Existence and regularity of mean curvature flow via Allen-Cahn equation

Yoshihiro Tonegawa (Hokkaido Univ., Sapporo)

12th International Conference on Free Boundary Problems: Theory and Applications, Chiemsee, Germany, June. 15, 2012

Joint work with Keisuke Takasao (Hokkaido Univ.) Partially supported by JSPS Grant-in-aid for scientific research (B) #21340033, (S) #21224001, challenging exploratory research #2365057

0. Introduction

One-parameter family of smooth k-dimensional surfaces with no boundary $\{M_t\}_{t\geq 0}$ is MCF if

v (velocity) = H (mean curvature vector) For $\phi \in C_c^1(\mathbb{R}^n; \mathbb{R}^-)$

$$egin{aligned} &rac{d}{dt} \Big(\int_{M_t} \phi \, d\mathcal{H}^k \Big) = \int_{M_t} (-H\phi +
abla \phi) \cdot v \, d\mathcal{H}^k \ &= \int_{M_t} (-H\phi +
abla \phi) \cdot H \, d\mathcal{H}^k. \end{aligned}$$

$$\leq \text{ is sufficient for } v = H$$
$$\frac{d}{dt}(\mathcal{H}^{k}(M_{t})) \leq -\int_{M_{t}} |H|^{2} d\mathcal{H}^{k} \leq 0$$

2

1. Brakke's MCF (`78)

- Existence of generalized MCF <u>Definition</u>. A family of k-varifolds $\{V_t\}_{t\geq 0}$ in \mathbb{R}^n is called Brakke's MCF if

$$\int_{\mathbb{R}^n} \phi \, d \|V_t\| \Big|_{t=t_1}^{t_2} \leq \int_{t_1}^{t_2} dt \int_{\mathbb{R}^n} (-H\phi + \nabla\phi) \cdot H \, d \|V_t\|$$

for $0 \leq \forall t_1 < \forall t_2 < \infty, \ \forall \phi \in C_c^1(\mathbb{R}^n; \mathbb{R}^+)$.

$$\int_{\mathbb{R}^n} \phi \, d \|V_t\| \approx \int_{M_t} \phi \, d\mathcal{H}^k$$

H : generalized mean curvature vector of V_t

<u>Theorem</u> (Brakke) For a given integral k-varifold V_0 there exists a family of k-varifold $\{V_t\}_{t\geq 0}$ which is Brakke's MCF and V_t is integral for a.e. t.

<u>Definition</u>. V is integral k-varifold if

$$\int_{\mathbb{R}^n} \phi \, d \|V\| = \int_M \phi(x) heta(x) \, d\mathcal{H}^k(x)$$

for $\forall \phi \in C_c(\mathbb{R}^n)$.

- M: countably k-rectifiable set Ex. $\bigcup_{i=1}^{\infty} (k-\dim C^1 \operatorname{manifold} M_i)$, and any measurable subset of such.
- θ : a.e. integer-valued multiplicity function
 - If θ is 1 a.e., we say V is of unit density.

Relevance to the well-known existence result: Let $\psi(x,t)$ be the unique viscosity solution of

$$rac{\psi_t}{|
abla\psi|} = ext{div}\left(rac{
abla\psi}{|
abla\psi|}
ight) \quad ext{on} \quad \mathbb{R}^n imes(0,\infty)$$

 $\psi(x,0) = \text{signed distance function of } M_0.$ For $c \in \mathbb{R}$ define $M_t^c := \{\psi(\cdot,t) = c\}$ If everything is smooth, $\{M_t^c\}_{t \ge 0}$ is MCF.

(Evans-Spruck '93) For a.e. $c \in \mathbb{R}$, $\{M_t^c\}_{t \ge 0}$ is Brakke's MCF of unit density.

$$\int_{\mathbb{R}^n} \phi \, d \|V_t\| := \int_{M_t^c} \phi \, d\mathcal{H}^{n-1} \qquad \int_{\mathbb{R}^n} \phi \, d\|V_t\| \Big|_{t=t_1}^{t_2} \leq \int_{t_1}^{t_2} dt \int_{\mathbb{R}^n} (-H\phi + \nabla\phi) \cdot H \, d\|V_t\|$$

The proof uses compensated compactness type argument. The similar results for anisotropic MCF (T. `00).

2. Existence and regularity of MCF + given u

<u>Problem</u>. Given a (not so regular) vector field $u = u(x, t) : \mathbb{T}^n \times (0, \infty) \to \mathbb{R}^n$ and a hypersurface M_0 find a family of hypersurfaces $\{M_t\}_{t\geq 0}$ such that $v = H + u^{\perp}$.

<u>Method</u>. Use the Allen-Cahn equation with additional transport term. $\frac{\partial \varphi}{\partial t} + \tilde{u} \cdot \nabla \varphi = \Delta \varphi - \frac{W'(\varphi)}{\varepsilon^2}$ (cf. u=0: Ilmanen `93, T. `03) <u>Theorem</u> (Liu-Sato-T. '10, Takasao-T. in preparation) Suppose $n \ge 2$, $p \ge 2$, q > 2 satisfy

$$p > \frac{n}{2} \cdot \frac{q}{q-1}.$$

Given

- a domain $\Omega_0 \subset \mathbb{T}^n$ with C^1 boundary $M_0 = \partial \Omega_0$ and
- a vector field $u \in L^q_{loc}([0,\infty); W^{1,p}(\mathbb{T}^n))$,

there exist a family of varifolds $\{V_t\}_{t\geq 0}$ and a family of `phase boundaries' $\{\partial^*\Omega_t\}_{t\geq 0}$ which are `weak solutions' of $v = H + u^{\perp}$ with some good regularity property.

