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Surface dissolution

e We consider the problem of surface dissolution.

e Namely, we look at dealloying of a binary alloy by the selective
removal of one component via electrochemical dissolution in
an electrolyte such that there is surface phase separation of
the other component.

e A prototypical example is that of the etching of silver in an
Ag—Au alloy whose surface is immersed in an electrolyte.

Figure: Taken from !

L Eilks and Elliott 2008



Surface dissolution

Find a periodic evolving surface I'(t), t € (0, T) and a periodic
function c: e, 771 (t) X {t} = R such that the surface moves

with velocity
V = w(c)(1—90H)v,
and c solves the equation

0°c+cVr-V — Vr(b(C)VW) =gV v
—yArc +vY'(c) = w.



Simplifications

We will assume:
e velocity V' known!
e constant mobility: b(c) =1
e no bulk forcing

e closed surface



Simplifications

We will assume:
e velocity V' known!
e constant mobility: b(c) =1
e no bulk forcing
e closed surface

Given {I(t)}, t € [0, T] find a function
u: Useo, ) T(t) x {t} = R such that u satisfies

O%c+cVr-V+Arw=0

1
—eAru+ fw/(u) = w.
g
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@ Derivation



Tranport formulae

We define the material derivative of u by

O'u=0u+v-Vu.

Lemma (Transport Lemma?)
Assume u is a function such that all the following quantities exist.

d/ u:/ O%u -+ uVr - v.
dt Jr(e) r(¢)

2 Dziuk and Elliott 2007



Tranport formulae

We define the material derivative of u by
O'u=0u+v-Vu.
Lemma (Transport Lemma?)
Assume u is a function such that all the following quantities exist.

q u:/ O%u -+ uVr - v.
dt Jr(e) r(¢)

The conservation law

d
= u=— Vr-gq
dt Jr( e

implies
O°u+uVr-v+Vr-g=0.

2 Dziuk and Elliott 2007



Cahn-Hilliard Equation

We take g = —Vrw with w the chemical potential given by
1,
w = —cAru+ gl/) (u).
This leads to the system

O°u+uVr-v—Arw =0 (1a)

—elAru+ éw’(u) —w=0. (1b)



Cahn-Hilliard Equation

We take g = —Vrw with w the chemical potential given by
1,
w = —cAru+ gl/) (u).
This leads to the system

O°u+uVr-v—Arw =0 (1a)

—elAru+ éw’(u) —w=0. (1b)

e mass is conserved: & Jrpu=0

e The Ginzburg-Landau functional does not, in general,
decrease.



@ Finite element method



Triangulated surfaces

In the case v = 0, we simply take a weak form and put h
everywhere!

0t Unop + / Vi, Wy -Vr,¢p =0
I Iy

1
6/ Vr,Un - Vi,én + =9 (Un)pn — / Whén =0
r € [y
for all ¢ € Sp,.




Triangulated surfaces

In the case v = 0, we simply take a weak form and put h
everywhere!

0t Unop + / Vi, Wy -Vr,¢p =0
I Iy

1
6/ Vr,Un - Vi,én + =9 (Un)pn — / Whén =0
r € [y
for all ¢ € Sp,.

Try the same:

Op Unopn + / UndnVr, - Vi + Vr,Wh -V, ¢n =0
h(t) Tn(t)

1
€ Vr,Un - Vr,én + =¢'(Up)dn — Whon =0
Fh(t) € Ih(t)
for all ¢y € Sh(t).

Ih(t)



Discrete material derivative

This gives rise to a discrete material velocity V), only chosen so
that the nodes of I',(t) lies on I'(t), and a discrete material
derivative

8,’,Uh =0:Up + V), - VU,.

Then:
d

a Uy = / @;Uh + Uthh - V.
rh(t) F,,(t)



Discrete material derivative

This gives rise to a discrete material velocity V), only chosen so
that the nodes of I',(t) lies on I'(t), and a discrete material
derivative

8,’,Uh =0:Up + V), - VU,.

Then: J
— Up = / @;Uh + Uthh - V.
dt Jry(e) M(t)

This let’s us define the variational form.

d .
p Unén + Vir,Wh - Vi, (on = / UnOpén
tJr(t) Th(t) Th(t)
1
£ Vr,Un - Vr,én + E¢I(Uh)¢h - Whén =0

My(t) Th(t)

for all ¢, € Sp(t).



Matrix Equations

Lemma (Transport of basis functions)
Let {¢j(-,t)} be a basis for Sy(t) then

an¢; = 0.



Matrix Equations

Lemma (Transport of basis functions)
Let {¢j(-,t)} be a basis for Sy(t) then

e = 0.

The system (2) is equivalence to the matrix problem:
i)
dt

1
eS(t)U(t) + g\Il(U(t)) — M(t)W(t) =0.

