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A degenerate-elliptic obstacle problem I

We consider questions of existence, uniqueness, and regularity of
solutions, u : O → R, to the obstacle problem,

min{Au − f , u − ψ} = 0 on O,

u = g on Γ1,

given a

I Possibly unbounded domain, O ⊂ H := R× R+, with
R+ = (0,∞);

I Boundary portion, Γ1 = ∂O ∩H, transverse to ∂H;

I Source function, f : O → R;

I Dirichlet boundary data function, g : O ∪ Γ1 → R;

I An obstacle function, ψ : O ∪ Γ1 → R, which is compatible
with the boundary data, ψ ≤ g on Γ1;



A degenerate-elliptic obstacle problem II

Here, A is the degenerate-elliptic Heston operator,

Av := −y

2

(
vxx + 2ρσvxy + σ2vyy

)
− (r − q − y/2)vx − κ(θ − y)vy + rv , v ∈ C∞(H).

The (constant) coefficients of A obey the ellipticity conditions

σ 6= 0 and − 1 < ρ < 1,

and κ > 0, θ > 0, q ≥ 0, and r ≥ 0.

The operator, −A, is the generator of the Heston stochastic
volatility process with killing, a degenerate diffusion process often
used to model asset prices in mathematical finance.

While A is an elliptic differential operator on O, it becomes
degenerate along Γ0 := int(∂H ∩ ∂O), where y = 0.



A degenerate-elliptic obstacle problem III

Γ1 = ∂O∩{y>0}

O

Γ0 = ∂O∩{y=0}

Figure: Boundaries for degenerate elliptic problems on subdomains of the
half-space.



A degenerate-elliptic obstacle problem IV

Because κθ > 0, no boundary condition needs to be prescribed
along Γ0. Instead, the degenerate elliptic boundary problem,

Au = f a.e. on O, u = g on Γ1,

is well-posed when we seek solutions in

I Weighted Sobolev spaces, H1(O,w) (variational inequality) or
H2(O,w) (strong);

I Weighted Hölder spaces, C 2+α
s (O ∪ Γ0) ∩ C (Ō) or C 2+α

s (Ō)
(classical);

These function spaces select solutions, u, from two possible
families, C∞ or C 0 up to Γ0.



Motivation from option pricing in mathematical finance

A solution u to the

I Elliptic obstacle problem when f = 0 can be interpreted as the
value function for a perpetual American-style option with
payoff function given by the obstacle function, ψ

I Parabolic obstacle problem on O × [0,T ], with 0 < T <∞,
can be interpreted as the value function for a finite-maturity
American-style option with payoff function given by a terminal
condition function, h : O → R, which typically coincides on
O × {T} with the obstacle function, ψ.

For the American-style put option, when H = R× R+,

ψ(x , y) = (E − ex)+, (x , y) ∈ H,

where E > 0 is a positive constant, x is the log-price of a financial
asset, and y is an internal variable (variance).



Numerical solution of the degenerate elliptic obstacle
problem

I The theoretical methods of existence of solutions to the
variational equations and inequalities defined by the Heston
operator, including the special attention to types of boundary
conditions described here, may be implemented using finite
element methods, while solutions to the corresponding
boundary value or obstacle problems may be implemented
using finite difference methods.

I The numerical solution of these degenerate elliptic and
parabolic problems is the Ph.D. thesis topic of Eduardo Osorio
(May 2013) and graphs of these solutions, in the elliptic case,
are illustrated in the following slides, with
ψ(x , y) = (E − ex)+ in the case of the obstacle problem.



Numerical solution to the boundary value problem

Figure: Numerical solution to the degenerate elliptic boundary value
problem, Au = f on O and u = g on Γ1 = ∂O ∩ {y > 0}.



Numerical solution to the obstacle problem

Figure: Numerical solution to the degenerate elliptic obstacle problem,
min{Au − f , u − ψ} = 0 a.e. on O and u = g on Γ1 = ∂O ∩ {y > 0}.



Weighted L2, H1, and H2 Sobolev spaces

We need a weight function when defining our Sobolev spaces,

w(x , y) := yβ−1e−γ|x |−µy , β =
2κθ

σ2
, µ =

2κ

σ2
,

for (x , y) ∈ H and a suitable positive constant, γ. We define

L2(O,w) :=
{

u ∈ Lloc(O) : u w1/2 ∈ L2(O)
}
,

H1(O,w) :=
{

u ∈ Lloc(O) : (1 + y)1/2u, y 1/2Du ∈ L2(O,w)
}
,

H2(O,w) :=
{

u ∈ Lloc(O) : (1 + y)1/2u, (1 + y)Du, yD2u ∈ L2(O,w)
}
,

where Du = (ux , uy ) and D2u = (uxx , uxy , uyx , uyy ) are defined in
the sense of distributions.



