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Optimal closed-loop controls via �nite system of control devices for reaction-di�usion processes

Problem statement: general idea

A physical process evolves over a bounded domain.

A given number of control devices and measurement devices is at
our disposal

How to place the devices to keep the process possibly close to a given
reference state?
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Motivation and the model

Example: an open loop control for a semilinear problem


yt −∆y = f (y) + û on Ω× (0,T )
∂y
∂n = 0 on ∂Ω× (0,T )
y(0, x) = y0(x) for x ∈ Ω

where û � the control term, Ω ⊂ Rd � a bounded domain.

The aim: to keep the evolution of the process as close as possible to a
given target state y∗(x), x ∈ Ω.

A problem: Let y∗ ≡ 0. Then y∗ is an unstable equilibrium for the
nonlinear term given by:

f (s) = s − s3
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Motivation and the model

Adding the control devices

yt(x , t)−∆y(x , t) = f (y(x , t)) +
J∑

j=1

gj(x)κj(t)

where
gj � functions describing the control devices, j = 1, . . . , J
κj � functions describing the actions of the devices;

these are not prescribed functions,
we assume that κj depends on a solution y itself

Describing the dependence of κj on the solution complements the model.
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Motivation and the model

Complementing the feedback law

{
κ′j(t) + κj(t) = Wj(y( . , t), y∗( . , t)) on [0,T ]
κj(0) = κj0 ∈ R for j = 1, . . . , J

and

Wj(y , y
∗) =

K∑
k=1

αjkwk

(∫
Ω

hk(y − y∗)dx)

)
where
hk � functions describing the measurement devices,
wk � functions describing a data processing algorithm,

e.g. wk = −sgn,
αjk � nonnegative weights, for every j we have∑K

k=1 αjk = 1.
y∗ � the reference state (or trajectory), y∗ = y∗(x , t)
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Motivation and the model
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The control system

Introducing a mathematical framework

Main system of equations � the control system



yt −∆y = f (y) +
∑J

j=1 ûgj (x)κj(t) on Ω× (0,T )

κ′j(t) + κj(t) =
∑K

k=1 ûαjk
wk

(∫
Ω
ûhk (y − y∗)dx)

)
on [0,T ]
for j = 1, . . . , J

∂y
∂n = 0 on ∂Ω× (0,T )
y(0, x) = y0(x) for x ∈ Ω
κj(0) = κj0 ∈ R for j = 1, . . . , J

Where we call the following sequence a control

û = (ûg1 , . . . , ûgJ , ûh1 , . . . , ûhk , ûα11 , . . . , ûαJK
)

Let us denote the state operator as S = (Sy ,Sκ1 , . . . ,SκJ
):

S : û 7−→ (y , κ1, . . . , κJ) =: (Sy (û),Sκ1(û), . . . ,SκJ
(û))
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The control system

Introducing a mathematical framework

Control space and the set of admissible controls

The space of controls û will be denoted by U. We call U a control space

and consider its two variants:

U = U0 =
(
L2(Ω)

)J × (L2(Ω)
)K × RKJ

U = U1 =
(
H1(Ω)

)J × (H1(Ω)
)K × RKJ

Weights ûαjk
should be nonnegative and summable to 1, thus we de�ne

the set of admissible controls as:

Uad =

{
û ∈ U :

K∑
k=1

ûαjk
= 1 ∀j and ûαjk

≥ 0 ∀j,k

}
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The control system

Basic results for the control system

Existence results

Basic assumptions

Ω ⊂ Rd is a bounded domain (of su�ciently smooth boundary),

Nonlinear terms f and wk , k = 1, . . . ,K are Lipschitz continuous,

y0 ∈ L2(Ω) and U is one of U0 or U1.

Theorem 1

Under the basic assumptions above, the weak solution to the control
system exists and is unique in the space

X =
{
y ∈ L∞(0,T ; L2(Ω)), ∇y ∈ L2(Ω× (0,T )),

y ′ ∈ L2(0,T ;H1(Ω)
∗
) and

κj ∈ L∞(0,T ), κ′j ∈ L2(0,T ) for j = 1, . . . , J
}

As a consequence, the state operator S is well de�ned from U into X .
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The control system - numerical results

The experiment

We present results of simulations for the main control system (performed
with use of Octave).

