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Snow crystals

Snowflake crystals come in many shapes and forms.

Their precise form depends in a very subtle way on the temperature and on

the supersaturation (amount of excess water molecules).

U. Nakaya (1900-1962) analysed these dependencies and created his now

famous Nakaya snow crystal morphology diagram.
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Snow crystals

As a snow flake falls towards Earth, it experiences many different physical
parameters.

All photos taken from www.SnowCrystals.com

Nakaya called them “letters from the sky”.
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Introduction

The mathematical modelling and computational approximation of snow crys-

tal growth is very challenging.

The most successful simulations of snow crystal growth so far are based on

heuristic discrete models, so-called cellular automata.

See e.g. Gravner, Griffeath (09).
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Introduction

So far, there are no realistic numerical approximations for a continuum

model of snow crystal growth.

AIM: Develop a numerical approximation for such a continuum model that

produces realistic snowflake morphologies.
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A continuum model

A continuum model for an ice crystal growing from water vapour is given in

Libbrecht (05).

Let Ω be a domain in Rd, d = 2 or d = 3.

Let Ω+(t) ⊂ Ω denote the gas phase.

Let Γ(t) := ∂Ω+(t) \ ∂Ω denote the gas/solid

interface.

Let ~ν be the unit normal to Γ(t) pointing into

Ω+(t).

Let c denote the water vapour number density in the gas phase Ω+(t).

Diffusion equation in the gas phase:

ct −D∆ c = 0 in Ω+(t) ,

where D > 0 is a diffusion constant.
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A continuum model

Mass balance at gas/solid interface:

D
∂c

∂~ν
= (csolid − c)V on Γ(t) ,

where csolid ≈ 3×1028 m−3 is the number density for ice, and V is the velocity
of Γ(t) in the direction ~ν. Note: c� csolid.

Surface tension effects and attachment kinetics:

c = csat (1− δ κγ +
V

β(~ν) vkin
) on Γ(t) ,

where δ = γ̂/(csolidK T ) ≈ 1 nm with

γ̂ ≈ 0.1 Jm−2 typical order of the surface tension of ice
K ≈ 1.4× 10−23 JK−1 the Boltzmann constant
T temperature
vkin kinetic velocity
csat = csat(T ) equilibrium number density above a flat ice surface
κγ anisotropic mean curvature
β(~ν) condensation coefficient

Finally, we complement the system with the boundary conditions

c = csat + csuper on ∂Ω .
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A continuum model

ct −D∆ c = 0 in Ω+(t) ,

D
∂c

∂~ν
= (csolid − c)V on Γ(t) ,

c = csat (1− δ κγ +
V

β(~ν) vkin
) on Γ(t) ,

c = csat + csuper on ∂Ω .

In this simple model, energy balance and latent heat are neglected (as particle
diffusion is much slower than heat diffusion). Moreover, the condensation
coefficient β only depends on the local orientation of the growing crystal.

In reality, β is known to strongly depend on the temperature T , and possibly
on c. However, the precise dependence is not known. But it is believed
that certain physical phenomena can be encoded into the condensation co-
efficient: surface roughening, surface melting and kinetic roughening. See
Libbrecht (05) for details.

Nevertheless, this simple model with reasonable choices for β(~ν) allows the
computation of a wide range of snowflake morphologies observed in reality.

7



Non-dimensionalization

As length scale we choose R = 100µm. As time scale we choose t̃ = R2

D
csolid
csat

.

Introducing the non-dimensionalized concentration

u =
c− csat

csat

and rescaling ~x→ ~x/R, t→ t/t̃ we obtain, on recalling that c, csat � csolid the

non-dimensionalized problem

−∆u = 0 in Ω+(t),
∂u

∂~ν
= V on Γ(t),

ρV
β(~ν)

= ακγ + u on Γ(t),

where ρ := (D csat)/(Rcsolid vkin) ≈ 1.42×10−3 for values of T between −1◦C
and −30◦C, and α := δ/R ≈ 10−5. See Libbrecht (05).

Varying β = β(·, T ) and the boundary conditions

u = u∂Ω :=
csuper

csat
on ∂Ω

models different choices for temperature and supersaturation.
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Anisotropy

The anisotropic mean curvature κγ can be introduced as follows.

The total surface energy of an interface Γ is given by the surface integral∫
Γ
γ(~ν) ds .

Here γ(~ν) encodes the effect of the underlying crystal structure.

The first variation of the above energy can now be computed as

κγ := −∇s · γ′(~ν) ,

see e.g. Cahn, Hoffmann (74).

Here, for mathematical convenience, we have defined

γ(~p) := |~p| γ(
~p

|~p|
) ∀ 0 < |~p| 6= 1 .

I.e. κγ measures how much
∫

Γ
γ(~ν) ds changes if Γ is changed locally in the

direction of ~ν.
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Anisotropy

Relevant for the modelling of snow crystal growth are hexagonal surface

energy anisotropies.

Example Wulff shapes W (scaled surface area minimiziers) and polar plots

P := {γ(~p) ~p : |~p| = 1} are given below.

2d:

3d:
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Mathematical problem

We want to numerically approximate: For all t ≥ 0 find Γ(t) = ∂Ω+(t)\∂Ω ⊂
Ω and u(·, t) : Ω+(t)→ R such that

−∆u = 0 in Ω+(t),
∂u

∂~ν
= V on Γ(t),

ρV
β(~ν)

= ακγ + u on Γ(t),

u = u∂Ω on ∂Ω .

