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Model Problem

Let Ω ⊂ R2 be a bounded domain with boundary Γ = ∂Ω.

Assume that either Γ is smooth or that Ω is convex with Lipschitz boundary.

Consider

(P) minimize
1

2

∫
Ω
|∇y|2 dx−

∫
Ω
f y dx over y ∈ H1

0(Ω)

subject to |∇y| ≤ ψ almost everywhere on Ω ,

where f ∈ Lp(Ω), p ≥ 2, and ψ ∈ Lr(Ω), r > 2, with

ψ(x) ≥ δ > 0 for almost all x ∈ Ω.

E.g. for simplicity ψ ≡ 1 . ⇒ Elasto-Plastic Torsion Problem.

(Studied extensively by Glowinski, Lions, Trémolières, . . . )
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Model Problem

Let (·, ·) denote the L2-inner product over Ω.

Let K := {η ∈ H1
0(Ω) : |∇η| ≤ ψ almost everywhere on Ω}.

(P) minimize J(y) = 1
2 (∇y,∇y)− (f, y) over y ∈ K .

There exists a unique solution y∗ to (P), which is also the unique solution

in K of the Variational Inequality

(VI) (∇y,∇[v − y])− (f, v − y) ≥ 0 ∀ v ∈ K .

Moreover, the assumptions on Ω yield that y∗ ∈ K ∩W2,p(Ω).
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Finite Element Approximation

Assume that Ω is polyhedral and let {T h}h>0 be a family of quasi-uniform
partitionings of Ω into disjoint open triangles κ with hκ := diam(κ) and
h := maxκ∈T h hκ. Hence Ω = ∪κ∈T hκ.

Let V h = {η ∈ C0(Ω) : η |κ is linear ∀ κ ∈ T h , η |Γ= 0} ⊂ H1
0(Ω).

Let Kh := K∩V h. (Assume from now on that ψ |κ is constant for all κ ∈ T h.)

Then the standard FE approximation to (P) and (VI) is:

(Ph) minimize J(yh) = 1
2 (∇yh,∇yh)− (f, yh) over yh ∈ Kh .

There exists a unique solution y∗h to (Ph), which is also the unique solution
in Kh of the Variational Inequality

(VIh) (∇yh,∇[vh − yh])− (f, vh − yh) ≥ 0 ∀ vh ∈ Kh .

Moreover, the assumptions on T h yield that ‖y∗h − y
∗‖1 ≤ C h

1
2−

1
p .

[Suboptimal error bound caused by fact that in general Ih η /∈ Kh for η ∈
H2(Ω) ∩K.]
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Alternative Approximations

There exist other finite element approximations, e.g. based on an equivalent

formulation for σ = ∇y.

Then (P) is equivalent to

minimize 1
2 (σ, σ)− (ϕ, σ) over σ ∈ K̃ ;

where rotϕ = −f and

K̃ := {σ ∈ [L2(Ω)]2 : |σ| ≤ ψ a.e. on Ω and (σ,∇v) = 0 ∀ v ∈ H1(Ω)} .

For the natural finite element approximation

σh ∈ Ph := {η ∈ L1(Ω) : η |κ is constant ∀ κ ∈ T h}

one can show that ‖σh − σ‖ ≤ C h. See Falk, Mercier (77).

However, in this talk we only consider the conforming approximation

(Ph) minimize J(yh) = 1
2 (∇yh,∇yh)− (f, yh) over yh ∈ Kh .
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Solution Methods

Let J be the set of nodes of T h and let {pj}j∈J be the coordinates of these

nodes. Let J0 := {j ∈ J : pj /∈ ∂Ω} = {1, . . . , N}. Let {χj}j∈J0
be the

standard basis functions for V h.

1. Nonlinear Overrelaxation directly applied to (Ph).

Set y(0)
h = 0 ∈ Kh. For i ≥ 0:

(i) Let y(i+1,0)
h = y

(i)
h .

(ii) For k = 1 → N set y
(i+1,k)
h = ΠKh ŷ

(i+1,k)
h (α), where ŷ

(i+1,k)
h (α) =

y
(i+1,k−1)
h +αχk is such that J(ŷ(i+1,k)

h (α)) ≤ J(ŷ(i+1,k)
h (β)) for all β ∈ R.

(iii) Set y(i+1)
h = y

(i+1,N)
h .

Here ΠKh : V h → Kh is the orthogonal projection onto Kh.

