolution in electromigration
[42], and flame propagation [148]. This list demonstrates that it is important
both from a mathematical and from an applicational point of view to understand
curvature driven interface evolution.

In order to illustrate the evolution laws discussed in this article we will fre-

2



quently use numerical computations which were obtained with the help of para-
metric finite element methods which have been developed in the last years to-
gether with Barrett and Nürnberg [8]-[13].

2 Gradient flows of the area functional

2.1 First variation of the area functional

We consider a smooth, compact, oriented hypersurface Γ in R
d without boundary.

The simplest surface energy of such a hypersurface Γ is proportional to the surface
area of Γ. We hence consider the area functional

E(Γ) := Hd−1(Γ) (2.1)

where Hd−1 is the (d−1)–dimensional surface measure. The goal now is to evolve
Γ in such a way that the surface area decreases most rapidly. Roughly speaking
this will be achieved by flowing Γ in the direction of the negative “gradient” of E.
In order to define the gradient we first of all need to determine the first variation
(the “derivative”) of the area functional.

In order to compute a directional derivative of E we need to embed Γ in a
one-parameter family of surfaces. This will be achieved with the help of a smooth
vector field ζ : Rd → R

d. We define

Γt := {x+ tζ(x) | x ∈ Γ} , t ∈ R , (2.2)

and a computation, see e.g. [47], [91], [111], gives

d

dt
E(Γt)|t=0 = −

∫

Γ

HV dHd−1 . (2.3)

Here H is the mean curvature of Γ (which in this article will be, as often in the
literature, the sum of the principal curvatures), V = ζ ·ν is the normal velocity of
the evolving surface (Γt)t∈R at t = 0, ζ ·ν is the Euclidean inner product of ζ and
ν, and by dHd−1 we denote integration with respect to the (d − 1)–dimensional
surface measure. On Γ we have chosen a normal vector field ν and we here take
the sign convention that the surface has positive mean curvature if it is curved in
the direction of the normal. The formula (2.3) now shows that the surface area
decreases if the surface moves in the direction of the mean curvature vector Hν.

2.2 Gradient flows

For a function Φ : Rn → R with derivative dΦx0
at the point x0 ∈ R

n we define
the gradient gradΦ(x0) ∈ R

n such that the following identity holds

dΦx0
(v) = (gradΦ(x0)) · v for all v ∈ R

n .
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Now x : [0, T ] → R
n is a solution of the gradient flow equation to Φ if

x′(t) = −gradΦ(x(t)) (2.4)

holds for all t ∈ [0, T ]. In particular, we have

d

dt
Φ(x(t)) = −‖gradΦ(x(t))‖2 ≤ 0

where ‖ . ‖ denotes the Euclidean norm in R
n. In particular, we obtain that

Φ(x(t)) can only decrease in time.
For any y : [0, T ] → R

n with ‖y′(0)‖ = ‖gradΦ(x(0))‖ and y(0) = x(0) we
have, using the Cauchy-Schwarz inequality

d

dt
Φ(y(0)) = (gradΦ(y(0))) · y′(0)

= (gradΦ(x(0))) · y′(0)

≥ −‖gradΦ(x(0))‖2

with an equality if and only if

y′(0) = −gradΦ(x(0)) .

This shows that among all possible directions, the direction −gradΦ(x(0)) de-
creases Φ most efficiently.

The above considerations can be generalized to n–dimensional Riemannian
manifolds M and functions Φ : M → R. Denoting by TxM the tangent space at
x ∈ M , by 〈 . , .〉 the metric on TxM and by dxΦ the differential of Φ, the gradient
gradMΦ ∈ TxM is defined such that

dxΦ(v) = 〈gradMΦ(x), v〉 for all v ∈ TxM

holds. Hence, as above the flow

x′(t) = −gradMΦ(x(t))

decreases Φ as fast as possible among all velocities with a given value for the
norm of the velocity.

Choosing a time step τ > 0, a natural approximation scheme for (2.4) would
be to solve iteratively for x1, x2, x3 . . . with a given initial value x0 the (nonlinear)
equation

xn − xn−1

τ
= −gradΦ(xn), n = 1, 2, 3, . . . (2.5)

which is an implicit Euler discretization for (2.4). The identity (2.5) is the Euler–
Lagrange equation of the functional

1
2τ
‖x− xn−1‖2 + Φ(x) . (2.6)
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Now a natural approach to show existence of solutions to (2.5) is the study of
the minimum problem to (2.6) which often can be solved by the direct method
of the calculus of variations.

The approach can be naturally generalized to Hilbert spaces by replacing
the Euclidean inner product by a general scalar product. It is also possible to
generalize the scheme to metric spaces by replacing the norm of x− xn−1 by the
distance between x and xn−1, i.e. one now considers

1
2τ
d2(x, xn−1) + Φ(x) .

We refer to Ambrosio, Gigli and Savaré [3] and Villani [160] for more details on the
general gradient flow approach and to Luckhaus [109], Visintin [161], Almgren,
Taylor, Wang [5], Luckhaus, Sturzenhecker [110], Mielke, Theil, Levitas [116],
Otto [131] and Garcke, Schaubeck [79] for applications of the approach in specific
situations.

2.3 Mean curvature flow as a gradient flow of the area

functional

We formally endow the space M of all oriented hypersurfaces Γ in R
d with a

tangent space which consists of all possible normal velocities, i.e. we set

TΓM = {V : Γ → R} .

A function V : Γ → R arises as a “tangent” vector, i.e. as a differential of a curve
in M, if we consider a vector field ζ : Rd → R

d such that ζ · ν = V on Γ and
define Γt as in (2.2). One natural choice of an inner product on TΓM is given by

〈v1, v2〉L2 =

∫

Γ

v1v2 dH
d−1 for all v1, v2 ∈ TΓM .

Now the gradient gradME of E needs to fulfill

〈gradME, V 〉L2 =
d

dt
E(Γt)|t=0 = −

∫

Γ

HV dHd−1

for all V : Γ → R. Here (Γt)t∈R is defined as above by choosing a ζ : Rd → R
d

such that ζ · ν = V . We hence obtain

gradME = −H

and the gradient flow of the area functional E is the mean curvature flow

V = H .
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More precisely, we say that a smooth one–parameter family (Γt)t≥0 of hypersur-
faces in R

d solves V = H if for a local parametrization X(t, p), p ∈ U , U ⊂ R
d−1

open, it holds that
∂tX · ν = H .

In particular, we obtain

d

dt
Hd−1(Γt) = −

∫

Γt

H2 ≤ 0 .

For more information on mean curvature flow we refer to the articles by Ecker
[55] and White [168] and the books [22, 54, 84, 103, 111, 139].

Let me mention a few fundamental properties and results related to the mean
curvature flow.

- An embedded curve in the plane evolving under curvature flow V = H will
become convex in finite time, see Grayson [92].

- A convex hypersurface in R
d, i.e. a surface which is the boundary of a

convex region, will shrink to a point in finite time. In doing so the surface
will become more and more round, i.e. after rescaling to a surface enclosing
a fixed volume the surface will converge to a sphere, see Gage, Hamilton
[75] and Huisken [98].

- Mean curvature flow, written for example in local coordinates, leads to a
parabolic equation of second order (the normal velocity leads to a time
derivative and the mean curvature to two spatial derivatives). Second or-
der parabolic partial differential equations fulfill maximum and comparison
principles which play a fundamental role in the analysis of mean curvature
flow. With the help of a comparison principle it can be shown that self-
intersections during the flow are not possible and one can also show that if
initially one surface is contained in another this property will be true for
all later times, see e.g. the discussion in Ecker [55].

- Nonconvex surfaces in general can develop singularities, see Figures 1, 2 for
numerical computations with a torus as initial surface. Depending on the
ratio of the torus’s radii, the torus will either merge, see Figure 1 or shrink
to a circle, see Figure 2. The possible singularities are well understood and
in particular the famous monotonicity formula for mean curvature flow is
important in order to classify the singularities, see [55, 100, 101, 111].

