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Cell Migration

Important in: Embryonic development, wound healing, metastasis, immune responses.

movie

[ Rodgers 1952 ], http://www.biochemweb.org/neutrophil.shtml



Ideas and Aims

Complex processes ; phenomenological models,
so far: For specific phenomena.

Goal: Provide a robust numerical framework for cell motility
using triangulated surfaces and surface finite elements based on:

• Mechanics: Geometric evolution equations for the cell boundary,
use methods from [ Dziuk 2008 ], [ Barrett, Garcke, Nürnberg 2008 ].

• Chemistry: Surface PDEs (reaction diffusion equations) on the cell boundary,
use the method from [ Dziuk, Elliott 2007 ].
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Geometric Evolution Equations

Emerge from a force balance on the plasma membrane, contributions:

• Resistance to stretching, surface energy Es =
∫

Γ ks , resulting in

Fs := −ksH, ks ≥ 0 surface tension.

• Resistance to bending, elastic energy Eb =
∫

Γ
kb
2
H2, resulting in

Fb := kb
(
∆ΓH + H|∇Γν|2 − 1

2
H2
)
, kb ≥ 0 bending rigidity.

• Viscous force opposing the motion:

Fvisc = −ωV , ω > 0 kinetic coefficient.

• Protrusive force, depending on surface fields a = (a1, . . . , aN),

Fp = kp(a).

• Global force due to a constraint on enclosed volume (Lagrange multiplier).

• External forces, eg other cells, obstacles.
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Geometric Evolution Equation:

ωV = −ksH + kb
(
∆ΓH + H|∇Γν|2 − 1

2
H2
)

+ kp(a) + λ (+Fext).

Numerical methods for fourth order equations:

• Phase field: [ Du, Liu, Ryham, Wang 2005, 2009 ], [ Wang, Du 2007, 2008 ],
[ Campelo, Hernández-Machdo 2006 ], [ Lowengrub, Rätz, Voigt 2009 ],
[ Shao, Rappel, Levine 2010 ]

• Level set: [ Mâıtre, Cottet (et al) 2004, 2006, 2009 ], [ Droske, Rumpf 2004 ]

• Parametric: [ Wintz, Döbereiner, Seifert 1996 ], [ Bloor, Wilson 1999 ],
[ Mayer, Simonett 2002 ], [ Clarenz, Diewald, Dziuk, Rumpf, Rusu 2004 ],
[ Bänsch, Morin, Nochetto 2005 ], [ Klug et al 2006, 2008 ], [ Dziuk 2008 ],
[ Barrett, Garcke, Nürnberg 2008 ]

Fitting problems require highly efficient solvers ; parametric approach.

Issue: Robustness with respect to mesh distortions.
Remeshing method: [ Clarenz, Dziuk ].
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• Parametric: [ Wintz, Döbereiner, Seifert 1996 ], [ Bloor, Wilson 1999 ],
[ Mayer, Simonett 2002 ], [ Clarenz, Diewald, Dziuk, Rumpf, Rusu 2004 ],
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• Level set: [ Mâıtre, Cottet (et al) 2004, 2006, 2009 ], [ Droske, Rumpf 2004 ]
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Motivation: Surface PDEs

Reactions leading to polarisation take place (possibly not only) within the cortex close
to the plasma membrane.

[ Dalous et al 2008 ]

Postulate advected reaction-diffusion system on the plasma membrane.

Interpretation:

• Model for chemistry taking place on the plasma membrane itself,

• or quantities effectively account for mechanical impact due to chemical reactions
within the cell.
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Surface reaction-advection-diffusion equations:

∂•t a +
(
a∇Γ · v

)
= Da∆Γa + r(a)

for the quantities a = (a1, . . . , aN) : Γ→ RN .

Other potential benefit: Computationally cheaper than bulk system.

Computational method: Extension of [ Dziuk, Elliott 2007 ].
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Ex 1: Moving Dictyostelium Cells Involving Pseudopod Formation

[ King, Insall 2009 ]



Ex 1: Meinhardt-NMWI Model

Model for polarisation and cell boundary movement
proposed by [ Neilson, Mackenzie, Webb, Insall 2011 ]
based on work by [ Meinhardt 1999 ] for chemotaxis:

Cell boundary Γ is a curve moving with velocity v = Vν,

∂•t a + a∇Γ · v = Da∆Γa + ra
(
s

a2/b + ba

(sc + c)(1 + saa2)
− a
)
,

∂•t b + b∇Γ · v = Db∆Γb + rb

(
—

∫
Γ
a− b

)
,

∂•t c + c∇Γ · v = Dc∆Γc + bca− rcc,

s = ηtm + Rt
m (signal, discretised),

dRt
m = θm(Lm)

(
µm(Lm)− Rt

m

)
dt + σm(Lm)dW t

m (ηtm similarly),

V = Kprota− λκ (enclosed area preserved).



Ex 1: Amended Model

MASDOC Research Study Group,
Problem formulations: [ Brett, Eyers, McCormick, Scott ],
Project implementation: [ Amarasinghe, Aylwin, Madhavan, Pettitt ].

Ideas:

• reduce system, remove equation for global inhibitor,

• account for membrane mechanics,

• hard constraint on enclosed area with Lagrange multiplier.

