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Motivation examples
The mathematical model.
The Level Set formulation.
The numerical approximation.
Numerical results

» Oscillation sphere, E,, = 0.

» Drop distortion, E,, # 0
> Jetting details.



Motivation examples

Electrospraying
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Dripping faucet

T=235°C liquid: ethanol
p=50.8 bar gas: nitrogen
frequency:562% Hz
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Inviscid, incompressible fluid = Potential flow.
Uniform electric field = Electrostatic field.
Moving boundaries:

1. The free boundary can change topology — Level Set Method
2. The BC on the free boundary is a PDE —



Motivation examples

Spraying regimes:

- Spindle mode

- Pulsating Taylor cone mode
- Cone-jet mode

- Multijet emission mode

Previous relevant works:

» Basaran et all, 1995

» Lopez-Herrera et all, 2004

» Fontelos et all, 2008

» Grimm and Beauchamp, 2005
» Marginean et all, 2006
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The model assumptions
Ew
Q0 Y Ambient fluid, € u(x,y, z,t), Fluid velocity field
o(x,y, z,t), Velocity potential

p(x,y, z,t), Pressure field
U(x,y, z,t), Electric potential
0,7, €, Fluid density, surface tension coefficient,
permittivity
K= Rll + Rlz, Twice mean curvature

» A perfectly conducting liquid droplet, initially of spherical shape,
immersed in an unlimited gaseous dielectric (permittivity ),
exposed to an external uniform electric field E.

» The ambient medium is uniform and uncharged, the electric
potential U is governed by the Laplace equation.

» Inviscid fluid droplet of density p. Potential flow for the interior fluid
dynamics, the exterior fluid is dynamically at rest.



The model equations

u = V¢ in Q(t)
A¢ =0 in Ql(t)
%+f| Vo2+Z = 0 inQt)

AU = 0 in Qt)
The pressure jump across I'¢(s): p = pa + vk — 5|VU - n|?
» Boundary conditions for the fluid problem:
DiR=u on T(s)

oG +3IV6R) + 9k — SIVU-n =0 on T(s)

» Boundary conditions for electric field problem:
U= U on T(s)
U= —E, z at the far field.



Perfect conducting surface = U = Uy on T(s).
The value of Uy at each time step is calculated imposing:

frt(s) %f,jdl_ =0, for uncharged drops
Jrus) 9Udr = q, for charged drops

We make the change of variable: U= U + E..z, and then
U =0 at infinity and U|r,s) = —Ecoz + Up.
For a single drop:

n

Uz the flux from bound. cond. U = —E..z
Let be< - ~
U} the flux from bound. cond. U

/ UZdr + Uo/ ngr:—Eoo/ n,dl = U (uncharged)
[e(s) Te(s) Ie(s)

Uﬁdr + Uy U,fdr =q- EOO/ nydl = Uy (charged)
Te(s) Te(s) Te(s)



Characteristic scales :
ro Initial droplet radious

3
A/ % Capillary time

27 Electrical field
€rn

All the equations in dimensionless form remains the same, except:

9 1o 2 2 _
¢ T §|V¢| +K—|VU-n|=0 on T(s)
which can be rearranged
o¢

1
fZE(U‘U)—Ii+|VU'I‘I’2

And the only parameter left in the model is the non dimensional
electric field strength at the far field:

Ex



Therefore, the model equations in 3D are:

u = V¢ in Q(t)
Ap = 0 in Qi(t)
DiR = u on l(s)
Di¢p = f on T(s)
AU = 0 in Qt)
U = Uy on T(s)
U = —E, z atthe far field

!

Eulerian-Lagrangian formulation

Classical methods: Front tracking methods suffers difficulties when
the free boundary changes topology.



» Rotational symmetry around z — 2D problem in the (r, z) plane:

R(s, t) = (r(s, t), z(s, 1))
u(r,z,t)
o(r,z,t)

U(r, z,t)

u = Vo in Q(t)

26 Po  10¢ .
W"‘@“FFE = 0 in Ql(t)

D:R = u on [(s)
Di¢p = f onTly(s)

U 9?U 10U .
W‘F@"F;E = 0 in Ql(t)

U = Uy onTy(s)
U = —E, z at the far field



The Level Set formulation in 2D

» The levelset function W(r, z, t) on a fixed domain Qp

t

(P, 0) /\ v,

[
(

0@, 0

G(R(S, t)v t) = ¢(r727 t) ’rt(s): ¢(57 t)a vt




» Differentiating both equations with respect to t

Vi4+u-VU = 0 on I(s).
Di® =G +u-VG = f on (s).

being

1
f:E(u-u)—/i—l—|VU-n|2

Uext ’Ft(s): U(R(S, t)a t)

Define ueyt, foxt on p such that
foxt, |rt(s): f(R(Sa t)’ t)

DR =u onTy(s)| = [V + e - VU = 0in Qp |
[Dep=FonTe(s) | = [Ge + e - VG = foxe in Q|

Remark: ueyt, and fo are obtained as in (Adals. Sethian, 1999)



The model equations in Eulerian formulation are:

u = V¢ in Ql(t)
Aé = 0 in Qt)

wt + Uext V¥ = 0in QD
Gt + Uext - VG = fext in QD
AU = 0 in Qz(t)
U = Uy onTy(s)
U = —E,z atthe far field
r
n QD

[ z

I

z
onl,: u=0; 9¢—0. ¥ _q 96 _(. U _

on on on on

Remark: System (8-14) is equivalent to (1-7) (proof in M.G. et al, 2009)
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The numerical approximation
» Time Discretization:

u” = Vd)n in Ql(t,,)
AP"(r,z) = 0 in Qi(t,)

\|1"+1—\|1"

ey e ul, - V¥ in Qp

Gn+1 —Gn ]
TAr - = Uk V6" in o,

AU (r,z) = 0 in Q(t,)

»Space Discretization: G[; = G(rj, j, tn), ugy, = (u",v").