Mean curvature flow does not preserve the volume enclosed by the surface.
In many applications physical conservation laws lead to volume conservation and
this motivates the discussion of volume preserving geometric gradient flows which
are discussed in the next subsections.

6



Figure 1: Plots of a solution to mean curvature flow at times t = 0, 0.05, 0.09.

2.4 Volume preserving geometric flows

We now consider Mm to be the “manifold” of all smooth hypersurfaces Γ ⊂ R
d

enclosing a bounded set G ⊂ R
d which has a prescribed volume m ∈ R

+. It
will turn out that the natural tangent space TΓMm corresponds formally to all
normal velocities V : Γ → R with zero mean. If we choose perturbations (Γt)t∈R
of Γ as above we obtain for the enclosed volume vol(Γt) the following identity,
see [47],

d

dt
vol(Γt) =

∫

Γt

V dHd−1 ,

where we now choose ν as the outer unit normal to the set enclosed by the
hypersurface Γ. This implies that the integral of the normal velocity needs to be
zero to ensure that the volume is conserved. We can also endow TΓMm with the
L2–inner product. The gradient gradMm

E has to fulfill
∫

Γ
(gradMm

E) dHd−1 = 0
and

〈gradMm
E, v〉 = −

∫

Γ

HvdHd−1 (2.7)

for all v with
∫

Γ
v dHd−1 = 0. The identity (2.7) does specify gradMm

E only up
to a constant and since gradMm

E needs to have zero mean we obtain

gradMm
E = −H + −

∫

Γ
HdHd−1

where −
∫

Γ
HdHd−1 =

∫

Γ
HdHd−1/(

∫

Γ
1 dHd−1) is the average of H on Γ. The

volume preserving mean curvature flow is hence given as

V = H −−

∫

Ω

HdHd−1 . (2.8)

A more physical gradient flow is obtained when we choose an H−1–inner
product on TΓMm. For given v1, v2 ∈ TΓMm we solve

−∆Γui = vi on Γ ,

where ∆Γ is the surface Laplacian on Γ. Since Γ has no boundary the Gauss theo-
rem on manifolds gives

∫

Γ
∆Γui dH

d−1 = 0 which implies the solvability condition
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Figure 2: Plots of a solution to mean curvature flow at times t = 0, 0.1, 0.138.

∫

Γ
vi dH

d−1 = 0 which is fulfilled due to vi ∈ TΓMm. Setting

ui := (−∆Γ)
−1vi

we define the H−1–inner product on TΓMm as

〈v1, v2〉H−1 :=

∫

Γ

(∇Γ(−∆Γ)
−1v1) · (∇Γ(−∆Γ)

−1v2) dH
d−1

=

∫

Γ

v1(−∆Γ)
−1v2 dH

d−1 .

In order to define the gradient gradH−1E of E with respect to the H−1–inner
product we observe that the following identities need to hold for all v ∈ TΓMm

∫

Γ

v(−∆Γ)
−1gradH−1E dHd−1 = 〈v, gradH−1E〉H−1

= −

∫

Γ

vH dHd−1 .

We hence obtain
gradH−1E = ∆ΓH

and the H−1–gradient flow of E is given as

V = −∆ΓH . (2.9)

This evolution law is called motion by surface diffusion. In physics this evolu-
tion law is derived from mass conservation laws using appropriate constitutive
assumptions, see [124, 45, 158]. It models phase transformation due to diffusion
along the interface. This evolution law can be derived from the Cahn-Hilliard
diffusion equation, see Section 5, when diffusion is restricted to an interfacial
layer, see [30, 58], and this also motivates that the law (2.9) is called motion by
surface diffusion.

Proposition. 2.1. Solutions (Γt)t≥0 of (2.9) fulfill

d

dt
vol(Γt) = 0 ,

d

dt
Area(Γt) ≤ 0 .
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Proof. The second property follows from the fact that (2.9) is the gradient flow
of the area functional with respect to the H−1–inner product. The fact that the
flow is volume preserving follows from

d

dt
vol(Γt) =

∫

Γt

V dHd−1

= −

∫

Γt

∆ΓH dHd−1 = 0 ,

where the last identity is a consequence of Gauss’ theorem.

In the evolution law V = −∆ΓH the surface Laplacian –a second order
operator– acts on the mean curvature and hence the flow leads to a fourth order
parabolic partial differential equation. For fourth order parabolic equations max-
imum and comparison principles are in general not true. Also a monotonicity
formula for the flow V = −∆ΓH is not known. These two facts are among the
reasons why much less is known for the flow V = −∆ΓH in comparison to the
mean curvature flow.

In the following I state a few results known for the surface diffusion flow.

- Short time existence and uniqueness of classical solutions is known. Spheres
are asymptotically stable under the flow in the following sense. For initial
data sufficiently close to a sphere a global solution exists and the solution
will converge to a (possible different) sphere, see Elliott, Garcke [59] for
curves in the plane and Escher, Mayer, Simonett [66] for higher dimensions.

- The flow V = −∆ΓH defines an analytic semigroup with some interesting
properties. The set of equilibria is not isolated and in order to show stability
of spheres either center manifold theory, see Escher, Mayer, Simonett [66],
or a generalized principle of linearized stability has to be used, see Prüss,
Simonett, Zacher [136].

- In the plane it can be shown that if a simple closed curve evolving under
V = −∆ΓH exists for all time, it necessarily has to converge to a sphere,
see Elliott and Garcke [59]. We also refer to a recent result by Wheeler
[167] who proved that closed curves with initial data close to a round circle
in the sense that the L2–perturbation of the curvature remains small exist
for all time and converges exponentially fast to a circle. A similar result
also holds in higher dimensions, see [166].

- In contrast to mean curvature flow self intersections are possible, as was
conjectured by Elliott, Garcke [59] and shown by Giga, Ito [88] and Mayer,
Simonett [114], see also Blatt [19] for some recent results.

- The surface diffusion flow does not preserve convexity, see Figure 3, which
was shown by Giga, Ito [87], see also Blatt [19].
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Figure 3: Plots of a solution to the surface diffusion flow at times t =
0, 0.01, 0.1, 0.2, 0.3, 0.36, 0.369 (left to right, top to bottom). The final
plot shows a blow up of the pinch-off at time t = 0.369.

- A sharp criterion for finite time blow up of curves moving under the surface
diffusion flow has been given by Chou [40].

- The sphere is stable under surface diffusion (see results above), while the
cylinder is long wave unstable. Numerical simulations indicate that per-
turbations of a cylinder can lead to finite-time pinch-off. A paper by
Bernoff, Bertozzi and Witelski [18] studies the selfsimilar structure close
to the pinch-off.

- Initial data which are given as a graph can loose this property during the
evolution, see [60].

- Since V = −∆ΓH leads to a parabolic equation, the flow has a regularizing
effect, i.e. in particular edges and corners will become smooth during the
flow. As for the mean curvature flow also the surface diffusion flow in general
will develop singularities. The regularizing effect, the fact that surface
diffusion does not preserve convexity and the formation of singularities can
be observed in the numerical simulation in Figure 3.

2.5 The Mullins-Sekerka free boundary problem as a gra-

dient flow of the area functional

We now consider a compact hypersurface Γ in R
d which separates two open sets

Ω− and Ω+ in an open domain Ω ⊂ R
d, see Figure 4.

Let ν be the unit normal to Γ pointing into Ω+ and n the outer unit normal
to ∂Ω. The Mullins-Sekerka free boundary problem describes the evolution of
the spatial distribution of two phases (here the phases occupy the regions Ω−

and Ω+) driven by the reduction of interfacial area and limited by diffusion.

10



Γ

Ω+ phase 2

ν n

Ω− phase 1

Figure 4: An illustration of the geometry in the Mullins-Sekerka and the Stefan
problem.