∂•t a + a∇Γ · v = Da∆Γa + ra
(
s

a2/b + ba

(sc + c)(1 + saa2)
− a
)
,

b = —

∫
Γ
a,

∂•t c + c∇Γ · v = Dc∆Γc + bca− rcc,

V = kb∆ΓH + kb|∇Γν|2(H − Hs)− 1
2
kb(H − Hs)2H − ksH + Kprota− λ.



Ex 1: Effectivity

Simulated cell, response to the change of the direction to the chemotactic signal.

Parameters: Mostly from [ Neilson, Mackenzie, Insall, Webb 2011 ] but rescaled.
D1 = Da D3 = Dc ks kb
1.0 7.0 25.0 3.0
2.22× 10−3 µm/s 1.55× 10−2 µm/s 1.0 pN 1.92 pN µm2



Ex 1: Signal Strength

Choice of the ’signal’:

dRt
m = θm

(
µm − Rt

m

)
dt + σmdW

t
m.

1. Given a direction dr ∈ Rn towards the source of the chemoattractant,
µ = 0.5 + ρ closest to the source, µ = 0.5 furthest away, linear interpolation.

2. Given the origin xc of the chemoattractant,
µ = exp(−c|x− xc |), x ∈ Γ, with a given parameter c > 0.

ρ = 0.0 ρ = 0.2 ρ = 0.4 ρ = 1.0



Ex 1: Statistics

ρ CI PL(x) PL(y) Speed (µm/s)
0 N/A 0.4336 (0.2346) 0.4601 (0.2442) 0.0445
0.02 0.7196 (0.2877) 0.4938 (0.2188) 0.3418 (0.1999) 0.0440
0.04 0.9423 (0.0742) 0.6968 (0.1177) 0.2005 (0.1163) 0.0446
0.06 0.9888 (0.0133) 0.8510 (0.0511) 0.1088 (0.0685) 0.0470
0.08 0.9860 (0.0120) 0.8490 (0.0350) 0.1288 (0.0676) 0.0478
0.1 0.9898 (0.0141) 0.8489 (0.0272) 0.0987 (0.0734) 0.0476

Mean value (standard deviation) of chemotaxis measures at t = 0.5 for 100 migrating cells,
CI (chemotactic index): Cosine of angle between the direction of the chemotactic gradient
and the direction of cell movement, [ Hecht, Skoge, Charest et al. 2011 ],
PL (persistence length): Displacement in x or y direction divided by trajectory length,
[ Cheng, Heilman, Wasserman et al. 2007 ].

Results are quantitatively comparable to those in [ Ramsey 1972 ] for migrating
leukocytes and in [ Hecht, Skoge, Charest et al. 2011 ] on Dictyostelium cells.



Ex 1: Extension to 3D

t = 0.055 t = 0.075 t = 0.085

t = 0.09 t = 0.095 t = 0.1



Ex 2: Persistent Motion of Keratocytes

Steady state motility, nearly constant shape.

Figure 1a from [ Keren, Pincus, Allen et al. 2008 ]



Ex 2: SRL Model

Proposed by [ Shao, Rappel, Levine 2010 ]:

Phase field model for cell domain (force balance on plasma membrane):

τ∂tφ = −kb
(
∆− 1

ε2 G
′′(φ)

)(
∆φ− 1

ε2 G
′(φ)

)
+ ks

(
∆φ− 1

ε2 G
′(φ)

)
−MA

(∫
φ− A0

)
|∇φ|+

(
αV − βW

)
|∇φ|.

Turing type system within cell,

∂t(φV ) = DV∇ · (φ∇V ) + φ(a− bVW 2 − cV ),

∂t(φW ) = DW∇ · (φ∇W ) + φ(bVW 2 − eW ).

V : actin filaments (protrusion), W : actin bundles with myosin (retraction).



Ex 2: Surface Model

Observation: Coupling term to the concentrations only lives on cell membrane.

Idea: Activator-depleted substrate model [ Lefever, Prigogine 1968 ]:

∂•t a1 + a1∇Γ · v = D1∆a1 + γ(k1 − a1 + a2
1a2),

∂•t a2 + a2∇Γ · v = D2∆a2 + γ(k2 − a2
1a2).

Coupling term:
Fp = k1a1 + k2a2

with k1 < 0 (retraction) and k2 > 0 (protrusion).



Ex 2: Effectivity

Initial position (right) and position at t = 5 for k2 = 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8

a1 concentrations

a2 concentrations

D1 D2 ks kb k2

0.5 50.0 2.0 2.0 0.6-1.8
4.44× 10−2 µm/s 4.44µm/s 1.0 pN 16.0 pN µm2 1.33–4.0×10−2 s−1



Ex 2: Statistics

Data: [ Keren, Pincus, Allen et al. 2008 ]



Conclusion

We presented a general model for cell motility based on a geometric evolution
equation for and a reaction-diffusion system on the moving cell boundary.

This is motivated by

• availability of numerical methods to deal with such equations,

• efficiency thanks to the reduced dimension.

Evidence for the effectivity of this approach has been provided by reproducing some
results on

• neutrophil movement governed by the formation of protrusions,
[ Meinhardt 1999 ], [ Neilson, Mackenzie, Insall, Webb 2011 ],

• persistently crawling keratocytes,
[ Keren, Pincus, Allen et al. 2008 ], [ Shao, Rappel, Levine 2010 ].

Reference: [ Elliott, S., Venkataraman, Royal Society Interface 2012 ]

Thanks for your attention!
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