Reversing interfaces in non-linear diffusion processes with absorption

J. Foster¹, C. Please¹, A. Fitt², G. Richardson¹

¹School of Mathematics, University of Southampton.

²Pro-vice chancellor's office, Oxford Brookes University.

Free Boundaries, June 2012.

Outline

Problem description: the general case

- A gravity driven viscous film with evaporation
 - Travelling-waves of the PDE
 - A local self-similar solution
 - Asymptotics for the ODEs
 - Joining everything together
- Back to the general case
 - 4 Open questions

< 🗇 🕨

Problem description: the general case

Concerned with compactly supported solutions to

$$\frac{\partial h}{\partial t} = \frac{\partial}{\partial x} \left(h^m \frac{\partial h}{\partial x} \right) - h^{1-q},$$

with m > 0, q > 0 and m - q > 0. Initial and boundary conditions are

$$h = h_0(x)$$
 when $t = -\tau$,

$$h = 0$$
 and $\frac{ds}{dt} = -h^{m-1}\frac{\partial h}{\partial x} + \left(q\frac{\partial}{\partial x}(h^q)\right)^{-1}$ at $x = s(t)$

イロト イポト イヨト イヨト

plus some analogous conditions at the right interface.

Travelling-waves of the PDE A local self-similar solution Asymptotics for the ODEs Joining everything together

A gravity driven viscous film with evaporation, m = 3 and q = 1

A numerical solution (with appropriate initial conditions) will typically

- Spread out due to gravity
- The spreading slows down as the fluid evaporates
- Begins to recede
- Becomes extinct

Travelling-waves of the PDE A local self-similar solution Asymptotics for the ODEs Joining everything together

・ロト ・ 同ト ・ ヨト ・ ヨト

Travelling wave solutions of the PDE local to a left interface

$$\frac{\partial h}{\partial t} = \frac{\partial}{\partial x} \left(h^3 \frac{\partial h}{\partial x} \right) - 1.$$

An advancing wave (controlled by diffusion)

$$h \sim \left(-3\frac{ds}{dt}\right)^{1/3} (x-s(t))^{1/3}$$

and a receding wave (controlled by absorption)

$$h \sim \left(\frac{ds}{dt}\right)^{-1} (x - s(t)).$$

But, how does an advancing wave become a receding wave?

Travelling-waves of the PDE A local self-similar solution Asymptotics for the ODEs Joining everything together

ヘロト ヘ戸ト ヘヨト ヘ

A local self-similar solution

Look for a local self-similar solution. For t < 0 (prior to the reversing time) we write

$$h = (-t)H(\phi), \quad \phi = x(-t)^{-2} \text{ and } s(t) = A(-t)^{2},$$

and for t > 0 (after the reversing time) we write

$$h = tH(\phi), \ \phi = xt^{-2} \text{ and } s(t) = Bt^2.$$

Match the two parts of the solution together at t = 0 by insisting that the far field behaviours of *H* are the same.

Travelling-waves of the PDE A local self-similar solution Asymptotics for the ODEs Joining everything together

イロト イポト イヨト イヨト

Asymptotics for the ODEs

For t < 0: Behaviour near the interface

$$H \sim (6A)^{1/3} (\phi - A)^{1/3}$$
 as $\phi \to A^+$.

For t < 0: Behaviour in the far field

$$H \sim N\phi^{1/2}$$
 as $\phi \to +\infty$.

For t > 0: Behaviour near the interface

$$H \sim (2B)^{-1}(\phi - B)$$
 as $\phi \to B^+$.

For t > 0: Behaviour in the far field

$$H \sim \mathsf{Q}\phi^{1/2}$$
 as $\phi \to +\infty$.

Travelling-waves of the PDE A local self-similar solution Asymptotics for the ODEs Joining everything together

Prior to the reversing time

Foster, Please, Fitt, Richardson

Travelling-waves of the PDE A local self-similar solution Asymptotics for the ODEs Joining everything together

After the reversing time

Foster, Please, Fitt, Richardson

Reversing interfaces

Travelling-waves of the PDE A local self-similar solution Asymptotics for the ODEs Joining everything together

Local solution to the PDE

Foster, Please, Fitt, Richardson

Reversing interfaces

Back to the general case

Can this be done for any pairs of values of *m* and *q*?

- For all values of *m* and *q* that satisfy *m* > 0, *q* > 0 and *m* - *q* > 0 there are suitable self-similar reductions.
- There are also plausible asymptotic behaviours of the resulting ODEs.
- Everything works nicely for q = 1 (and any value of m > 1).
- For *q* < 1 (absorption ∝ *h*^{1−*q*}) can only find a solution with *A* = 0, and, cannot match to a solution for *t* > 0. Conjecture that the similarity solution breaks down.

・ロト ・ 同ト ・ ヨト

- For q > 1 (absorption ∝ h^{1-q}) can get some solutions, but, only in a rather limited range.
- Outside this range B = 0, and, cannot match to a solution for t < 0. Conjecture that the similarity solution breaks down.

- Why does everything go wrong for q < 1? Is the absorption too weak?</p>
- Why is there such a limited range of values q > 1 that work? Is the absorption too strong?
- For any (working) pairs of values of *m* and *q* the solution is uniquely determined by a local analysis. Does this mean that the reversing behaviour we have found is generic? Or are there some other types of interface reversal that are driven by global effects?
- Are there other families of equations that could be analysed using these techniques?

Reference: J. M. Foster et. al. *The reversing of interfaces in slow diffusion processes with strong absorption.* SIAM Appl. Math. 72(1):144-162, 2012.