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Problem statement: general idea

m A physical process evolves over a bounded domain.

m A given number of control devices and measurement devices is at
our disposal

How to place the devices to keep the process possibly close to a given
reference state?
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L Motivation and the model

Example: an open loop control for a semilinear problem

ye—Ay=1f(y)+d onQx(0,T)
=0 on 9Q x (0, T)
y(0,x) = y(x) for x € Q

where {i — the control term, Q ¢ RY — a bounded domain.

The aim: to keep the evolution of the process as close as possible to a
given target state y*(x), x € Q.

A problem: Let y* = 0. Then y* is an unstable equilibrium for the
nonlinear term given by:

f(s)=s—s°
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L Motivation and the model

Adding the control devices

J
ye(x, t) = By(x,t) = Fy(x, 1)) + D g(x)r)(t)
Jj=1

where
gi — functions describing the control devices, j=1,...,J
kj — functions describing the actions of the devices;

these are not prescribed functions,
we assume that x; depends on a solution y itself

Describing the dependence of &; on the solution complements the model.



Optimal closed-loop controls via finite system of control devices for reaction-diffusion processes

L Motivation and the model

Complementing the feedback law

{ rj(t) + ri(t) = Wi(y(-, 1), y"(., 1)) on [0, T]

kj(0) = Kjo € R forj=1,...,J
and
K
Wily,y") = cmwi (/ hily — y*)dX)>
k=1 Q
where
hy ~ — functions describing the measurement devices,
wx ~— functions describing a data processing algorithm,
e.g. wx = —sgn,
ajx  — nonnegative weights, for every j we have
K
2 em1 Wk = 1.

y — the reference state (or trajectory), y* = y*(x, t)
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Introducing a mathematical framework

Main system of equations — the control system

ye =Dy = f(y) + 351, g (x)mi(1) on © x (0, T)
K+ 5(8) = SIy i (O (y — y*)d)) on [0, 7]
forj=1,...,J
%:0 on 90 x (0, T)
y(0,x) = y(x) for x € Q
Hj(O):HjoeR forj=1,...,J

Where we call the following sequence a control

A

u= (ugu"-augﬁuhU'--7uhkau0¢117'--auOth)

Let us denote the state operatoras S = (S, Sy, ..., 5x,):

S0 — (y,k1,...,k1) = (S,(0), Sk, (8), ..., 54,(0))
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Introducing a mathematical framework

Control space and the set of admissible controls

The space of controls & will be denoted by U. We call U a control space
and consider its two variants:

U= U0 = (12(Q))” x (L2(Q))" x RK
U= U= (HY(Q))” x (H}(Q))" x RK

Weights d,, should be nonnegative and summable to 1, thus we define
the set of admissible controls as:

K
Usag = {a €U: Y o, =1V and fo, > ovj,k}
k=1
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Basic results for the control system

Existence results

Basic assumptions

m Q C R? is a bounded domain (of sufficiently smooth boundary),
m Nonlinear terms f and wy, k =1,..., K are Lipschitz continuous,
m y € L2(Q) and U is one of U° or UL

Theorem 1

Under the basic assumptions above, the weak solution to the control
system exists and is unique in the space

X {y € L>(0, T; L2(Q)), Vy € L2(Qx (0, 7)),
y' € 20, T; Hl( )) an
Kkj € L>=(0,T), k'€ L? (0 T)forj=1,...,J}

As a consequence, the state operator S is well defined from U into X.
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L The control system - numerical results

The experiment

We present results of simulations for the main control system (performed
with use of Octave).