• For
$$\forall \phi \in C^1(\mathbb{T}^n; \mathbb{R}_+), \ 0 \leq \forall t_1 < \forall t_2 < \infty,$$

$$\int_{\mathbb{T}^n} \phi d \|V_t\| \Big|_{t=t_1}^{t_2} \leq \int_{t_1}^{t_2} dt \int_{\mathbb{T}^n} (\nabla \phi - \phi H) \cdot \underline{(H+u^{\perp})} d\|V_t\|.$$

- For a.e. t, V_t is integral.
- For a.e. t, $\partial^* \Omega_t \subset \operatorname{spt} \|V_t\|$.
- There exists $T = T(M_0, ||u||)$ such that V_t is unit density for a.e. t < T. Moreover, $||V_t|| = \mathcal{H}^{n-1}|_{\partial^*\Omega_t}$ away from $\{\theta \ge 2\}$.
- $\exists p', \exists q' \text{ (expressed explicitly by p and q)}$ with $\alpha := 1 - \frac{n-1}{p'} - \frac{2}{q'} > 0$ so that $\int_{0}^{s} \left(\int_{\mathbb{T}^{n}} |u|^{p'} d \|V_{t}\| \right)^{\frac{q'}{p'}} dt < \infty$, $\forall s < \infty$.

- (Local regularity results, Kasai-T. preprint `11)
 ∪_{0<t<T}∂*Ω_t × {t} ⊂ Tⁿ × (0,T) is locally (in
 space-time) C^{1,α} hypersurface a.e. space and
 a.e. time. (In fact, valid for portion away from
 `multiplicity ≥ 2 set '; cf. Allard regularity theory.)
- If u is more regular, such as C^{β} , then the above regularity is $C^{2,\beta}$ and $v = H + u^{\perp}$ is satisfied classically there (T. preprint `12).
- Note on the inequality for the exponents:

$$p = rac{n}{2} \cdot rac{q}{q-1} \quad \Longrightarrow \quad \int_0^\infty dt \left(\int_{\mathbb{R}^n} |\nabla u|^p \, dx \right)^{rac{q}{p}}$$
 is scale invariant.

3. Ingradients of proof for the existence

For u=0, consider $\frac{\partial \varphi_{\varepsilon}}{\partial t} = \Delta \varphi_{\varepsilon} - \frac{W'(\varphi_{\varepsilon})}{\varepsilon^2}$ with suitable initial data. Then for all t ≥ 0 ,

$$\frac{1}{\sigma} \left(\frac{\varepsilon |\nabla \varphi_{\varepsilon}(\cdot, t)|^2}{2} + \frac{W(\varphi_{\varepsilon}(\cdot, t))}{\varepsilon} \right) \, dx \longrightarrow \|V_t\| \qquad \left(\varepsilon \to 0 \right) \qquad \sigma := \int_{-1}^1 \sqrt{2W(s)} \, ds$$

- Huisken's monotonicity formula for MCF.
- Modica's estimate for discrepancy : $\left(\frac{\varepsilon |\nabla \varphi_{\varepsilon}|^{2}}{2} \frac{W(\varphi_{\varepsilon})}{\varepsilon}\right) \leq 0$
- Analogies with Allard compactness theorem for integral varifolds to prove `integral'. (Ilmanen `93, T. `03)

For general $u \in L^q_{loc}([0,\infty); W^{1,p}(\mathbb{T}^n))$, take $u_{\varepsilon} \in C^{\infty}(\mathbb{T}^n \times [0,\infty))$ so that

- $u_{\varepsilon} \to u$ in $L^{q}_{loc}([0,\infty); W^{1,p}(\mathbb{T}^n))$ and
- for some $0 < \gamma < 1/3$, $\sup_{\mathbb{T}^n \times [0,\infty)} |u_{\varepsilon}(x,t)| \le \varepsilon^{-\gamma}$.

Then consider
$$\frac{\partial \varphi_{\varepsilon}}{\partial t} + u_{\varepsilon} \cdot \nabla \varphi_{\varepsilon} = \Delta \varphi_{\varepsilon} - \frac{W'(\varphi_{\varepsilon})}{\varepsilon^2}$$
 with suitable initial data. $\left(\frac{\varepsilon |\nabla \varphi_{\varepsilon}|^2}{2} - \frac{W(\varphi_{\varepsilon})}{\varepsilon}\right)_{+} \le C\varepsilon^{-\gamma}$

Key estimate: $\exists C = C(M_0, ||u||, T)$ such that

$$\sup_{(x,t)\in\mathbb{T}^n\times[0,T],\,0< r<1}\frac{1}{r^{n-1}}\int_{B_r(x)}\left(\frac{\varepsilon|\nabla\varphi_\varepsilon(\cdot,t)|^2}{2}+\frac{W(\varphi_\varepsilon(\cdot,t))}{\varepsilon}\right)\leq C.$$

4. Outlook

- Navier-Stokes-Allen-Cahn coupling (cf. Liu -Sato-T. to appear + work in progress).
- Analysis on moving singular sets.
- Existence and regularity... great, but something missing? Uniqueness.
- What is the natural notion of `dynamic stability' for MCF in varifold setting ?