Hence in (ii), at each vertex, we need a local projection onto Kh. The

number of constraints to be satisfied there are given by the number of

triangles that meet at the vertex.
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Nonlinear SOR

Difficult to implement. Highly mesh dependent.

Example: Let f = 10, ψ ≡ 1.

h # iterations
1/4 16
1/8 28

1/16 139
1/32 520
1/64 1984

1/128 7428
1/256 27608

h # iterations
1/5 13

1/10 39
1/20 179
1/40 702
1/80 2612

1/160 9731
1/320 36054

h # iterations
1/6 12

1/12 47
1/24 181
1/48 657
1/96 2414

1/192 8794
1/384 31659

Iteration counts for nonlinear SOR. ω = 1, tol = 10−9.
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Solution Methods

2. Penalization method.

For ε→ 0 consider

minimize Jε(yh) := J(yh) +
1

4ε

∫
Ω

[|∇yh|2 − ψ2]2+ dx over yh ∈ V h ;

i.e. find yh,ε ∈ V h such that

(∇yh,ε,∇vh) +
1

ε
([|∇yh,ε|2 − ψ2]+∇yh,ε,∇vh) = (f, vh) ∀ vh ∈ V h .

It can be shown that yh,ε → y∗h ∈ K
h as ε→ 0.

Highly nonlinear equation — difficult to solve.

In practice, our method will be very similar to 2.
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Solution Methods

3. Duality method.

Consider the Lagrangian

L(yh, ph) := J(yh) +
1

2

∫
Ω
ph (|∇yh|2 − ψ2) dx

over Vh × P
+
h , where P+

h := {η ∈ L1(Ω) : 0 ≤ η |κ is constant ∀ κ ∈ T h}.

Then L admits a saddle point (yh, ph) ∈ Vh×P
+
h with yh = y∗h and ph (|∇y∗h|

2−
ψ2) = 0.

Hence (y∗h, ph) can be found with a Uzawa iterative algorithm:

Set p(0)
h = 0 ∈ P+

h . For n ≥ 0:

(i) Given p
(n)
h ∈ P+

h let y(n)
h minimize L(yh, p

(n)
h ) over Vh. I.e. y(n)

h ∈ V h is
such that

([1 + p
(n)
h ]∇y(n)

h ,∇vh) = (f, vh) ∀ vh ∈ Vh .

(ii) p
(n+1)
h = [p(n)

h + ρn (|∇y(n)
h |

2 − ψ2)]+ for ρn > 0.

For ρn suitably chosen it can be shown that y(n)
h → y∗h as n→∞.

8



Uzawa Algorithm

Straightforward to implement. In general mesh dependent.

Example: Let f = 10, ψ ≡ 1.

h # iterations
1/4 768
1/8 184

1/16 540
1/32 1339
1/64 926

1/128 403
1/256 386

h # iterations
1/5 222

1/10 622
1/20 4619
1/40 12903
1/80 29916

1/160 41503
1/320 44906

h # iterations
1/6 154

1/12 173
1/24 416
1/48 5346
1/96 3146

1/192 8082
1/384 17332

Iteration counts for Uzawa. ρn = ρ = 1, tol = 10−9.
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Motivation

We would like to introduce an alternative solution method, which ideally will

exhibit mesh independent convergence rates.

Here a natural idea is to reformulate the optimality system for (P) as a

nonsmooth system of equations, and then apply a semismooth Newton

method.

If we can prove that such a method converges in function space, then a

conforming finite element approximation will inherit the (mesh-independent)

convergence properties.

However, a lack of regularity means that the original problem first needs to

be regularized.

In order to motivate our approach for (P), we can first consider the standard

obstacle problem.
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Obstacle problem

For motivational purposes, consider the standard obstacle problem. See
Hintermüller, Ito, Kunisch (2003).

(Q) minimize J(y) = 1
2 (∇y,∇y)− (f, y) over y ∈ KQ ,

where KQ := {η ∈ H1
0(Ω) : η ≤ ψ almost everywhere on Ω}.

Then the standard FE approximation to (Q) is:

(Qh) minimize J(yh) = 1
2 (∇yh,∇yh)− (f, yh) over yh ∈ Kh

Q ,

where Kh
Q := KQ ∩ V h. (Assume for simplicity that ψ ∈ V h.)

The optimality system for (Qh) is given by
(∇yh,∇vh) + (λh, vh)h = (f, vh) ∀ vh ∈ V h ,

yh ∈ Kh
Q, λh ∈ V

h, λh ≥ 0, (λh, yh − ψ)h = 0 .