The

experiment assumptions:

We take Q = (—1,1) CRand T =4,

We assume f(s) = s — s°,

We assume linearity of wy, namely wy(s) = —50s,

We assume y* =0,

We assume that control devices are simply characteristic functions of

disjoint intervals of the same lenght covering the domain,

We assume the same for the measurement devices and put K = J
— in consequence, every measurement device covers one of the
control devices.
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The experiment

Moreover:
m We take an ,arbitrary” initial condition:

1

05

1 1 1
-1 -0.5 0 05 1

-1

We have executed our experiment with also with other initial
conditions bounded by 1 and the results were similar as the ones on

the following slides.
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4 control devices, 4 measurement units
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6 control devices, 6 measurement units
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8 control devices, 8 measurement units
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L The optimal control problem

The optimality criterion

The cost functional is defined as:
Ia(a) = || Sy(a) -y ”iZ(QX(thr)) +Ald] %J

where y*, t; € [0, T) and A > 0 are given and the seminorm | & | ; on
U is defined by:

[ a1y =1(dg,- 0 0ngy- - 0n,,0,...,0) I,

Problem statement: precise formulation

For given choice of the control space U, find i € U,4 solving the problem

inf j)\(ﬁ)

0€U.q
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Existence of optimal controls

Stability results

Under the basic assumptions above, the state operator

S: U — X

is Lipschitz continuous on bounded subsets of U°.

Theorem 3

Under the basic assumptions above, the state operator
0
5: Uweak — Xweak

is a closed operator.
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Existence of optimal controls

Solvability of the opimization problem

Theorem 4

Assume that
m the basic assumptions set holds true,
>0,
then the optimization problem has at least one solution.

Idea of the proof:
e )\ > 0, hence the minimizing sequence is bounded
e for U = U° we extract a weakly convergent subsequence and use the
weak continuity of S for the limit passage
e for U= U" we extract a strongly convergent subsequence in U° and
use the strong continuity of S for the limit passage
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L The optimal control problem

Necessary optimality conditions

Differentiability of 7

Assume that
m the basic assumptions set holds true,

m and moreover the nonlinear terms f and wy are everywhere
differentiable,

m\>0,
m U= U9

then the state operator S is weakly Gateaux differentiable.

Fact: The square of norm in the Hilbert space H is Fréchet differentiable
Fact: A superposition of a weakly Gateaux differentiable operator with a
Fréchet differentiable functional is Gateaux differentiable.

Conclusion: 7, is Gateaux differentiable.
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Necessary optimality conditions

The adjoint system

We define the adjoint system in point i (as before, y = S, (0)):

—pt — AE—Jf’(y)E: vy =y ) nt

_ ;"Zj:l Zkfl ﬁajk WI/< (fQ ﬁhk(y - y*) dX) ﬁhkaj on Qr
—q1 + 1 = [ g, pdx on [0, T]
—q)+qs = [ g pdx on [0, T]
%‘E = on 02 x (0, T)
p(T,x)=0
q(T)=0 Vj=1,.J

This system will be usefull for characterization of D¢ 7, (a)(?).
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Necessary optimality conditions

Necessary optimality conditions - the main theorem

Fix & € U = U° and denote

m (y,k1,...,%y) as a solution of the main control system
corresponding to 4, i.e. (y,k1,...,k;) = S(d),
m (p,q1,.--,qy) as a solution of the adjoint system

corresponding to .

Let the assumptions as in Theorem 5 be fulfilled. Then the Gateaux differential of
Jx in { is given by

(D )(@) (V) = (F,0)u  Voeu
where the element f € U* = U is defined as:

= 2y Brjdt + 27,
2 fo: oy Wy (Jo O (y — y*) dx) (y — y*) Gj dt + 2,
= 2f0 Wi (fQ p, (y — y*) dX) q; dt

>;'ﬁ>gq_‘h>
I

L
=
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Necessary optimality conditions

Remarks

Remark 1: We have expressed the differential (D¢ 7,)(8)(.) in terms of
the main control system and the adjoint system.

Remark 2: We can use it for concluding the necessary optimality
criterion: if i is optimal in U,y w.r.t. our cost functional, then

(F, W —0)y>0  Vaecu,

Remark 3: Formula for f is in fact a formula for the gradient of 7, in
point & and it can be utilized for the implementation of the gradient
methods of optimization, applicable for numerical searching of optimal
elements.
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Thank you for attention

The presented content will be a part of Grzegorz Dudziuk's Ph.D. thesis,
supervised by Marek Niezgdka (ICM, Warsaw University).
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