(M(t)U(t)) + S(t)W(t) =0

with

M(t);; —/ dioj, S(t)j —/ Vr, i Vr,bj,
I'h(t) Fh(t)

W(a); = /r Racor



Stability of numerical scheme

Theorem (Stability)

There exists a unique solution pair Up, Wy, € Sp(t) that satisfy (2)
which satisfy the bounds

e Z W, dt
sgp (2 bl (rpey) + - /r,,(t)w(Uh)> +/0 IWallta(r )

3 2 1
<c| z||Uno +/ P(Un) | -
<2 H ”Hl(rth) 3 Cho ( )

9 Du, Ju, and Tian 2011



Stability of numerical scheme

Theorem (Stability)

There exists a unique solution pair Up, Wy, € Sp(t) that satisfy (2)
which satisfy the bounds

e Z W, dt
sgp (2 bl (rpey) + - /r,,(t)w(Uh)> +/0 IWhallta(r o)

3 2 1
<c| z||Uno +/ P(Un) | -
(2 H ”Hl(rth) 3 Cho ( )

Furthermore, there exists a constant ¢ > 0 indepdent of h,t, T
such that

[Unll oo (ry(ey) < € (4)

9 Du, Ju, and Tian 2011



Abstract notation — continuous equations

We write

r(t r(t

g(viw,p) = / we Vriv.
r()
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Abstract notation — continuous equations

We write
m(Wa(p):/ we a(W790):/ VFW'VF(;D
r(t) r(t)
g(viw,p) = / we Vrv.
r(t)
So the weak form becomes
m(0®u, @) + g(vi u, ) + a(w, ) =0
1
Ea(u7 90) + gm(¢l(“)7 90) - m(W7 SD) =0.

and the variational form becomes

%m(u, 90) + a(Wv 90) = m(u’ 8'<p).

10/26



Abstract notation - discrete equations

We write

mp(Wh, ¢p) = Whon, ap(Wh, on) = / YV, Wh - Vr,én
Ip(t) Ih(t)

&h( Vi Wh, ¢p) = Whon Vi, Vi.
p(t)
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Abstract notation - discrete equations

We write

mp(Wh, ¢p) = Whon, ap(Wh, on) = / YV, Wh - Vr,én
Ip(t) Ih(t)

&h( Vi Wh, ¢p) = Whon Vi, Vi.
p(t)

So the weak form becomes

mp(0p Un, dn) + &h(Vi; Un, &) + an(Wh, ) =0
ean(Un, on) + %mh(l//(Uh)’ én) — mu(Wh, ¢n) = 0.

and the variational form becomes

d
Emh(Uh, ®n) + an(Wh, én) = mp(Up, Opén)-

11/26



© Effects of domain approximation



Lifted finite elements
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Lifted finite elements

o As before, we define the lift of a finite element function using
the closest point operator:

Sh(p(x, 1), £) = Gp(x, t).
e We define the space of lifted finite element functions as
Sh(t) == {¢h : on € Sh(t)}-

o We adopt the convention of using ¢ = ¢¢.
12 /26



Lifted triangulation

e This lifting process also means for each simplex E(t) in [4(t),
there exists a unique corresponding lifted triangle e(t) in ['(t)

e(t) ={p(x,t): x € E(t)}.

13/26



Lifted triangulation

e We define another discrete material velocity on [ which
describes how the triangles {e(t)} move. We call this vj,.

e This defines discrete material derivative on I for functions
©n(-, t) € Sp(t) such that

Ohpn = (Ohon)"-

13 /26



What this means |

Lemma
For z € HY(I(t)) and ¢ € Sp(t) with lift o, € Sp(t), we have

| mn(z=, 6n) = m(z, on)| < eh? 12 zqr ey 19nl iy cey

(5a)
’ah(Z”Z, on) — a(z, ¢n)| < ch? HVFZ”/}(r(t)) ||Vrh¢h”L2(rh(t))
(5b)

‘gh(Vh;Z’e, ¢n) — 8(vhi 2,9n)| < ch® |zl 2oy I1Dnll 2, ey) -
(5¢)

14 /26



What this means Il

We also have bounds on the error of the different velocities:

Lemma
The difference between the continuous velocity v and the discrete
velocity vy, on I'(t) can be estimated by

lv — vl + A V(v — vp)| < ch?. (6)

The allows us to bound the error of the material derivatives of
n e HY(T(t)) by

18°7 = 85l c2r ey < €h® 191l ey (7)
and if n € H?(T(t))

IVr(9*n = Ohm)l i2(r(e)) < ch? 171l 22y - (8)

15/26



O Well posedness



Well posedness of the Cahn-Hilliard equation

Through showing convergence of the numerical scheme we can
show the following result:

Theorem
There exists a unique solution pair (u, w) to the Cahn-Hilliard
equation (1).

e We start by showing the the lifts of the finite element
solutions Uﬁ, W,f are bounded in
L2(0, T; HY(I(t))) N L>=(0, T; L3(T(t))). We use Lemmas 4
and 5 to translate the results of Theorem 3.

e So we can take a weak limit along subsequences
(U, WE) — (@, ).

e We can show that (&, w) do indeed solve the Cahn-Hilliard
equation.

e Uniqueness is shown using the inverse Laplacian®.

& Blowey 1990
16 /26



@ Error analysis



Error Analysis — Discrete projection

For a function z € HY(I'(t)) with fr(t) z =0, we define the
discrete projection Mpz € Sp(t) of z as the unique solution of

an(Mhz, én) = a(z,¢p)  for all p € Sp(t).