The complementarity condition can be equivalently expressed as

Cc(yh, λh) = 0, where Cc(yh, λh) = λh − [λh + c (yh − ψ)]+ ,

for each c > 0.
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Obstacle problem

A solution to the optimality system

(OSh)


(∇yh,∇vh) + (λh, vh)h = (f, vh) ∀ vh ∈ V h ,

λh − [λh + c (yh − ψ)]+ = 0 ,

can be found with the following primal-dual active set algorithm:

Initialize y
(0)
h , λ(0)

h . For k ≥ 0

(i) Set Ik := {j : [λ(k)
h + c (y(k)

h − ψ)](pj) ≤ 0}, Ak := J0 \ Ik
= {j : [λ(k)

h + c (y(k)
h − ψ)](pj) > 0}.

(ii) Solve
(∇y(k+1)

h ,∇vh) + (λ(k+1)
h , vh)h = (f, vh) ∀ vh ∈ V h ,

y
(k+1)
h (pj) = ψ(pj) ∀ j ∈ Ak , λ

(k+1)
h (pj) = 0 ∀ j ∈ Ik .

Hintermüller, Ito, Kunisch (2003) showed that this algorithm is equivalent
to a semismooth Newton method applied to (OSh). Moreover, the al-
gorithm converges locally superquadratically since [·]+ : R → R is slantly
differentiable. (In fact, here convergence is global.)

[F slantly differentiable ⇐⇒ limh→0
1
‖h‖ ‖F (x+ h)− F (x)−G(x+ h)h‖ = 0]
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Obstacle problem

However, the method breaks down in function space. Formally, a solution
to the optimality system

(OS)


(∇y,∇v) + (λ, v) = (f, v) ∀ v ∈ H1

0(Ω) ,

λ− [λ+ c (y − ψ)]+ = 0 ,

can be found with the following primal-dual active set algorithm:

Initialize y(0), λ(0). For k ≥ 0

(i) Set Ik := {x : [λ(k) + c (y(k) − ψ)](x) ≤ 0}, Ak := Ω \ Ik
= {x : [λ(k) + c (y(k) − ψ)](x) > 0}.

(ii) Solve
(∇y(k+1),∇v) + 〈λ(k+1), v〉H−1,H1

0
= (f, v) ∀ v ∈ H1

0(Ω) ,

y(k+1) = ψ on Ak , λ(k+1) = 0 on Ik .

However, the Lagrange multiplier λ(k+1) in (ii) is in general only a distribution
in H−1(Ω), and so step (i) in the above algorithm is no longer meaningful.

Correspondingly, the associated semismooth Newton method cannot be
shown to converge, since [·]+ : Lq(Ω) → Lp(Ω) is slantly differentiable iff
p < q.
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Obstacle problem

In order to obtain a method with potentially mesh-size independent conver-

gence rates, it is desirable to derive a solution algorithm in function space.

For the obstacle problem this was achieved in Hintermüller, Kunisch (2006)

by considering the following Moreau-Yosida regularization. (See also Ito,

Kunisch (2003).)

For γ →∞ consider

minimize Ĵγ(y) := J(y) +
1

2γ

∫
Ω

[λ̂+ γ (y − ψ)]2+ dx over y ∈ H1
0(Ω) ,

where λ̂ ∈ L2(Ω), λ̂ ≥ 0.

For a fixed γ > 0, the optimality system is given by

(OSγ)


(∇y,∇v) + (λ, v) = (f, v) ∀ v ∈ H1

0(Ω) ,

λ− [λ̂+ γ (y − ψ)]+ = 0 ,

where (y, λ) ∈ H1
0(Ω)× L2(Ω).
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Obstacle problem

(OSγ)


(∇y,∇v) + (λ, v) = (f, v) ∀ v ∈ H1

0(Ω) ,

λ− [λ̂+ γ (y − ψ)]+ = 0 .

For fixed γ, (OSγ) can be solved with a semismooth Newton method to

obtain yγ. (here globally convergent in function space)

As γ →∞, yγ → y?, the solution of (Q).