This evolution law can be derived from conservation laws taking the principles
of thermodynamics into account, see [94, 53]. But here we choose an approach
which derives the Mullins-Sekerka problem in the context of gradient flows, see
e.g. [70, 71, 113, 126].

We again consider the set of surfaces Mm which enclose a volume m ∈ R
+

and its tangent space TΓMm. In order to define the metric on TΓMm we define
functions u1, u2 : Ω → R for given v1, v2 ∈ TΓMm which are solutions of

−∆ui = 0 in Ω− ∪ Ω+ , (2.10)

−[∇ui]
+
− · ν = vi on Γ , (2.11)

[ui]
+
− = 0 on Γ , (2.12)

∇ui · n = 0 on ∂Ω . (2.13)

Here [ . ]+− denotes the jump of a quantity across the interface Γ where we subtract
the value in the −-phase from the value in the +-phase. The above system (2.10)-
(2.13) determines functions u1, u2 up to a constant which will be irrelevant for
what follows. The metric 〈. , .〉MS on TΓMm is now for all v1, v2 ∈ TΓMm defined
by

〈v1, v2〉MS :=

∫

Ω
−
∪Ω+

∇u1 · ∇u2dx =

∫

Γ

v1u2 dH
d−1 ,

where u1, u2 solve (2.10)-(2.13). We remark that the above system, which has to
be solved in order to determine ui, can be written in distributional form as

−∆ui = viδΓ , (2.14)

where δΓ is a surface Dirac distribution defined by δΓ(ζ) =
∫

Γ
ζ for all test func-

tions ζ . Hence formally ui = (−∆)−1(viδΓ) and hence 〈. , .〉MS can also be inter-
preted as an H−1–inner product. We remark that a weak formulation of (2.14)
is given as

∫

Ω

∇ui · ∇φ dx =

∫

Γ

viφ dHd−1
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which has to hold for all φ in the Sobolev space H1(Ω) = {f ∈ L2(Ω) | ∇f ∈
L2(Ω,Rd)}.

Now the negative gradient

w = −gradMSE ∈ TΓMm

needs to fulfill for all v ∈ TΓMm
∫

Γ

vu dHd−1 = 〈v, w〉MS =

∫

Γ

vH dHd−1

where u is a solution to (2.10)-(2.13) with vi = w.
In particular, we obtain that, up to an irrelevant constant, u = H and hence

the gradient flow V = w = −gradMSE is for all t > 0 given as

−∆u = 0 in Ω−(t) ∪ Ω+(t) , (2.15)

V = −[∇u]+− · ν on Γt , (2.16)

u = H on Γt , (2.17)

∇u · n = 0 on ∂Ω , (2.18)

where Ω−(t), Ω+(t) are the sets occupied by the two phases at time t.

Proposition. 2.2. Solutions ((Γt)t≥0, u) to (2.15)-(2.18) fulfill

d

dt
vol(Ω−(t)) = 0 , (2.19)

d

dt
Area(Γt) = −

∫

Ω

|∇u|2 ≤ 0 (2.20)

where vol(Ω−(t)) is the volume of Ω−(t) ⊂ Ω.

Proof. Although the area decrease follows from the gradient flow property we
will show (2.20) directly. We have, using (2.15)-(2.18) and the Gauss theorem,

d

dt
Area(Γt) = −

∫

Γt

HV dHd−1 =

∫

Γt

u [∇u]+− · ν dHd−1

= −

∫

Γt

u(∇u+) · ν+dHd−1 −

∫

Γt

u(∇u−) · ν−dHd−1

= −

∫

Ω+(t)

div(∇u u)dx−

∫

Ω
−
(t)

div(∇u u)dx = −

∫

Ω

|∇u|2dx ,

where u+ is u defined on Ω+(t), u
− is u defined on Ω−(t), ν

− = ν is the outer unit
normal to Ω−(t) and ν+ = −ν is the outer unit normal to Ω+(t). In addition, we
have

d

dt

∫

Ω
−
(t)

1 dx =

∫

Γt

V dx = −

∫

Γt

[∇u]+− · ν dHd−1

=

∫

Ω+(t)

div(∇u)dx+

∫

Ω
−
(t)

div(∇u)dx = 0 .
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Figure 5: The solution of a Mullins-Sekerka problem with three particles at times
t = 0, 0.3, 0.6, 0.9, 1.2 (left to right, top to bottom). On the bottom right, a plot
of the total surface area as a function of time.

Mean curvature flow is a second order evolution equation and surface diffusion
is a fourth order evolution equation. The operator which maps H to [∇u]+− ·ν can
be interpreted as a generalized Dirichlet-to-Neumann operator for the Laplace
operator as it maps the Dirichlet data for the Laplace boundary value problem
to Neumann data, see e.g. [62]. This operator is a nonlocal, pseudo-differential
operator of first order and since the computation of the mean curvature already
involves two spatial derivatives it turns out that the motion of the interface which
separates the phases is determined by a nonlinear, nonlocal, pseudo-differential
operator of third order, see [65].

The free boundary can also have different connected components and all the
above is still valid as long as the components are disjoint. In particular, the
overall volume of Ω+(t) and Ω−(t) is still preserved, see Figure 5. Now one
effect involving different connected components is that typically small particles,
i.e. small connected components, shrink and the energetically more advantageous
large particles grow.

2.6 Results on the Mullins-Sekerka evolution

It is much more difficult to show existence of solutions to the Mullins-Sekerka
problem in comparison to the geometric evolution equations discussed further
above. This is due to the fact that the evolution of the hypersurface (Γt)t≥0

determines the domains in which we have to solve Laplace equations and at the
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same time the solutions of the Laplace equations determine the normal velocity
of the evolving hypersurface. In order to be able to formulate the problem in a
suitable setting involving appropriate function spaces one has to transform the
time dependent domains Ω+(t) and Ω−(t), to fixed reference domains. This is
done with the help of a diffeomorphism which depend on the solution (Γt)t≥0

and was first introduced by Hanzawa [96]. Now the Laplace operator has to be
transformed to the reference domain and altogether a highly nonlinear problem
arises. If one formulates the transformed problem as an evolution equation for
(Γt)t≥0 one obtains a nonlinear, nonlocal, pseudo-differential operator of third or-
der which carries a quasilinear structure. This approach was used independently
by Escher, Simonett [64] and Chen, Hong, Yi [37] in order to show local existence
of a unique local classical solution to (2.15)-(2.18) using a suitable contraction
argument. Related earlier results in this direction are due to Duchon, Robert
[51], Constantin, Pugh [41], Chen [35], who all showed existence in two spatial
dimensions of problems related to (2.10)-(2.13).

Of course similar geometric questions as for the geometric evolutions above
arise and we mention for example Mayer [112] who showed that the Mullins-
Sekerka evolution does not preserve convexity of the enclosed domain.

The Mullins-Sekerka model describes the aging of materials which consist of
a binary mixture of two components which are e.g. two different metals. In
many of these systems two different phases with different concentrations form
and the evolution of the boundaries of the phase regions is given by (2.15)-(2.18).
Typically many particles appear and the total surface area is high, see Figure 6
(left).

(a) t = 0 (b) t = 0.04 (c) t = 1.4 (d) t = 2.9

Figure 6: Solutions to the Mullins-Sekerka problem reduce the total surface area
by coarsening.

Now large particles grow, while smaller ones shrink and eventually vanish.
Hence the number of particles decreases and typical length scales such as particle
size and inter-particle distance increase, see Figure 6. This Ostwald ripening phe-
nomenon has been studied intensively in the physics and metallurgical literature,
see e.g. [162, 163] for reviews. For ensembles with a large number of particles,
in which the volume fraction of one phase is small, it can be studied how the
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mean particle size increases. In fact, the mean particle size will grow like t
1

3 . In
addition, evolution laws for the particle size distribution can be derived. We refer
to [108, 125, 126, 127, 162, 163, 164, 104] for further details.

