Numerical investigation of eigenvalues of ∞ -Laplacian operator

F. Bozorgnia

Persian Gulf University, Bushehr, Iran

Let Ω be a bounded domain in \mathbb{R}^n . Eigenvalues of infinity Laplacian are defined as limit of eigenvalues of p-Laplace operator. Consider the following minimization problem which is called Rayleigh quotient

$$\min_{u \in W_0^{1,p}(\Omega)} \frac{\int_{\Omega} |\nabla u|^p dx}{\int_{\Omega} |u|^p dx} \quad 1$$

The corresponding Euler-Lagrange equation is

$$\operatorname{div}(|\nabla u|^{p-2}\nabla u) + \lambda |u|^{p-2}u = 0.$$
(1)

Let u_p be the unique positive solution of equation (1) which satisfies

$$\int_{\Omega} |u_p|^p dx = 1.$$

If u_{∞} is a limiting point of $\{u_p\}$, i.e., there exists a subsequence $p_j \to \infty$ such that

$$u_{p_i} \to u_{\infty}$$
 uniformly in Ω .

Then in [1, 2] it is shown that u_{∞} is a viscosity solution of

$$\min\left\{\left|\nabla u\right| - \Lambda u, -\Delta_{\infty}u\right\} = 0.$$
(2)

Let ∇u and $D^2 u$ denote the gradient and Hessian of u, respectively, and $F_{\Lambda}(x, u, \nabla u, D^2 u)$ be a continuous real valued function defined on $\Omega \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{S}^n$, with \mathbb{S}^n being the space of symmetric $n \times n$ matrices. Let define the function F_{Λ} by

$$F_{\Lambda}(x, u, \nabla u, D^2 u) = \begin{cases} \min\{|\nabla u| - \Lambda u, -\Delta_{\infty} u\} & u > 0, \\ -\Delta_{\infty} u & u = 0, \\ \max\{|\nabla u| - \Lambda u, -\Delta_{\infty} u\} & u < 0. \end{cases}$$
(3)

A non-zero function $u \in C(\overline{\Omega}), u = 0$ on $\partial\Omega$, is called an ∞ -eigenfunction, if there exist $\Lambda \in \mathbb{R}$ such that the following holds in viscosity sense

$$F_{\Lambda}(x, u, \nabla u, D^2 u) = 0, \quad \text{in } \Omega.$$

In this talk, a convergent finite difference scheme to approximate the first and the second eigenfunctions defined by equations (2) and (3) and corresponding eigenvalues is given.

REFERENCES

- P. Juutinen and P. Lindqvist, On the higher eigenvalues for the ∞- eigenvalue problem, Calc. Var. Partial Differential Equations 23 (2005), 169-192.
- [2] P. Juutinen, P. Lindqvist, and J. J. Manfredi, The ∞ eigenvalue problem, Arch. Ration. Mech. Anal. 148 (1999), 89-105,