If λ̂ = 0, then y? ≤ yγ2 ≤ yγ1 for γ1 ≤ γ2. (infeasible case)

If λ̂ ≥ 0 sufficiently large, then yγ1 ≤ yγ2 ≤ y? ≤ ψ for γ1 ≤ γ2. (feasible case)

Based on a model function, Hintermüller, Kunisch (2006) derive in the in-

feasible case a γk-update strategy that implies q-superlinear convergence of

yγk to y? in H1
0(Ω).
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Gradient constrained minimization problem

Return to the original problem:

(P) minimize J(y) = 1
2 (∇y,∇y)− (f, y) over y ∈ K ,

where K = {η ∈ H1
0(Ω) : |∇η| ≤ ψ almost everywhere on Ω}, with standard

FE approximation

(Ph) minimize J(yh) = 1
2 (∇yh,∇yh)− (f, yh) over yh ∈ Kh .

• It is not possible to derive a primal-dual active set algorithm for (Ph), as
the boundary conditions for the solutions ykh on the inactive set are not
known.

• Similarly, applying a semismooth Newton method to the optimality sys-
tem of (Ph) would in general yield only local convergence, with mesh-
dependent estimates.

The aim is to derive a solution method in function space. Thus conforming
discretizations would converge with the same rate for sufficiently small mesh-
sizes.
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Gradient constrained minimization problem

(P) minimize J(y) = 1
2 (∇y,∇y)− (f, y) over y ∈ K ,

where K = {η ∈ H1
0(Ω) : |∇η| ≤ ψ almost everywhere on Ω}.

The optimality system for (P) is given by

(OS)

(∇y,∇v) + (λ
∇y
|∇y|

,∇v) = (f, v) ∀ v ∈ H1
0(Ω) ,

λ− [λ+ c (|∇y| − ψ)]+ = 0 in L2(Ω) ,

for any c > 0.

On recalling that [·]+ : Ls(Ω) → Ls(Ω), with 1 ≤ s ≤ ∞, is not slantly

differentiable, the semismooth Newton iteration for solving (OS) need not

converge.

Hence we employ the following Moreau-Yosida regularization, similarly to

Hintermüller, Kunisch (2006) for the obstacle problem.
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Moreau-Yosida regularization

For γ > 0 consider

(Pγ) minimize Jγ(y) := J(y) +
1

2γ

∫
Ω

[λ̂+ γ (|∇y| − ψ)]2+ dx over y ∈ H1
0(Ω) ,

where λ̂ ∈ L2(Ω), λ̂ ≥ 0.

The first order optimality condition for (Pγ) can be expressed as

(OSγ) (∇yγ,∇v)+([λ̂+ γ (|∇yγ| − ψ)]+︸ ︷︷ ︸
λγ

∇yγ
|∇yγ|

,∇v) = (f, v) ∀ v ∈ H1
0(Ω) .

It is straightforward to show that yγ → y∗, the solution of (P), in H1
0(Ω) as

γ →∞.

Moreover, it can be shown that (OSγ) is slantly differentiable, and so the

semismooth Newton method is guaranteed to converge locally q-superlinearly.
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Semismooth Newton method

For simplicity, consider the infeasible case (λ̂ = 0) from now on.

Then, in particular, the mapping q : Lr(Ω)n → L2(Ω)n with

q(u)(x) = [|u(x)| − ψ(x)]+
u(x)

|u(x)|
=


(

1− ψ(x)
|u(x)|

)
u(x) |u(x)| > ψ(x) ,

0 |u(x)| ≤ ψ(x) ,

is Newton differentiable for r > 2.

A particular Newton-derivative is given by

Q(u)(x) =


(

1− ψ(x)
|u(x)|

)
id +ψ(x) u(x)u(x)>

|u(x)|3 |u(x)| > ψ(x) ,

0 |u(x)| ≤ ψ(x) .
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Semismooth Newton method

Hence the semismooth Newton method applied to (OSγ) for finding the

solution yγ of (Pγ) can be formulated as follows.

Let y(0)
γ ∈ H1

0(Ω) ∩W1,r(Ω) =: W1,r
0 (Ω), r > 2. For k ≥ 0:

(i) Find δ
(k)
y ∈ H1

0(Ω) such that

(∇δ(k)
y ,∇v) + γ (Q(∇y(k)

γ )∇δ(k)
y ,∇v)

= −(∇y(k)
γ ,∇v) + (f, v)− γ (q(∇y(k)

γ ),∇v) ∀ v ∈ H1
0(Ω).

(ii) y
(k+1)
γ := y

(k)
γ + δ

(k)
y .