In general classical solutions to the Mullins-Sekerka problem do not exist for
large times as topological changes and singularities can occur. For long-time
existence results with general initial data one has to turn to weak formulations.
Luckhaus and Sturzenhecker [110], see also [109], used a weak formulation of the
identity u = H in the setting of functions of bounded variations (BV-functions).
The space of all functions of bounded variation is given as

BV (Ω) =
{

f ∈ L1(Ω) |
∫

Ω
|∇f | < ∞

}

and
∫

Ω
|∇f | denotes the total variation of the distribution ∇f , i.e.

∫

Ω

|∇f | = sup
{∫

Ω
fdiv g dx | g ∈ C1

0(Ω,R
d), |g(x)| ≤ 1 for all x ∈ Ω

}

.

For f ∈ BV (Ω) one obtains that ∇f and |∇f | are Radon measures on Ω with
values in R

d and R respectively. A measurable set E ⊂ Ω with
∫

Ω
|∇χE| < ∞,

where χE is the characteristic function of E, is called Caccioppoli set. In a
generalized sense such a set E has bounded perimeter. We can now define a
generalized unit normal to the boundary of E given by νE = ∇χE

|∇χE|
as the Radon-

Nikodym derivative of ∇χE with respect to |∇χE|. We refer to Giusti [91] and
Ambrosio, Fusco, Pallara [2] for more details on functions of bounded variation.

The BV–formulation of Luckhaus and Sturzenhecker now replaces the point-
wise identity u = H by

∫ T

0

∫

Ω

(

div ξ −
∇χ

|∇χ|
·

(

Dξ
∇χ

|∇χ|

))

d|∇χ(t)|dt =

∫

ΩT

div (uξ)χ d(x, t) , (2.21)

which has to hold for all ξ ∈ C1(ΩT ,R
d), ΩT := Ω×(0, T ). Here χ : ΩT → {0, 1} is

a phase function where phase 2 is given by the set {(x, t) ∈ Ω×(0, T ) | χ(x, t) = 1}
and phase 1 is given by the set {(x, t) ∈ Ω× (0, T ) | χ(x, t) = 0} and one assumes
that χ(., t) ∈ BV (Ω) for all t ∈ (0, T ).

If the interface is smooth and without boundary the equation (2.21) leads to

∫ T

0

∫

Γt

divΓ ξ dH
d−1dt = −

∫ T

0

∫

Γt

u ξ · ν dHd−1dt

and using the Gauss theorem on manifolds we have

∫ T

0

∫

Γt

Hξ · ν dHd−1dt =

∫ T

0

∫

Γt

u ξ · ν dHd−1dt

which shows that (2.21) is a weak formulation of u = H .
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Luckhaus and Sturzenhecker [110] used a time discretization of the Mullins-
Sekerka problem which is similar to the discussion in Section 2.2, see (2.5), (2.6),
to obtain approximate solutions. However they were only able to show that limits
of this approximation solve the weak formulation of the Mullins-Sekerka problem
under an additional assumption. They had to exclude a loss of surface area for
the interface in the limit when a time discretization parameter tends to zero. We
refer to Figure 7 for a situation in which there is a loss of area. The approach
of Luckhaus and Sturzenhecker [110] was used for multi-phase situations in [80]
and [23].

Later Röger [140] used methods from geometric measure theory and a result of
Schätzle [145], who investigated the convergence of the equation un = Hn in cases
where un convergences as n → ∞ in an approximate sense, to obtain a passage
to the limit in time discrete approximations of the Mullins-Sekerka problem.

?

6 dist → 0 as n → ∞

Ωn
+

Ωn
+

Ω+

Ω+

Figure 7: An example where a loss of area appears in a limit n → ∞.

3 Anisotropic surface energies

3.1 Anisotropic variational problems and the Wulff shape

In many physical applications the surface energy density will depend on the local
orientation of the surface in the surrounding space. Since we consider hypersur-
faces, the local orientation can be expressed by a unit normal field ν : Γ → R

d

(|ν| = 1). We define the anisotropic surface energy as

Eγ(Γ) =

∫

Γ

γ(ν)dHd−1

where
γ : Rd → [0,∞)
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is positively one-homogeneous, i.e. γ(λx) = λγ(x) for all λ > 0, x ∈ R
d. To

define the energy Eγ it is enough to define γ on unit vectors but often it will be
convenient to extend γ to all of Rd by requiring positive homogeneity of degree
one. We remark that we obtain for γ(x) = |x| the classical surface area. If γ
is nonconstant on all unit normal vectors we have the phenomenon that some
directions are energetically more favourable than others.

We can now consider a generalized isoperimetric problem for subsets D ⊂ R
d

with smooth boundaries:

minimize

∫

∂D

γ(ν) dHd−1 subject to vol(D) = const. (3.22)

It is known that the Wulff set

Wγ := {x ∈ R
d | x · y ≤ γ(y) for all unit vectors y ∈ R

d}

is the shape having the least anisotropic surface area among all sets enclosing
the same volume. The problem (3.22) was formulated by Wulff [169] who also
conjectured its solution. Dinghas [50] solved (3.22) among all convex polyhedra
and later Taylor [155] and Fonseca, Müller [72, 73] gave existence and uniqueness
proofs for very general interfacial energies.

It is helpful to visualize the interfacial energy density γ with the help of the
Frank diagram

Fγ = {x | γ(x) ≤ 1}

which is the one-ball of γ. In Figure 8 we display the Frank diagram and the
Wulff shape for a cubic and a hexagonal anisotropy. In these examples we observe
the general fact that the Frank diagram and the Wulff shape are dual to each
other, in the following sense. When γ is a convex, even function, it is a norm
and has a dual norm. We obtain that Wγ is the unit ball of that dual norm, see
[159, 16].

3.2 The first variation of anisotropic energies

For a given hypersurface Γ we now construct, as in Subsection 2.1, a one para-
metric family (Γt)t≥0 with the help of a smooth vector field ζ : Rd → R

d. In order
to compute the first variation of

∫

Γ
γ(ν) dHd−1 we need the following ingredients:

i) Dγ(x) · x = γ(x) for all x ∈ R
d \ {0} ,

ii) Dtν = −∇ΓV ,

iii)
d

dt

∫

Γt

f dHd−1 =

∫

Γt

(Dtf − fHV )dHd−1 ,

iv)

∫

Γt

∇Γ · F dHd−1 = −

∫

Γt

Hν · F dHd−1 for F ∈ C1(Γt,R
d) .
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Figure 8: Frank diagrams (left) and Wulff shapes (right) for different choices
of the anisotropic energy Eγ. Above we see a cubic anisotropy and below a
hexagonal anisotropy, see [13] for details.

The first identity follows from the fact that γ is one-homogeneous. By Dtf for
a function f which is defined on an evolving surface we denote the normal time
derivative of f , i.e. the time derivative following Γt with a velocity V ν, see [93,
formula (15-21)], and [81]. More precisely we choose a path z(τ) ∈ Γτ such that
z′(τ) = (V ν)(τ, z(τ)) and define Dtf(t, z(t)) =

d
dτ
f(τ, z(τ)), τ = 1. The identity

(ii) is shown e.g. in [93, formula (15-24)], [55, 111]. For a proof of the transport
theorem (iii) we refer to [47] or [81]. The equation iv) in the Gauss theorem on
manifolds for vector fields F which are not necessarily tangential and a proof can
be found e.g. in [90, Section 16]. We remark that for non-tangential vector fields
∇Γ · F is given as

∇Γ · F =
d−1
∑

i=1

(∂τiF ) · τi

where {τ1, . . . , τd−1} is an orthonormal basis of the tangent space.
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We now compute

d

dt

∫

Γt

γ(ν)dHd−1 =

∫

Γt

(Dtγ(ν)− γ(ν)HV )dHd−1

=

∫

Γt

(Dγ(ν) ·Dtν − γ(ν)HV )dHd−1

=

∫

Γt

(−Dγ(ν) · ∇ΓV − γ(ν)HV )dHd−1

=

∫

Γt

(∇Γ · (Dγ(ν))V + (Dγ(ν) · ν)V H − γ(ν)HV )dHd−1

=

∫

Γt

∇Γ · (Dγ(ν))V dHd−1 .