A first order upwind scheme for Eq. (18) is

Gt = G — At(max(y uf';,0)D; ;" + min(uf;, 0)D;ff
+  max(v7;,0)D; 7 + min(v/;, )DJFZ)—&—Atf,'}7

We have to add the discretize BC for each particular case.



» At each t,, the two Laplace eqn.:

A¢
AU

have to be solved:

0 subjectto ¢ =G" on T(s)
0 subjectto U= U on T¢(s)

» We use a Boundary Integral formulation for both problems
and the linear BEM approximation.

» For the electric potential problem the BEM matrices
calculated to solve the fluid problem can be reused. The
computational expense is very reasonable.

Details in Garzon et all, 2011.



The oscillating sphere, E, =

. #(r,z,0) =0

' — z(s) = — cos(s) (1 + ePm(cos(s))
. < > : r(s) = sin(s) (1 + ePm(cos(s))
B i 0<s<m e<1

" W m(m —1)(m+ 2)
e m+1

e =005 Qp=[-22x[-22, m=2.

Ar= Az for Qp
Discretization parameters { As = ﬁ for T¢(s)
At S min(lu‘A—’a, 0.2AS3/2) CFL, capillary wave scales

e Several numerical tests to check convergence properties:

er =[T=I| <1x10°?
ev =|Yy%| <1x107°
e =[5z <7x107

First order convergence with respect to space (details in M.G. et al, 2011)



Droplet distortions in electric fields, E,, # 0

» Neutral droplet, g =0

. Ec = \/27(2?7) Taylor limit

ah | ES =0.3241
gy Shapes became unstable.

o Symmetrically elongated parallel to the

electric field = symmetric jet discharge

, a
Aspect ratio = 5

» Charged droplet, g # 0

ES < Taylor limit

- \\
\; /) 1% Shapes became unstable
— -z Tear shaped drop = Alternate jet
discharge
q>4qr
8w

ar = ~er3



Droplet distortion under electric field simulations

» Numerical tests for different E.. values:

e Sphere r =1, ¢(r,z,0) =0, Qp = [-3,3] x [-1.5,1.5]

t e Discretization parameters:
Ar=Az=0.01 for Qp
As = 0.0157 — 0.03 for T¢(s)

At =0.001 — 25x107°

Eo w Aspect ratio tr ey Nsteps
0.1 2.8176 1.046 5.0 7.6111 x10~* 5000
0.2 2.4513 1.256 5.0 9.4912 x10™* 5000
0.295 1.2823 2.255 5.0 5.8061 x10™* 5000
0.3 3.227 3.3562 4.2511 x10~° 3454
0.35 3.051 1.3946 3.4452 x107% 1550
0.4 2.608 0.9707 2.6446 x107> 995

Ta ble: Frequency of oscillation, aspect ratio, final time, relative error in volume and number of time steps

Eo. = 0.3 Critical value
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» Numerical tests to check convergence with respect discretization parameters :

Az =0.010, N, =201, As =~ 0.033, At = 0.001 to 0.0002 — coarse grid
Az =0.005, N, = 301, As =~ 0.025, At = 0.0005 to 0.0001 — fine grid

Eo  tr (coarse) tr (fine) ev (coarse) ey (fine)
0.3 3.3562 3.3041 4.2522 x10~° 2.1381 x10~°
0.4 0.9707 0.9521  2.6446 x10~% 1.3195 x1073

Table: Jetting time, relative error in volume and number of time steps

aspect ratio




Front profiles, E,, = 0.295
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Front profiles, E,, = 0.35,0.40
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Front profiles and Lab Photos, E,, = 0.35,0.40
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Front profiles zoomed, E,, = 0.35,0.40
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Jet detail at breakup, E,, = 0.40
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Jet evolution details, E,, = 0.3 (horizontal view)




Conclusions

1. By using the level set-boundary integral approach we have
built up a seamless modeling and numerical methodology to
study the evolution of a perfectly conducting droplet in a
uniform electric field for various field strengths.

2. The numerical results obtained agree very well with previously
published results up to the Taylor cone formation for
uncharged droplets.

3. Our numerical method is also able to capture the jetting
discharge for electric field values beyond the critical value and
the long filaments ejected are in very good agreement with
the Lab experiments of Grimm and Beauchamp.

4. The numerical model is prepared to handle multiple drops
situations (axysimmetric) and there is a lot of work ahead to
obtain results beyond beakup events.