Regularity theory for (i) yields that if y(k)
γ ∈ W

1,r
0 (Ω), r > 2, then δ

(k)
y ∈

W
1,r∗
0 (Ω) with r∗ ∈ (2, r]. Hence y

(k+1)
γ ∈ W

1,r∗
0 (Ω) and this allows us to

show that q is Newton-differentiable at ∇y(k+1)
γ , and consequently that the

semismooth Newton method converges locally.
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Finite Element Approximation

Our FE approximation to the Newton iteration is as follows.

Let Ih : L1(Ω)→ Dh be the orthogonal projection onto the space

Dh := {χ ∈ L1(Ω) : χ |κ is constant a.e. in κ ∀ κ ∈ T h}

of piecewise constant functions, i.e.

(Ih χ) |κ=
1

|κ|

∫
κ
χ dx ∀ κ ∈ T h .

We then define the mapping qh : [Dh]n → [Dh]n such that

qh(U)(x) =


(

1− I
hψ(x)
|U(x)|

)
U(x) |U(x)| > Ihψ(x) ,

0 |U(x)| ≤ Ihψ(x) .

Moreover, let Qh : [Dh]n → [Dh]n×n be defined such that

Qh(U)(x) :=


(

1− I
hψ(x)
|U(x)|

)
id +Ihψ(x) U(x)U(x)>

|U(x)|3 |U(x)| > Ihψ(x) ,

0 |U(x)| ≤ Ihψ(x) .
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Finite Element Approximation

Then the discrete Newton iteration is defined as follows.

Let Y (0)
γ ∈ V h. For k ≥ 0:

(i) Find δY ∈ V h such that

(∇δY ,∇χ) + γ (Qh(∇Y (k)
γ )∇δY ,∇χ)

= −(∇Y (k)
γ ,∇χ) + (f, χ)− γ (qh(∇Y (k)

γ ),∇χ) ∀ χ ∈ V h .

(ii) Y
(k+1)
γ := Y

(k)
γ + δY .

On the discrete level, the above solves Fh(Y ) = 0, where for Y ∈ V h the

functional Fh : V h → RN is defined by

[Fh(Y )]j = (∇Y,∇χj)− (f, χj) + γ (qh(∇Y ),∇χj) ∀ j ∈ J0 .
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Local Convergence of Newton Iteration

Study number of Newton iterations for varying γ and h. As initial guess

Y
(0)
γ ∈ V h we choose the solution of

(∇Y (0)
γ ,∇χ) = (f, χ) ∀ χ ∈ V h .

Example: Let f = 10, ψ ≡ 1.

We observe locally superlinear convergence in practice. Example plots of

‖Fh(Y (k)
γ )‖∞ for h = 1/128 and γ = 10l, l = 0→ 3, follow.
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Local Convergence of Newton Iteration

‖Fh(Y (k)
γ )‖∞ for h = 1/128 and γ = 10l, l = 0→ 3. (tol = 10−10)
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Local Convergence of Newton Iteration

Number of Newton iterations for varying γ and h.

Example: Let f = 10, ψ ≡ 1.

# iterations
h γ = 1 γ = 10 γ = 1000 γ = 10000

1/4 3 5 10 25
1/8 3 5 7 11

1/16 4 5 13 26
1/32 4 6 13 31
1/64 4 6 15 –

1/128 4 6 18 40
1/256 4 7 20 –

tol = 10−10
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Local Convergence of Newton Iteration

Same behaviour for more complicated situations.

Example: Let f = 10, ψ(x) =

1 x1 < x2 ,

0.5 x1 ≥ x2 .

# iterations
h γ = 1 γ = 10 γ = 1000 γ = 10000

1/4 3 6 12 16
1/8 4 6 14 –

1/16 4 6 15 57
1/32 4 7 22 –
1/64 4 7 24 –

1/128 4 7 22 –
1/256 4 7 26 –

tol = 10−10
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Local Convergence of Newton Iteration

Same behaviour for more complicated situations.

Example: Let f = 10, ψ(x) =

1 x2 > 0 ,

0.5 x2 ≤ 0 .

# iterations
h γ = 1 γ = 10 γ = 1000 γ = 10000

1/4 3 6 19 –
1/8 4 6 15 56

1/16 4 6 16 164
1/32 4 7 21 –
1/64 4 8 20 –

1/128 4 8 22 –
1/256 4 8 – –

tol = 10−10
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Local Convergence of Newton Iteration

Similar behaviour for nonconvex domains.

Example: Let f = 10, ψ ≡ 1.

