Yihong Du

Evolution and long-time behaviour of the free boundary in nonlinear Stefan problems

We consider the following free boundary problem

$$\begin{cases} u_t - d\Delta u = f(u) & \text{for } x \in \Omega(t), t > 0, \\ u = 0 \text{ and } u_t = \mu |\nabla_x u|^2 & \text{for } x \in \Gamma(t), t > 0, \\ u(0, x) = u_0(x) & \text{for } x \in \Omega_0, \end{cases}$$
(1)

where $\Omega(t) \subset \mathbb{R}^n$ $(n \geq 2)$ is bounded by the free boundary $\Gamma(t)$, with $\Omega(0) = \Omega_0$, μ and d are given positive constants. Our assumptions on f(u) include monostable, bistable and combustion type nonlinearities.

We show that the free boundary $\Gamma(t)$ is C^1 outside the convex hull of Ω_0 , and as $t \to \infty$, either $\Gamma(t)$ remains bounded and $u(t, .) \to 0$ in the L^{∞} norm, or $\Gamma(t)$ goes to infinity in the sense that it is contained in an annulus of the form $\{R(t) - C_0 \leq |x| \leq R(t)\}$, with $R(t) \to \infty$ as $t \to \infty$. Moreover, $R(t)/t \to k_0 > 0$ as $t \to \infty$.

This is joint work with Hiroshi Matano (Tokyo) and Kelei Wang (Sydney).