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Mathematical Model

Two cases: L = Iω
Electric field E∞ and constant L.
Charge Q and constant L.

Notation

D1(t) Fluid drop domain
ρ1 Drop density
µ1 Drop viscosity
p(1) Drop pressure
u(1) Drop velocity

D2(t) Outer fluid domain
ρ2 Outer fluid density
µ2 Outer fluid viscosity
p(2) Outer fluid pressure
u(2) Outer fluid velocity

ω Angular velocity
∂D(t) Fluid interface
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Mathematical Model

Stokes equation{
µi∆u(i) −∇Π(i) = 0 , in Di (t)
∇ · u(i) = 0 , in Di (t)

, i ∈ {1, 2}

Boundary condition

(
T (2) − T (1)

)
n =

(
2γH− % L

2

2I2 r
2
axis −

σ2

2ε0

)
n , on ∂D (t)

Laplace equation
∆V = 0 , in D2 (t)
V = V0 , in ∂D (t)
V → −E∞z +O(|r|−1) , as |r| → ∞
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Boundary integral formulation
Fredholm integral equation of the 2nd kind for the velocity:

uj(r′) =− 1
4π (µ1 + µ2)

∫
∂D(t)

fi(r)Gij(r, r′) dS(r)︸ ︷︷ ︸
Single layer potential

− µ1 − µ2

4π (µ1 + µ2)

∫ P V

∂D(t)
ui(r)Tijk(r, r′)nk(r) dS(r)︸ ︷︷ ︸

Double layer potential

Gij(r, r′) = δij

|r− r′|
+

(ri − r′
i)(rj − r′

j)
|r− r′|3

Stokeslet

Tijk(r, r′) = −6
(ri − r′

i)(rj − r′
j)(rk − r′

k)
|r− r′|5

Tenselet

fi(r) =
[
2γH(r)− % L

2

2I2 r
2
axis −

σ2

2ε0

]
ni(r) Traction

where i, j, k ∈ {1, 2, 3} and r , r′ ∈ ∂D (t).
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Numerical algorithm

Algorithm
1 Compute the volume and moment of inertia about the z-axis.
2 Calculate mean curvature and charge density of drop.
3 Solve linear system to obtain velocity field at the boundary.
4 Move the boundary with an Euler explicit scheme:

r (tn+1) = r (tn) + u (tn) ∆t .

5 Regularization of the mesh (if necessary):
Delaunay remeshing.
Mesh relaxation.
Mesh refinement.

Repeat above steps until tmax is reached.
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Charge and rotation at constant L

Asymptotic expansion: L2 � 1

Young-Laplace equation

δp = 2γH− % L
2

2I2 r
2
axis −

σ2

2ε0
, on ∂D

Spheroidal approximation:

Energy formulation
Minimize: Etotal = Earea + Ekinetic + Eelectrostatic , V = 1
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Charge and rotation at constant L
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Numerical Equilibrium Solutions
Prolate Model Solutions
Oblate Model Solutions
Approx. Equilibrium Solutions (Prolate)
Approx. Equilibrium Solutions (Oblate)
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Charge and rotation at constant L
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Asyptotic expansion
Oblate Spheroid
Numerical solution

χ = 0.892
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Charge and rotation at constant L

Stability analysis
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Electric field and rotation at constant L
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Numerical spheres
Numerical experiments
Numerical experiments
Theoretical spheroidal solutions (Rosenkilde)
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Electric field and rotation at constant L
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y = 0.70458*x2 + 0.089804*x + 0.57104

Numerical results
   Quadratic fitting
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Taylor cones
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Taylor cones

Self-similarity
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Taylor cones
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L = 0
L = 0.2 (Time Evolution)

β∗ ≈ 0.535
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Conclusions & Future Research Lines

Conclusions
Adaptive BEM to simulate droplet evolution.
Theoretical models to approximate charged rotating drops.
Stability analysis shows ellipsoidal configurations and
singularities (Taylor cones and two-lobed drop breakup).
Linear relationship for shapes of rotating drops subject to
uniform electric fields with same aspect ratio.
Taylor cone semiangle is not affected by small rotations.

Research Lines
Evolution of charged rotating drops subject to electric fields.
Describe the space of parameters (χ,E∞, L).
Understand the role of rotation on the stability of the system.



Problem Numerical Method Results Conclusions & Future Research Lines

Thank you for your attention.

Questions?
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Mean curvature

Algorithm 1 Paraboloid fitting
1: Take np initial approximation to the outward unit normal to ∂D at p.
2: repeat
3: Choose local coordinates (x′, y′, z′) at p and z′-axis along np.
4: Find (x′

i, y
′
i, z

′
i) coordinates of the adjacent nodes to p.

5: Minimize:

F =
Np∑
i=1

(
Ax′

i +By′
i + C(x′

i)2 +Dx′
iy

′
i + E(y′

i)2 − z′
i

)2
.

6: (np)n ← (−A,−B, 1)/(1 +A+B)1/2.
7: until |(np)n − np| < ε.

8: Mean curvature kp = (1 +B2)C −ABD + (1 +A2)E
(1 +A2 +B2)3/2 .

Fast convergence iterative method
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Surface charge density

Write:
σ = V0σ0 + σind

Solve:

E∞z0 = 1
4πε0

∫
∂D(t)

σind (x)
‖x− x0‖

dS , 1 = 1
4πε0

∫
∂D(t)

σ0 (x)
‖x− x0‖

dS

with:
Q = V0

∫
∂D(t)

σ0 (x) dS +
∫

∂D(t)
σind (x) dS

Linear system at barycenters xl , xj of triangles:

∫
∂D(t)

σ (x)
‖x− xi‖

dS ≈
M∑

j=1
λijσj , λij =

∫
Tj

dS

‖x− xi‖

σj = σ (xj)
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Surface charge density

Case i = j

λii =
6∑

k=1

∫ ∫
Tik

dρ dθ =
6∑

k=1
ak ln (sec (αk) + tan (αk))

Case i 6= j

λij =
Ns∑

k=1
λij,k , λij,k = Area (Tjk)

‖bjk − xi‖
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