Here we used i), ii), iii) and the Gauss theorem on manifolds, see iv).
Hence the negative L2–gradient of Eγ is given by

Hγ = −∇Γ · (Dγ(ν))

which is known as the anisotropic mean curvature in the literature, see Taylor
[157, 159]. Solutions of the classical isoperimetric problem have constant mean
curvature. It turns out that solutions of the anisotropic version of the isoperi-
metric problem (3.22) lead to surfaces with constant anisotropic mean curvature.

3.3 Gradient flows of the anisotropic surface energy

We can replace the mean curvature H by the anisotropic mean curvature Hγ in
all gradient flows studied in Section 2. We obtain in particular the anisotropic
mean curvature flow

V = Hγ

and the anisotropic surface diffusion flow

V = −∆ΓHγ . (3.23)

Both flows decrease the total anisotropic surface energy, i.e.

d

dt

∫

Γt

γ(ν)dHd−1 ≤ 0

and the latter flow will preserve the enclosed volume. We will hence expect that
the flow will converge to an appropriately scaled Wulff shape. We refer to Figure 9
for a numerical computation with an anisotropy whose Wulff shape is a slightly
regularized cube. We observe that for larger times the evolution will tend to the
Wulff shape.
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Figure 9: Plots of a solution to anisotropic surface diffusion (3.23) with a cubic
anisotropy at times t = 0, 0.01, 0.05, 0.1, 0.25.

Often more general evolution laws of the form

β(ν)V = Hγ

with a function β : Rd → R
+ are of interest. Also these can be obtained as

gradient flows by choosing an inner product of the form

〈v1, v2〉β =

∫

Γ

β(ν)v1v2 dH
d−1 .

We refer e.g. to Bellettini and Paolini [17] who studied the case β = 1
γ
which

naturally arises when interpreting the anisotropic curvature flows in the context
of Finsler geometry.

4 The Stefan problem

We have collected all ingredients to formulate the Stefan problem which describes
solidification and melting phenomena in a general setting. The Stefan problem
generalizes the Mullins-Sekerka problem studied in Section 3 as more physical
effects are taken into account and in some sense it generalizes also the mean
curvature flow as a forced mean curvature flow enters the overall system. In
contrast to the Mullins-Sekerka problem where we solved Laplace’s equation in
the Stefan problem the heat equation has to be solved in the regions occupied by
the phases and in the full Stefan problem also an additional time derivative can
enter equation (2.17). We will not derive the Stefan problem from basic physical
principles but refer to the books [94, 161] and [53] for a derivation.

The Stefan problem in a version taking anisotropic effects into account is now
given as follows

ϑ∂tu−Ki∆u = 0 in Ωi(t), for i ∈ {−,+} , (4.24)

−[K∇u]+− · ν = λV on Γt , (4.25)

β(ν)V = Hγ − au on Γt (4.26)

together with appropriate initial and boundary conditions and non-negative phys-
ical constants ϑ,K−,K+, λ and a.
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4.1 The classical Stefan problem

Typcially in the Stefan problem the unknown u describes the temperature in
the system and the simplest modelling assumption for the temperature at the
interface is that the temperature equals the melting temperature. Defining u to
be the deviation from the melting temperature we have to choose β = γ = 0,
a 6= 0 in (4.26) in order to obtain

u = 0 (4.27)

as a boundary condition. The system (4.24), (4.25), (4.27) is called the classical
Stefan problem and has been well-studied in the literature. We refer to the books
by Elliott, Ockendon [61], Friedman [74], Meirmanov [115], Rubinstein [142] and
Visintin [161] for more details, results and methods how to handle this problem
analytically and numerically.

4.2 The Stefan problem with Gibbs–Thomson law

Setting β = 0, and for simplicity a = 1, (4.26) reduces to the Gibbs–Thomson
law

u = Hγ (4.28)

and the overall problem (4.24), (4.25), (4.28) is the Stefan problem with anisotropic
Gibbs–Thomson law. An important contribution to this problem is due to Luck-
haus [109]. He used an implicit time discretization, similar as the one discussed
further above in the context of gradient flows, to show existence of a weak solution
to (4.24), (4.25) together with

u = H (4.29)

which is the isotropic version of the Gibbs–Thomson law. We now follow the
lines of Rossi, Savaré [141] in order to describe the Stefan problem with Gibbs–
Thomson law in the context of gradient flows. It is not so difficult to verify that
the distributional formulation of (4.24), (4.25) is given by (for simplicity we set
ϑ = λ = K− = K+ = 1)

∂t(u+ χ) = ∆u (4.30)

where as before χ is the characteristic function of phase 2. Introducing the
variable

e = u+ χ , (4.31)

we can rewrite the equation (4.30) as

∂te = ∆(e− χ) .

We now introduce

Φ(e, χ) =

∫

Ω

(1
2
|e− χ|2 + I{0,1}(χ))dx+

∫

Ω

|∇χ|
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where the function I{0,1} is zero at 0 and 1 and ∞ elsewhere. The overall problem
(4.24), (4.25), (4.29) can be written as

(−∆)−1∂te = −(e− χ) ,

Φ(e(t), χ(t)) ≤ Φ(e(t), v) for all v ∈ BV (Ω, {0, 1}) .

Rossi and Savaré [141] remark that this formulation naturally leads to the reduced
functional

φ(e) := inf
χ
Φ(e, χ)

and one can formally consider the Stefan problem with Gibbs–Thomson law as
the H−1–gradient flow for φ in H−1(Ω) as follows

(−∆)−1∂te = −
δφ

δe

where δφ

δe
is the first variation of φ.

The anisotropic case is more involved and an existence result following the
strategy of Luckhaus has been given in Garcke, Schaubeck [79], see also Kraus
[105] for a slightly different approach. One crucial aspect is that the total varia-
tion has to be replaced by the anisotropic variation

∫

Ω

|∇f |γ := sup
{

−
∫

Ω
f divϕdx | ϕ ∈ C1

0(Ω,R
d), γ0(ϕ(x)) ≤ 1 a.e.

}

,

where γ0 is dual to γ, i.e.

γ0(p) = sup
q∈Rd\{0}

p · q

γ(q)
.

In addition, an appropriate generalization of the weak formulation (2.21) has to
be given, see [79].

4.3 Classical solutions to the Stefan problem

Local existence of classical solutions to the Stefan problem (4.24)-(4.26) can be
shown by transforming the free boundary problem to a highly nonlinear problem
on fixed domains. Similar as in the discussion at the beginning of Section 2.6 this
approach uses the Hanzawa transformation. The problem on the fixed domain
then has to be solved by a contraction argument using regularity theory for
nonlinear parabolic equations. The isotropic case for the full Stefan problem
(4.24)-(4.26) has been first considered by Radkevich [138] and Chen, Reitich [38].

Taking β = 0 in (4.26) leads to a certain quasi-static version of the Stefan
problem and some new difficulties arise. Escher, Prüss and Simonett [67] were
able to show local existence and uniqueness of analytic solutions in the isotropic
case.
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For the classical Stefan problem with u = 0 on Γ a comparison principle
holds. For the Stefan problem with a curvature condition this is not possible
any longer. Hence one has to come up with new ideas which replace methods
which are based on comparison principles. Hadžić and Guo [95] were able to
show stability of interfaces for the Stefan problem with curvature correction by
developing a high-order energy method. We also mention a work by Prüss and
Simonett [135] who study linear stability of spherical interfaces for (4.24)-(4.26)
with β > 0.