Weighted L2, H1, and H2 Sobolev norms

The spaces H1(O,w), H1(O,w), H1(O,w) are Hilbert spaces
with respect to the norms defined by

‖u‖2
L2(O,w) :=

∫
O

u2 w dx dy ,

‖u‖2
H1(O,w) :=

∫
O

(
y |Du|2 + 1 + y)u2

)
w dx dy ,

‖u‖2
H2(O,w) :=

∫
O

(
y 2|D2u|2 + (1 + y)2|Du|2 + (1 + y)u2

)
w dx dy .

Recall that C∞0 (O ∪ Γ0) is the subspace of functions u ∈ C∞(O)
such that u ∈ C∞(Ū), for every U b O ∪ Γ0.

Define H1
0 (O ∪ Γ0,w) to be the closure in H1(O,w) of

C∞0 (O ∪ Γ0).



Existence and uniqueness of strong solutions to the
obstacle problem

Theorem (Existence and uniqueness of strong solutions to the
obstacle problem)

Assume O ⊂ H is bounded, that Γ2 is C 2-transverse to Γ0, and
that r > 0, where r is a coefficient of A. Let f ∈ L2(O,w) and
ψ ∈ H2(O,w) such that ψ+ ∈ L∞(O) ∩ H1

0 (O ∪ Γ0,w). Then
there is a unique solution u ∈ H2(O,w) ∩ H1

0 (O ∪ Γ0,w) to

min{Au − f , u − ψ} = 0 a.e. on O,

and u obeys

‖u‖H1(O,w) ≤ C1

(
‖u‖L2(O,w) + ‖(f ‖L2(O,w) + ‖ψ+‖H1(O,w)

)
,

‖u‖H2(O,w) ≤ C2

(
‖u‖L2(O,w) + ‖(f ‖L2(O,w) + ‖ψ‖H2(O,w)

)
,

for some positive constants, Ci = Ci (A,O).



Additional (but suboptimal) regularity

Theorem (Hölder continuity)

Assume the hypotheses required for existence of solutions in
H1

0 (O ∪ Γ0,w) to the variational inequality formulation of the
obstacle problem. If in addition f ∈ Lq(Ō,w) for q > 2 + β and
u ∈ H1

0 (O ∪ Γ0,w) is a solution to the variational inequality, then
u ∈ Cα0(Ō) for some α0 ∈ [0, 1).

Theorem (W 2,p regularity in interior and up to Γ1)

Assume the hypotheses required for existence of solutions in
H2(O,w) of solutions to the obstacle problem. If
u ∈ H2(O,w) ∩ H1

0 (O ∪ Γ0,w) is a solution and, for 2 < p <∞,

f ∈ Lp
loc(O ∪ Γ1) and ψ ∈W 2,p

loc (O ∪ Γ1),

and the boundary portion Γ1 is C 2+α. Then u ∈W 2,p
loc (O ∪ Γ1)

and, if α = 1− 2/p, then u ∈ C 1,α(O ∪ Γ1).



Optimal regularity for non-degenerate obstacle problems

Suppose, temporarily, that A is now a strictly elliptic, linear,
second-order differential operator on O b Rd ,

Au := −aijuxixj − biuxi + cu, u ∈ C∞(O).

Then a result of Jensen (1980) gives

Theorem (Optimal regularity for solutions to non-degenerate
elliptic obstacle problems)

Assume O b Rd is a domain of class C 3,1 and that the coefficients
of A obey aij ∈ C 0,1(Ō) and bi , c ∈ Cα(Ō), for 0 < α < 1.
Suppose f ∈ Cα(Ō), and g ∈ C 2+α(Ō), and ψ ∈ C 1,1(Ō). If
u ∈ H2(O) solves

min{Au − f , u − ψ} = 0 a.e. on O, u − g ∈ H1
0 (O),

then u ∈ C 1,1(Ō).



Optimal regularity up to the non-degenerate boundary

For the Heston operator, A, we have an easy corollary:

Corollary (C 1,1 regularity up to non-degenerate boundary, Γ1)

Assume O b Rd is a domain with C 3,1 boundary portion, Γ1,
which is C 3,1-transverse to Γ0. Suppose f ∈ Cα(O ∪ Γ1), and
g ∈ C 2+α(O ∪ Γ1), and ψ ∈ C 1,1(O ∪ Γ1). If u ∈ H2(O,w) solves

min{Au − f , u − ψ} = 0 a.e. on O, u − g ∈ H1
0 (O ∪ Γ0,w),

then u ∈ C 1,1(O ∪ Γ1).

For regularity of the solution up to the degenerate boundary, Γ0,
we shall need certain weighted Hölder spaces first defined by
Daskalopoulos and Hamilton (1998) and Koch (1999).



Hölder norms defined by the cycloidal metric I

Definition (C 1,1
s norm and Banach space)

We say that u ∈ C 1,1
s (Ō) if u belongs to C 1,1(O) ∩ C 1(Ō) and

‖u‖
C1,1
s (Ō)

:= ‖yD2u‖L∞(O) + ‖Du‖C(Ō) + ‖u‖C(Ō) <∞.

Also, we say that u ∈ C 1,1
s (O ∪ Γ0), if u ∈ C 1,1

s (Ū) for any
subdomain U b O ∪ Γ0.