The experiment assumptions:

We take Ω = (−1, 1) ⊂ R and T = 4,

We assume f (s) = s − s3,

We assume linearity of wk , namely wk(s) = −50s,
We assume y∗ ≡ 0,

We assume that control devices are simply characteristic functions of
disjoint intervals of the same lenght covering the domain,

We assume the same for the measurement devices and put K = J
� in consequence, every measurement device covers one of the
control devices.
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The control system - numerical results

The experiment

Moreover:

We take an �arbitrary� initial condition:
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We have executed our experiment with also with other initial
conditions bounded by 1 and the results were similar as the ones on
the following slides.
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The control system - numerical results

4 control devices, 4 measurement units

K=J=4
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The control system - numerical results

6 control devices, 6 measurement units

K=J=6
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The control system - numerical results

8 control devices, 8 measurement units

K=J=8
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The optimal control problem

The optimality criterion

The cost functional is de�ned as:

Jλ(û) = ‖ Sy (û)− y∗ ‖2L2(Ω×(t1,T )) + λ
û
2

U

where y∗, t1 ∈ [0,T ) and λ ≥ 0 are given and the seminorm
û
U on

U is de�ned by:û
U = ‖ (ûg1 , . . . , ûgJ , ûh1 , . . . , ûhk , 0, . . . , 0) ‖U

Problem statement: precise formulation

For given choice of the control space U, �nd û ∈ Uad solving the problem

inf
û∈Uad

Jλ(û)
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The optimal control problem

Existence of optimal controls

Stability results

Theorem 2

Under the basic assumptions above, the state operator

S : U0 −→ X

is Lipschitz continuous on bounded subsets of U0.

Theorem 3

Under the basic assumptions above, the state operator

S : U0
weak −→ Xweak

is a closed operator.
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The optimal control problem

Existence of optimal controls

Solvability of the opimization problem

Theorem 4

Assume that

the basic assumptions set holds true,

λ > 0,

then the optimization problem has at least one solution.

Idea of the proof:

• λ > 0, hence the minimizing sequence is bounded

• for U = U0 we extract a weakly convergent subsequence and use the
weak continuity of S for the limit passage

• for U = U1 we extract a strongly convergent subsequence in U0 and
use the strong continuity of S for the limit passage
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The optimal control problem

Necessary optimality conditions

Di�erentiability of Jλ

Theorem 5

Assume that

the basic assumptions set holds true,

and moreover the nonlinear terms f and wk are everywhere
di�erentiable,

λ ≥ 0,

U = U0,

then the state operator S is weakly Gâteaux di�erentiable.

Fact: The square of norm in the Hilbert space H is Fréchet di�erentiable
Fact: A superposition of a weakly Gâteaux di�erentiable operator with a
Fréchet di�erentiable functional is Gâteaux di�erentiable.
Conclusion: Jλ is Gâteaux di�erentiable.
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The optimal control problem

Necessary optimality conditions

The adjoint system

We de�ne the adjoint system in point û (as before, y = Sy (û)):

−p̃t −∆p̃ − f ′(y)p̃ = (y − y∗)1(t1,T )+

+
∑J

j=1

∑K
k=1 ûαjk

w ′k
(∫

Ω
ûhk (y − y∗) dx

)
ûhk q̃j on QT

−q̃′1 + q̃1 =
∫

Ω
ûg1 p̃ dx on [0,T ]

...
...

−q̃′J + q̃J =
∫

Ω
ûgJ p̃ dx on [0,T ]

∂p̃
∂n = 0 on ∂Ω× (0,T )
p̃(T , x) ≡ 0
q̃j(T ) = 0 ∀j=1,...,J

This system will be usefull for characterization of DGJλ(ū)(v̂).
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The optimal control problem

Necessary optimality conditions

Necessary optimality conditions - the main theorem

Fix û ∈ U = U0 and denote

(y , κ1, . . . , κJ) as a solution of the main control system
corresponding to û, i.e. (y , κ1, . . . , κJ) = S(û),
(p̃, q̃1, . . . , q̃J) as a solution of the adjoint system
corresponding to û.

Theorem 6

Let the assumptions as in Theorem 5 be ful�lled. Then the Gâteaux di�erential of
Jλ in û is given by

(DGJλ)(û)(v̂) = (f̂ , v̂)U ∀v̂∈U

where the element f̂ ∈ U∗ = U is de�ned as:

f̂gj = 2
∫ T

0
p̃κj dt + 2λûgj

f̂hk = 2
∫ T

0
ûαjk

w ′k
(∫

Ω
ûhk (y − y∗) dx

)
(y − y∗) q̃j dt + 2λûhk

f̂αjk
= 2

∫ T

0
wk

(∫
Ω
ûhk (y − y∗) dx

)
q̃j dt
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The optimal control problem

Necessary optimality conditions

Remarks

Remark 1: We have expressed the di�erential (DGJλ)(û)( . ) in terms of
the main control system and the adjoint system.

Remark 2: We can use it for concluding the necessary optimality
criterion: if û is optimal in Uad w.r.t. our cost functional, then

(f̂ , ŵ − û)U ≥ 0 ∀ŵ∈Uad

Remark 3: Formula for f̂ is in fact a formula for the gradient of Jλ in
point û and it can be utilized for the implementation of the gradient
methods of optimization, applicable for numerical searching of optimal
elements.
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Thank you for attention

The presented content will be a part of Grzegorz Dudziuk's Ph.D. thesis,
supervised by Marek Niezgdka (ICM, Warsaw University).
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