Taking ϑ = 0 leads to the Mullins-Sekerka problem. This problem in its
anisotropic variant is relevant for many applications and also describes facetted
growth of crystals. We only mention snow crystal growth as one example, see
Figures 10, 11.

If the Wulff shape or the Frank diagram has flat parts or corners new diffi-
culties arise as the anisotropic mean curvature is not well-defined any longer and
the nonlocal crystalline mean curvature will replace the anisotropic mean cur-
vature. This concept was introduced by Taylor [156] and Angenent, Gurtin [6].
Well-posedness problems for the resulting motions are quite difficult and issues
like “facet bending” or “facet breaking” appear, see Figure 12 for an example of
facet breaking. For more information on these problems we refer to the articles
[82, 83, 86, 89, 14, 15, 120, 122]. Anisotropy, i.e. an orientation dependence
through the normal, also appears in the kinetic coefficient β. The role played
by the kinetic and the interfacial anisotropy in crystal growth is the subject of
intense research. We refer to M.-H. Giga and Y. Giga [85] for details.

Figure 10: Two dimensional numerical computations of snow crystal growth, see
[11, 12].

4.4 Numerical approaches

There have been many numerical approaches to geometrical evolution equations
and free boundary problems, we refer to [47, 147] for reviews. The numerical
computations presented in this paper have been developed in cooperation with
John Barrett and Robert Nürnberg from the Imperial College in London. The
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Figure 11: Also snow crystals like in this numerical computation are observed in
nature and they are called columns on plates, see [12].

Figure 12: Facet breaking in crystalline mean curvature flow.

method is based on a parametric approach and in particular the interface is
parametrized as a triangulated surface. In order to track the interface in time
the triangles (or segments in 2d) move and in many numerical approaches the
mesh degenerates during the evolution. In the papers [8]-[13] it was possible to
come up with a variational formulation for geometrical evolution equations and
free boundary problems which has the property that the mesh uses its tangential
degrees of freedom in order to keep very good mesh properties. This together
with a novel approach to discretize the anisotropic mean curvature Hγ made it
possible to solve highly anisotropic geometric evolution equations, the Mullins-
Sekerka problem and the Stefan problem with good mesh properties and a high
precision. In this approach we heavily rely on an earlier work by Dziuk [52] who
introduced a parametric finite element discretization of mean curvature and on
work by Schmidt [146] who was the first to solve the three dimensional Stefan
problem (4.24)-(4.26) with a parametric approach.

As a prototypical example for results obtained with the help of a parametric
finite element method we show numerical computations of snow crystal growth,
see Figures 10,11. They have been obtained with the model (4.24)-(4.26) with
ϑ = 0 and a hexagonal anisotropy, see Figure 8 to the bottom. Figure 10 shows
the evolution of snow crystals from an initial small seed leading to forms which
most of us would consider to be a typical snow crystal. In fact many other forms
are also possible and I refer to Figure 11 for a form called columns on plates which
also appears in nature. We refer to [11, 12] for more numerical computations
and for a detailed introduction into the numerical methods. Somebody who is
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interested in the fascinating aspects of the physics and mathematics of snow
crystal growth can find more details in [107, 106, 77].

5 Phase field equations as gradient flows

In the geometric evolution equations and in the free boundary problems discussed
so far, the interface was described as a hypersurface. In the last thirty years phase
field approaches have been another successful approach to describe the evolution
of interfaces. In particular phase field methods allow for a change of topology. In
a phase field description of interface evolution one uses instead of a characteristic
function χ : Ω → {0, 1}, which describes the two regions occupied by the phases,
a smooth function which takes values close to given values, e.g. ±1, and rapidly
changes between these two values in a small interfacial region, see Figures 14 and
15.

5.1 The Ginzburg–Landau energy

The phase field approach is best motivated by considering the so-called Ginz-
burg–Landau energy

Eε(ϕ) :=

∫

Ω

( ε
2
|∇ϕ|2 + 1

ε
Ψ(ϕ))dx (5.32)

where ε > 0 is a small parameter. For functions ϕ with a moderate energy Eε(ϕ)
it will turn out that ε is proportional to the interfacial thickness between the
region {ϕ ≈ −1} and {ϕ ≈ 1}. The function Ψ : R → R

+
0 is a double well

potential having two global minima with value zero at ±1, i.e. Ψ(±1) = 0 and
Ψ(z) > 0 for z 6∈ {−1, 1}, see Figure 13 for an example. Typical choices are the
quartic potential

Ψ(ϕ) =
9

32
(ϕ2 − 1)2

and the double obstacle potential Ψob which is defined as

Ψob(ϕ) =
1

2
(1− ϕ2) for all ϕ ∈ [−1, 1]

and ∞ elsewhere, see [20], although different choices are possible, see e.g. Abels
and Wilke [1].

The term 1
ε
Ψ(ϕ) in the energy Eε penalizes values which differ from ±1. In

addition, the term ε
2
|∇ϕ|2 penalizes gradients of ϕ and hence too rapid changes

of ϕ in space. It will turn out later that typical solutions of the phase field system
have the form illustrated in Figure 14, i.e. they are close to ±1 in most parts of
the domain and have an interfacial region with a thickness which is proportional
to ε. In directions normal to the level sets of ϕ a typical solution of the phase
field system has the form depicted in Figure 15.
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Ψ

ϕ−1 1

Figure 13: The energy contribution Ψ(ϕ) in (5.32) penalizes values of ϕ, which
differ from ±1.

Ω

ϕ ≈ −1 ε
↔

ϕ ≈ 1

Figure 14: A typical form of the phase field variable ϕ. Regions in which ϕ ≈ ±1,
are separated by a diffuse interfacial layer whose thickness is proportional to ε.

5.2 Relating phase field and sharp interface energies

The Ginzburg-Landau energy (5.32) can be related to the surface energy in the
limit ε → 0. The appropriate notion to make this statement precise is the concept
of Γ–limit.

Definition. 5.1. Let (X, d) be a metric space and (Fε)ε>0 a family of functionals
Fε : X → [−∞,∞]. We say that (Fε)ε>0 Γ-converges to a functional F : X →

[−∞,∞] (which we will denote as Fε
Γ

−→ F ) if the following properties hold:

(i) (lim inf inequality) For every u ∈ X and uε ∈ X, ε > 0, such that uε → u
as ε → 0 it holds

F (u) ≤ lim inf
ε→0

Fε(uε) .

(ii) (lim sup inequality) For every u ∈ X there exist uε ∈ X, ε > 0, such that
uε → u as ε → 0 and

lim sup
ε→0

Fε(uε) ≤ F (u) .
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1
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Figure 15: The phase field variable typically has a profile with a phase transition
on a diffuse interface of thickness ε.

We note that the concept of Γ-limits is more general and can be generalized to
more general spaces, see [44]. The notion of Γ-limit is in particular appropriate
for sequences of variational problems as under appropriate assumptions minima
of Fε will converge to minima of F , see [21].

It was shown in [117] and [118] that the Ginzburg-Landau energies Eε defined
in (5.32) Γ-converge to a multiple of the perimeter functional, see (2.1). It turns
out that a suitable metric for this convergence is induced by the L1(Ω)-norm and
hence we extend Eε to L1(Ω) by setting

Eε(ϕ) :=

{

∫

Ω
( ε
2
|∇ϕ|2 + 1

ε
Ψ(ϕ)) dx if ϕ ∈ H1(Ω) ,

∞ if ϕ ∈ L1(Ω) \H1(Ω) .