A cycloidal distance function, equivalent to that of the cycloidal
metric, y−1(dx2 + dy 2) on H, due to Daskalopoulos and Hamilton
(1998) and Koch (1999), is given by,

s(z , z0) :=
|x − x0|+ |y − y0|

√
y +
√

y0 +
√
|x − x0|+ |y − y0|

,

for all z = (x , y), z0 = (x0, y0) ∈ H. This is the natural metric for
our degenerate equation.



Hölder norms defined by the cycloidal metric II

The following weighted Hölder spaces were introduced by
Daskalopoulos and Hamilton (1998).

Definition (Cα
s and C 2+α

s norms and Banach spaces)

Given α ∈ (0, 1), we say that u ∈ Cα
s (Ō) if u ∈ C (Ō) and

‖u‖Cαs (Ō) := ‖u‖C(Ō) + sup
z1,z2∈O

z1 6=z2

|u(z1)− u(z2)|
s(z1, z2)α

<∞.

We say that u ∈ C 2+α
s (Ō) if u, Du, yD2u ∈ Cα

s (Ō). We denote

‖u‖C2+α
s (Ō) := ‖u‖Cαs (Ō) + ‖Du‖Cαs (Ō) + ‖yD2u‖Cαs (Ō).



Hölder norms defined by the cycloidal metric III

I One can show that C 1,1
s (Ō), Cα

s (Ō), and C 2+α
s (Ō) are

Banach spaces when equipped with the indicated norms.

I We say that u ∈ Cα
s (O ∪ Γ0) if u ∈ Cα

s (Ū) for every
subdomain U b O ∪ Γ0 and similarly that u ∈ C 2+α

s (O ∪ Γ0)
if u ∈ C 2+α

s (Ū) for every subdomain U b O ∪ Γ0.

I One can show that if u ∈ C 2+α
s (O ∪ Γ0), then

yuxx = yuxy = yuyy = 0 on Γ0,

which may be viewed as a type of Ventcel (1959) or
second-order boundary condition (see, for example, Taira
(2004)).



Optimal regularity up to the degenerate boundary

Theorem (C 1,1 regularity up to degenerate boundary)

Suppose that u ∈ H2(O,w) ∩ C (Ō) is a solution to

min{Au − f , u − ψ} = 0 a.e. on O,

given f ∈ Cα
s (Ō) and ψ ∈ C 2+α(Ō). Then, u ∈ C 1,1

s (O ∪ Γ0) and,
for each precompact subdomain O ′ b O ∪ Γ0, there is a constant
C , depending on α,O ′,O, and the coefficients of the operator A,
such that

‖u‖
C1,1
s (Ō′) ≤ C

(
‖u‖C(Ō) + ‖f ‖Cαs (Ō) + ‖ψ‖C1,1(Ō)

)
.



Work in progress I

1. Degenerate parabolic obstacle problem. We expect that
our results on existence, uniqueness, and regularity of solutions
to the degenerate elliptic obstacle problem should extend
without difficulty to the corresponding parabolic problem.

2. Regularity of the free boundary. Previous results on the
regularity of the free boundary for the obstacle problem
defined by a non-degenerate elliptic or parabolic operator
extend to degenerate operators of the kind considered in this
article. (See the forthcoming book by Petrosyan, Shagholian,
and Ural’tseva (2012) and references therein for the
non-degenerate elliptic case and articles by Laurence and
Salsa (2009), Nyström (2007) and references therein for the
non-degenerate parabolic case.)



Work in progress II

3. Lipschitz obstacle function. The C 2+α(Ō) regularity
property assumed for the obstacle function, ψ, in the
statement of our C 1,1 regularity theorem does not reflect the
more typical Lipschitz regularity for ψ encountered in
applications to mathematical finance, such as
ψ(x , y) = max{E − ex , 0}, where E is a positive constant, in
the case of a put option. Nevertheless, simple one-dimensional
examples, results of Laurence and Salsa (2009), Nyström
(2007), and numerical analysis due to Osorio (2012) suggest
that the solution, u, should nevertheless have the optimal C 1,1

s

regularity even when ψ = max{E − ex , 0}.



Work in progress III

4. Degenerate elliptic and parabolic obstacle problems with
variable coefficients in higher dimensions. We expect that
our results on existence, uniqueness, and regularity of
solutions to the degenerate elliptic obstacle problem on
O j R× R+ may be easily generalized to higher dimensions,
d ≥ 2, and degenerate elliptic operators on O j Rd−1 × R+

with variable coefficients,

Au = −xdaijuxixj − biuxi + cu,

under the assumptions that (aij) is strictly elliptic, bd ≥ ν > 0,
for some constant ν > 0, and c ≥ 0 and all coefficients are
Hölder continuous of class Cα

s (Ō), for some α ∈ (0, 1)
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in mathematical finance and Hölder continuity for solutions to
variational equations and inequalities,
arxiv.org/abs/1110.5594v2.

, Degenerate-parabolic partial differential equations
with unbounded coefficients, martingale problems, and a
mimicking theorem for Itô processes,
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