# iterations
h γ = 1 γ = 10 γ = 1000 γ = 10000

1/5 3 5 8 12
1/10 4 6 15 43
1/20 4 6 15 –
1/40 4 7 – –
1/80 4 7 – –

1/160 5 8 – –
1/320 5 8 – –
1/640 5 9 – –

tol = 10−10
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Path-following Algorithm

The very local convergence behaviour of the semismooth Newton method

motivates a path-following algorithm, similarly to Hintermüller, Kunisch

(2006).

The idea is to compute a sequence of solutions {Yγl}l≥0 for a sequence

{γl}l≥0 with γl →∞ as l→∞.

The initial guess for the Newton iterations is then Y
(0)
γl+1 = Yγl.

We use the following heuristic path following algorithm.

1. Let γ0 = 0 and fix γ ∈ (0,∞).

2. For l ≥ 0, let Yγl denote the converged solution of the semismooth

Newton iteration for γ = γl, if the iteration converged.

3. If iteration did not converge, then set γl := 1
2 (γl + γl−1) and go to 2.

4. Set γl+1 := min(γ, a γl + b) and let Y (0)
γl+1 = Yγl.

5. Repeat until γl = γ.
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Path-following Algorithm

Example: Let f = 10, ψ ≡ 1.

h # outer iterations # inner iterations [max ‖ avg] (Uzawa)
1/4 14 41 [ 5 ‖ 2.9 ] (768)
1/8 14 35 [ 5 ‖ 2.5 ] (184)

1/16 14 38 [ 6 ‖ 2.7 ] (540)
1/32 14 50 [ 6 ‖ 3.6 ] (1339)
1/64 14 55 [ 8 ‖ 3.9 ] (926)

1/128 14 52 [ 7 ‖ 3.7 ] (403)
1/256 15 55 [ 7 ‖ 3.7 ] (386)

γ = 108, a = 5, b = 1, tol = 10−10
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Path-following Algorithm

Example: Let f = 10, ψ ≡ 1.

h # outer iterations # inner iterations [max ‖ avg] (Uzawa)
1/5 94 223 [ 4 ‖ 2.4 ] (222)

1/10 94 248 [ 4 ‖ 2.6 ] (622)
1/20 94 261 [ 6 ‖ 2.8 ] (4619)
1/40 96 300 [ 6 ‖ 3.1 ] (12903)
1/80 109 384 [ 13 ‖ 3.5 ] (29916)

1/160 135 520 [ 11 ‖ 3.9 ] (41503)
1/320 244 942 [ 18 ‖ 3.9 ] (44906)

γ = 108, a = 1.2, b = 1, tol = 10−10
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Path-following Algorithm

Example: Let f = 10, ψ ≡ 1.

h # outer iterations # inner iterations [max ‖ avg] (Uzawa)
1/6 94 215 [ 4 ‖ 2.3 ] (154)

1/12 94 226 [ 4 ‖ 2.4 ] (173)
1/24 94 234 [ 5 ‖ 2.5 ] (416)
1/48 94 247 [ 5 ‖ 2.6 ] (5346)
1/96 94 283 [ 6 ‖ 3.0 ] (3146)

1/192 99 340 [ 8 ‖ 3.4 ] (8082)
1/384 114 430 [ 9 ‖ 3.8 ] (17332)

γ = 108, a = 1.2, b = 1, tol = 10−10
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Path-following Algorithm

Example: Let f = 10, ψ(x) =

1 x1 < x2 ,

0.5 x1 ≥ x2 .

h # outer iterations # inner iterations [max ‖ avg] (Uzawa)
1/4 28 75 [ 4 ‖ 2.7 ] (707)
1/8 28 94 [ 5 ‖ 3.4 ] (24374)

1/16 28 90 [ 9 ‖ 3.2 ] (17757)
1/32 28 92 [ 6 ‖ 3.3 ] (9526)
1/64 28 97 [ 7 ‖ 3.5 ] (10376)

1/128 29 110 [ 7 ‖ 3.8 ] (9308)
1/256 31 132 [ 7 ‖ 4.3 ] (9210)

γ = 108, a = 2, b = 1, tol = 10−10
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Outlook

Open problems:

• Estimate for ‖y∗ − yγ‖ in terms of γ.

• Estimate for ‖yγ − Yγ‖ in terms of h.

• Then balance both errors and use mesh adaptation.

• Model function for value functional Jγ(y), leading to a path following

strategy {γl}l≥0 that exhibits a superlinear convergence rate in ‖y∗−yγl‖.
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