Under appropriate assumptions on Ψ and Ω it can be shown that the functionals
Eε in fact Γ-converge to the functional

E(ϕ) :=

{

cΨ
∫

Ω
|∇χ{ϕ=1}| if ϕ ∈ BV (Ω, {−1, 1}) ,

∞ if ϕ ∈ L1(Ω) \BV (Ω, {−1, 1}) ,

where cΨ :=
∫ 1

−1

√

2Ψ(z)dz. This means we have

Eε
Γ

−→ E as ε → 0

with respect to the L1–topology. This Γ-convergence result is stable under adding
an integral constraint for Eε in the functional which is important in many ap-
plications where this corresponds to a mass conservation property. We refer to
[117, 118] and [21] for more details. In later sections we will relate gradient flows
of Eε to the gradient flows of the area functional E discussed in Section 2.
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5.3 Phase field models as gradient flows

We now consider different gradient flows involving the energy Eε. Before dis-
cussing the gradient flows we note that the first variation δEε

δϕ
of Eε at ϕ ∈ H1(Ω)

in a direction v ∈ H1(Ω) is given by

δEε

δϕ
(ϕ)(v) :=

d

ds
Eε(ϕ+ sv)|s=0 =

∫

Ω

(ε∇ϕ · ∇v + 1
ε
Ψ′(ϕ) v) dx .

5.3.1 The Allen-Cahn equation

Choosing the L2–inner product for functions defined on Ω we now obtain the
equations for the L2–gradient flow of Eε as follows

〈∂tϕ, v〉L2 = −

∫

Ω

(ε∇ϕ · ∇v + 1
ε
Ψ′(ϕ) v) dx

which has to hold for all times and all suitable test functions v. For functions ϕ
which are smooth enough the above is equivalent to

∂tϕ = ε∆ϕ− 1
ε
Ψ′(ϕ) in Ω ,

∂ϕ

∂n
= 0 on ∂Ω

which follows after integration by parts with the help of the fundamental lemma
of the calculus of variations.

5.3.2 The Cahn-Hilliard equation

It is also possible, similar as in Section 2.4 where we considered gradient flows
of the area functional, to consider an H−1–gradient flow of the energy Eε which
preserves the integral of ϕ. We define

H1
m(Ω) =

{

u ∈ H1(Ω) | −
∫

Ω
u dx = m

}

with m ∈ R
+ a given constant. For v1, v2 with

∫

Ω
vi dx = 0, i = 1, 2, we define

u1, u2 ∈ H1
0 (Ω) as weak solutions of

−∆ui = vi in Ω ,
∂ui

∂n
= 0 on ∂Ω .

Since the ui are the solutions of a Neumann problem for the Laplace operator we
set ui = (−∆N )

−1vi. The H−1–inner product is now given as

〈v1, v2〉H−1 :=

∫

Ω

(∇(−∆N )
−1v1) · (∇(−∆N )

−1v2) dx

=

∫

Ω

∇u1 · ∇u2 dx =

∫

Ω

v1u2 dx =

∫

Ω

v2u1 dx .
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For the H−1–gradient flow we have

〈∂tϕ, v〉H−1 = −

∫

Ω

(ε∇ϕ · ∇v + 1
ε
Ψ′(ϕ)v) dx

for test functions v. Taking the definition of the H−1–inner product into account
we observe after integration by parts that a smooth solution of the gradient flow
equation is a solution of the following boundary value problem:

∂tϕ = ∆(−ε∆ϕ + 1
ε
Ψ′(ϕ)) in Ω , (5.33)

∂ϕ

∂n
= 0 , ∂∆ϕ

∂n
= 0 on ∂Ω . (5.34)

The facts that the Allen-Cahn equation and the Cahn-Hilliard equation are re-
spectively the L2– and the H−1–gradient flow of the Ginzburg-Landau energy Eε

has first been discussed by Fife [70, 71]. The equation (5.33) is a parabolic partial
differential equation of fourth order which is called the Cahn-Hilliard equation,
see [57] and [129] for more details. Solutions of (5.33), (5.34) fulfill

d

dt

∫

Ω

ϕdx = 0 ,
d

dt
Eε(ϕ) ≤ 0

which are the analogues of Proposition 2.1 which stated the related result for
surface diffusion which is the H−1–gradient flow of the area functional.

For later use we remark that a variant of the Cahn-Hilliard equation has a
degenerate mobility M(ϕ) := (1 − ϕ2)+ := max(0, 1 − ϕ2) and in this case we
replace (5.33) by

∂tϕ = ∇ · (M(ϕ)∇(−ε∆ϕ + 1
ε
Ψ′(ϕ))) .

How to obtain this equation as a gradient flow of a suitably weighted H−1–inner
product is discussed by Taylor, Cahn [158] and an existence analysis for this
equation is given in [58].

5.3.3 The phase field system

It is also possible to formulate a phase field analogue of the full Stefan problem
(4.24)-(4.26). We derive a simplified version of the phase field system, similar as
in a paper by Penrose and Fife [133] with the help of the gradient flow perspective.
To this end we consider the unknowns interfacial energy e and phase field ϕ for
which we define the functional

E(e, ϕ) =

∫

Ω

(s(e, ϕ) + ε
2
|∇ϕ|2 + 1

ε
Ψ(ϕ))dx .

We now take the inner product 〈e1, e2〉H−1 + 〈ϕ1, ϕ2〉L2 and obtain as gradient
flow (not taking boundary conditions into account)

(−∆N )
−1∂te = −

δE

δe
, (5.35)

∂tϕ = −
δE

δϕ
. (5.36)
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Defining s(e, ϕ) = 1
2
(e− ϕ)2 and u = e− ϕ we obtain

∂s

∂e
= u ,

∂s

∂ϕ
= −u

and hence we can rewrite (5.35), (5.36) as

∂t(u+ ϕ) = ∆u , (5.37)

∂tϕ = ε∆ϕ− 1
ε
Ψ′(ϕ) + u . (5.38)

This is the phase field system and u typically is interpreted as temperature or
chemical potential. We refer to [26, 33, 78, 133, 153, 165] for more information on
the phase field model which in particular discuss thermodynamically consistent
phase field models.

5.4 Sharp interface limits

It is possible to relate the gradient flows for the area functional and the gradient
flows for the Ginzburg-Landau functional. In all situations discussed above the
time dependent solutions (ϕε)ε>0 of a phase-field type equation converge to a
function ϕ0 taking only values ±1. The boundary between the sets {ϕ0 = 1} and
{ϕ0 = −1} is a (maybe “generalized”) surface for which an evolution law similar
as the ones discussed in Sections 2 and 3 will hold.

1.) The Allen-Cahn equation
After a suitable rescaling in time the Allen-Cahn equation is given as

ε∂tϕε − ε∆ϕε +
1
ε
Ψ′(ϕε) = 0 .

In the limit ε → 0 we obtain that the surface separating the sets {ϕ0 =
1} and {ϕ0 = −1}, compare the Figures 14 and 15, will evolve by mean
curvature flow

V = H .

There are many results on this limit using quite different methods. We refer
e.g. to [24, 34, 48, 68, 102] for details.

2.) The Cahn-Hilliard equation
In order to discuss the sharp interface limit of the Cahn-Hilliard equation
(5.33) we restate the equation as a system

∂tϕε = ∆uε , (5.39)

uε = −ε∆ϕε +
1
ε
Ψ′(ϕε) . (5.40)

30



In the limit ε → 0 one obtains the Mullins-Sekerka problem, see (2.15)-
(2.17),

0 = ∆u in Ω− ∪ Ω+ , (5.41)

2V = −[∇u]+− · ν on Γ , (5.42)

2u = cΨH on Γ . (5.43)

We obtain the factor 2 in (5.42) in comparison to (2.16) because ϕ jumps
from −1 to 1 whereas in (2.16) we considered the characteristic function of
phase 2 which has the jump one across the interface. The different factor
on the right hand side in (5.43) in comparison to (2.17) is explained by the
fact that in E the surface area is weighted by the factor cΨ. The asymptotic
limit of the Cahn-Hilliard equation has been studied in [4, 132, 154].

3.) The nonlocal Allen-Cahn equation
For the area functional we considered an L2–gradient flow which preserves
the enclosed volume by requiring that the normal velocities have mean zero.
One can do something similar for the Ginzburg-Landau energy and obtains
a gradient flow which, taking Neumann boundary conditions into account,
preserves the integral of ϕ:

ε∂tϕε − ε∆ϕε +
1
ε
Ψ′(ϕε) =

1
ε
−

∫

Ω

Ψ′(ϕε) dx .