17 /26



Error Analysis — Discrete projection

For a function z € HY(I'(t)) with fr(t) z =0, we define the
discrete projection Mpz € Sp(t) of z as the unique solution of

an(Mhz, én) = a(z,¢p)  for all p € Sp(t).

Lemma
For z € H?(T'(t)), we have that

2
) = ch” [zl ey -

(9)

HZ_Z B nhZHL2(Fh(t))+h Hvr“(z_e = ]

Furthermore, if 9°z € H?(T'(t)), then

oy (z_g —MNpyz)

+h ‘ AV, (27 — Myz)

L2(Fh(t))

2T(®) (10)
< ch*(llzlle(reey) + 10°2l ey )-

17 /26



Splitting the error

We split the error into two parts using the projection from the last
slide

ut— Uy = (ufz — I‘Ihu) -+ (I'Ihu — Uh) = pu + 6
w = W, = (w = Mpw) + (Myw — W) = p* + 6.

18 /26



Splitting the error

We split the error into two parts using the projection from the last
slide

ut— U, = (ufz — MNpu) + (Mpu — Up) = p* + 6
w = W, = (w = Mpw) + (Myw — W) = p* + 6.

We already have bounds on pY and p" so it is left to bound 6 and
0v.

18 /26



Equations for 8% and 6"

Simple manipulation shows

%mh(e“, on) + an(0", dn) — mi(0%, Ohon)

= (mh(aznhu7 ¢h) - m(al.yu7 Sph))
+ (gn( Vi Mhu, én) — g(vis u, o))
+ m(u, 0%pn — Ohn)-

and
can(6, 6n) + < mn( (M) — o/ (Un), &n) — (8", 6n)

= %(mh(w,(nhU), on) — m(¢'(u), ‘Ph))
_ (mh(nhW, on) — m(w, gph))_

19 /26



Bounds on 6" and 6%

Using the geometric bounds and the bounds on the discrete
projection and some simple manipulation leads to

d w
e 11e 12,0y + 10" 2oy

< ce [16“/12(r, o) (11)
h* o
+ C?( 16° ull2qreyy + 1ullEeqrey + 1Wlere) )-

20 /26



Error estimate

Combining this with the bounds on p" and p" gives

Theorem
Let u,w solve (1) and Uy, W, solve (2) we have that

2 T 2
+/ Hw—f —w, < CH
L2(Ty(1)) 0 L2(Fp(t))

I

(12)

€ sup Hu_ — Uy
)

with C given by

C = ce ||uo? +e sup |ul
lluollFa(ro) iy N IHET ()

1 (7, .
ez [ (10l + Wl o

21/26



@ Numerical results



Numerical Results

e To test the convergence of our method, a linear fourth order
problem (¢) = 0) has been implemented using the ALBERTA
finite element toolbox®.

e We used backward Euler method to do the time stepping and
solved the full saddle point system directly.

e We solved on I'(t) given as the zero level set of the function
1

a(t)

with an additional right hand side f calculated so that the
exact solution is given by

®(x, t) = +x3+x3 -1  a(t)=1+0.25sin(107t),

u(x, t) = exp(—36¢et)x1xz.

e We chose 7 = o(h?), e = 0.1 and solved until T =0.1.

® Schmidt, Siebert, Koster, and Heine 2005
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Numerical Results

u— up:

h L2 error eoc H! error eoc
6.08436 - 10~ | 6.3967 - 102 - 3.0977 - 10! -
3.16879-10"1 | 1.8172-1072 | 1.929092 | 1.5948-101 | 1.017693
1.59965 - 101 | 4.6960 - 103 | 1.979579 | 8.0059 - 102 | 1.008141
8.01710-1072 | 1.1850- 103 | 1.993315 | 3.9968 - 10~2 | 1.005633

W — Wp:
h L2 error eoc H! error eoc
6.08436 - 10~1 | 1.5772-1072 — 2.2467 - 101 —
3.16879 - 1071 | 4.4940-1073 | 1.924506 | 9.5519 - 102 | 1.311046
1.59965 - 1071 | 1.1860 - 103 | 1.948837 | 4.5485- 102 | 1.085402
8.01710- 1072 | 2.9300- 10~* | 2.024005 | 2.2407 - 10~2 | 1.024922

23 /26



Numerical results — Cahn-Hilliard example
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e We can use surface calculus to derive a Cahn-Hilliard equation
on an evolving surface.

e We can formulate a surface finite element method to
approximate solutions to this type of equation.

o Well posedness of the equations can be shown through
convergence of a finite element scheme.

e We can show optimal order convergence result as well.
Challenges
e Mesh quality?

e Unknown surfaces?
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e We can use surface calculus to derive a Cahn-Hilliard equation
on an evolving surface.

e We can formulate a surface finite element method to
approximate solutions to this type of equation.

o Well posedness of the equations can be shown through
convergence of a finite element scheme.

e We can show optimal order convergence result as well.
Challenges

e Mesh quality?

e Unknown surfaces?

Thank you for your attention!
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