As asymptotic limit for ε → 0 one obtains the nonlocal mean curvature
flow, compare (2.8),

V = H −−

∫

Γ

H .

This asymptotic limit was studied by [25] in the radially symmetric case
and in [36] for general geometries.

4.) The Cahn-Hilliard equation with degenerate mobility
In Subsection 2.4 we studied two different H−1-gradient flows of the area
functional. One was motion by surface diffusion, a local geometric evolu-
tion law, and the second was the Mullins-Sekerka free boundary problem.
It turns out that we obtain both as asymptotic limits of Cahn-Hilliard
equations. We already saw that the Mullins-Sekerka evolution is the sharp
interface limit of the Cahn-Hilliard equation.

Taking a degenerate mobility in the Cahn-Hilliard equation and rescaling
in time we have

ε∂tϕε = ∇ · ((1− ϕ2
ε)+∇uε) ,

uε = −ε∆ϕε +
1
ε
Ψ′(ϕε)
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and formal arguments by Cahn, Elliott and Novick-Cohen [30] indicate that
solutions of this system converge to motion by surface diffusion, i.e. the
limiting evolving surface fulfills

V = −dΨ∆ΓH with a suitable constant dΨ ∈ R .

We remark here that it is still an open problem to justify this limit rigor-
ously.

5.) The phase field system
It is also possible to relate the phase field equations to the Stefan problem
(4.24)-(4.26) discussed in Section 4. We restrict ourselves to the isotropic
case, i.e. in (4.24)-(4.26) we choose β as constant and Hγ = γH with
a constant γ. In order to obtain the isotropic variant of (4.24)-(4.26) we
formulate (5.37)-(5.38) with the help of physical constants as follows

∂t(ϑu+ λ
2
ϕ) = K∆u , (5.44)

cΨ
a
2
u = εβ∂tϕ− γε∆ϕ+ γ

ε
Ψ′(ϕ) . (5.45)

It can be shown that this system converges to (4.24)-(4.26) (for K− = K+)
in the sharp interface limit ε → 0. This has been analyzed with the help of
formally matched asymptotic expansions by Caginalp [27, 28], see also [53],
and was later shown rigorously by Caginalp and Chen [29]. We remark that
(5.44), (5.45) also contains the Allen-Cahn equation and the Cahn-Hilliard
equation as special cases by setting either a = 0 or (ϑ = 0, β = 0). Also
the case ϑ = 0 is of importance and is called the viscous Cahn-Hilliard
equation, see [128]. By choosing β = 0 one obtains the Stefan problem
with Gibbs-Thomson law as the asymptotic limit, see [134, 144].
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(2011)

[112] Mayer, U.F.: Two-sided Mullins-Sekerka flow does not preserve convex-
ity. Electronic Journal of Differential Equations, Conference 1, 171–179
(1998)

[113] Mayer, U.F.: A numerical scheme for moving boundary problems that
are gradient flows for the area functional. Euro. Jnl of Applied Math-
ematics 11, 61–80 (2000)

[114] Mayer, U.F., Simonett, G.: Self-intersections for the surface diffusion
and the volume-preserving mean curvature flow. Differential Integral
Equations 13(7-9), 1189–1199 (2000)

[115] Meirmanov, A.M.: The Stefan Problem. De Gruyter, Berlin-New York
(1992)

[116] Mielke, A., Theil, F., Levitas, V.I.: A variational formulation of rate-
independent phase transformations using an extremum principle. Arch.
Ration. Mech. Anal. 162(2), 137–177 (2002)

[117] Modica, L.: The gradient theory of phase transitions and the minimal
interface criterion. Arch. Rational Mech. Anal. 98, 123–142 (1987)

41



[118] Modica, L., Mortola, S.: Un esempio di Γ-convergenza. Boll. Un. Mat.
Ital. B 14(5), 285–299 (1977)

[119] Morgan, F.: Geometric measure theory. A beginner’s guide. Fourth
edition. Elsevier/Academic Press, Amsterdam (2009)

[120] Mucha, P.: Regular solutions to a monodimensional model with dis-
continuous elliptic operator. Interfaces Free Bound. 14, 145–152 (2012)

[121] Mucha, P.: On weak solutions to the Stefan problem with Gibbs-
Thomson correction. Differential Integral Equations 20(7), 769–792
(2007)

[122] Mucha, P., Rybka, P.: A note on a model system with sudden direc-
tional diffusion. J. Stat. Phys. 146, 975–988 (2012)

[123] Mullins, W.W.: Two-dimensional motion of idealized grain boundaries.
J. Appl. Phys. 27, 900–904 (1956)

[124] Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333–
339 (1957)

[125] Niethammer, B.: Derivation of the LSW-theory for Ostwald ripening
by homogenization methods. Arch. Ration. Mech. Anal. 147(2), 119–
178 (1999)

[126] Niethammer, B., Otto, F.: Ostwald ripening: the screening length
revisited. Calc. Var. PDE 13(1), 33–68 (2001)

[127] Niethammer, B., Pego, R.L.: Non-self-similar behavior in the LSW
theory of Ostwald ripening. J. Statist. Phys. 95(5-6), 867–902 (1999)

[128] Novick-Cohen, A.: On the viscous Cahn-Hilliard equation. Material
instabilities in continuum mechanics (Edinburgh, 19851986), 329–342,
Oxford Sci. Publ., Oxford Univ. Press, New York (1988)

[129] Novick-Cohen, A.: The Cahn-Hilliard equation: mathematical and
modeling perspectives. Adv. Math. Sci. Appl. 8(2), 965–985 (1998)

[130] Osher, S., Fedkiw, R.: Level set methods and dynamic implicit sur-
faces. Applied Mathematical Sciences, 153, xiv+273 pp. Springer Ver-
lag, New York (2003)

[131] Otto, F.: The geometry of dissipative evolution equations: the porous
medium equation. Comm. Partial Differential Equations 26 (1-2), 101–
174 (2001)

42



[132] Pego, R.L.: Front migration in the nonlinear Cahn-Hilliard equation.
Proc. Roy. Soc. London Ser. A 422(1863), 261–278 (1989)

[133] Penrose, O., Fife, P.C.: Thermodynamically consistent models of
phase-field type for the kinetics of phase transitions. Phys. D 43(1),
44–62 (1990)

[134] Plotnikov, P.I., Starovoitov, V.N.: Stefan problem with surface tension
as a limit of the phase field model. Differential Equations 29(3), 395–
404 (1993)

[135] Prüss, J., Simonett, G.: Stability of equilibria for the Stefan problem
with surface tension. SIAM J. Math. Anal. 40(2), 675–698 (2008)

[136] Prüss, J., Simonett, G., Zacher, R.: On normal stability for nonlinear
parabolic equations. Discrete Contin. Dyn. Syst. 2009, Dynamical Sys-
tems, Differential Equations and Applications. 7th AIMS Conference,
suppl., 612–621

[137] Prüss, J., Simonett, G.: On the two-phase Navier-Stokes equations
with surface tension. Interfaces Free Bound. 12(3), 311–345 (2010)

[138] Radkevich, E. V.: The Gibbs-Thompson correction and conditions for
the existence of a classical solution of the modified Stefan problem.
Dokl. Akad. Nauk SSSR 316(6), 1311–1315 (1991). Translation in So-
viet Math. Dokl. 43(1), 274–278 (1991)
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(1996)

[162] Voorhees, P.W.: The Theory of Ostwald ripening. J. Stat. Phys. 38,
231–252 (1985)

[163] Voorhees, P.W.: Ostwald ripening of two-phase mixtures. Ann. Rev.
Mater. Sci. 22 197–215 (1992)

[164] Wagner, C.: Theorie der Alterung von Niederschlägen durch Umlösen.
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