This is a one-sided Stefan/Mullins–Sekerka problem with anisotropic Gibbs–
Thomson law and kinetic undercooling.

Challenges:

(1) Given Ω+(t) and V, solve an elliptic problem with Neumann data on a
curved boundary for u.

(2) Given u, solve a forced geometric evolution equation for Γ(t).

(3) Incorporate the nearly crystalline, hexagonal anisotropy.

(4) Coupling of the problems for u and Γ(t).
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Challenge (1)

−∆u = 0 in Ω+(t),
∂u

∂~ν
= V on Γ(t).

(1) Given Ω+(t) and V, solve an elliptic problem with Neumann data on a

curved boundary for u.

Here we employ an unfitted finite element method, as in Barrett, Elliott

(84); together with local mesh refinement.
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Challenge (2)

V = F(κγ, u) on Γ(t).

(2) Given u, solve a forced geometric evolution equation for Γ(t).

For simplicity, replace κγ with the (isotropic) mean curvature κ. Then we

can use the parametric finite element approximations from Barrett, Garcke,

Nürnberg (08a) ⇒ no remeshing needed.

Example: F(κ, u) = −∆s κ (surface diffusion)

. .
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Challenge (3)

ρV
β(~ν)

= ακγ + u on Γ(t)

(3) Incorporate the nearly crystalline, hexagonal anisotropy:

Using ideas from differential geometry, Barrett, Garcke, Nürnberg (08b)
reformulated the anisotropic mean curvature κγ in a way that lends itself to
a stable variational approximation.

Example: F(κγ, u) = −∆s κγ (anisotropic surface diffusion)

. .
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Challenge (4)

−∆u = 0 in Ω+(t),
∂u

∂~ν
= V on Γ(t),

ρV
β(~ν)

= ακγ + u on Γ(t).

(4) Coupling of the problems for u and Γ(t).

Here we employ a variational formulation that respects the underlying energy

structure of the continuous problem.

One-sided analogoue of the finite element method for the two-sided Stefan/

Mullins–Sekerka problems introduced in Barrett, Garcke, Nürnberg (10).
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Weak formulation

Let

S0,+(t) := {φ ∈ H1(Ω+(t)) : φ = 0 on ∂Ω}
and SD,+(t) := {φ ∈ H1(Ω+(t)) : φ = u∂Ω on ∂Ω} .

In addition, let

V := H1(Υ,Rd) and W := H1(Υ,R) ,

where Υ is a reference manifold for Γ(t).

Find u(·, t) ∈ SD,+(t), Γ(t) = ~x(Υ, t) with ~x(·, t) ∈ V , and κγ(·, t) ∈ W such

that ∫
Ω+(t)

∇u .∇φ dx = −
∫

Γ(t)
~xt . ~ν φ ds ∀ φ ∈ S0,+(t) ,

ρ
∫

Γ(t)

~xt . ~ν χ

β(~ν)
ds =

∫
Γ(t)

[ακγ + u]χ ds ∀ χ ∈W ,∫
Γ(t)

κγ ~ν . ~η ds+ 〈∇G̃s ~x,∇G̃s ~η〉γ = 0 ∀ ~η ∈ V .

The inner product 〈∇G̃s ·,∇G̃s ·〉γ was introduced in BGN (08b).
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Energy structure

The Lyapunov structure

d

dt

(
α
∫

Γ(t)
γ(~ν) ds+ u∂Ω vol(Ω+(t))

)
+ (∇u,∇u)+ + ρ

∫
Γ(t)

V2

β(~ν)
ds = 0 ,

is mimicked on the discrete level by our finite element approximation.

Let Γ0, an approximation to Γ(0). For m ≥ 0, find Um+1 ∈ SmD,+, ~Xm+1 ∈
V (Γm) and κm+1

γ ∈W (Γm) such that for all ϕ ∈ Sm0,+, χ ∈W (Γm), ~η ∈ V (Γm)

(∇Um+1,∇ϕ)m,+ −
〈
πm

[
~Xm+1 − ~Xm

τm
. ~ωm

]
, ϕ

〉
m

= 0 ,

ρ

〈
[β(~νm)]−1

~Xm+1 − ~Xm

τm
, χ ~ωm

〉h
m

− α 〈κm+1
γ , χ〉hm − 〈Um+1, χ〉m = 0 ,

〈κm+1
γ ~ωm, ~η〉hm + 〈∇G̃s ~Xm+1,∇G̃s ~η〉γ,m = 0 ;

and set Γm+1 = ~Xm+1(Γm). Here we define

(∇χ,∇ϕ)m,+ :=
∫

Ωm,h
+

∇χ .∇ϕ dx =

JmΩ∑
j=1

|omj ∩Ωm,h
+ |

|omj |

∫
omj

∇χ .∇ϕ dx .

Linear system. Existence, uniqueness and stability.
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Implementation

Evaluation of cross terms such as 〈Um+1, χ〉m requires computation of in-

tersections between bulk mesh and interface mesh.

In addition, for the definition of SmD,+ and for the evaluation of the inner

product (∇Um+1,∇ϕ)m,+ we have to define a discrete approximation Ωm,h
+

to the exact exterior Ωm
+ of Γm in Ω.

To this end, each element has to be marked as either belonging to Ωm
+ , or

belonging to Ω \Ωm
+ , or as being cut by Γm.
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Numerical Results – 2d

u∂Ω = 0.004 u∂Ω = 0.01 u∂Ω = 0.04 u∂Ω = 0.2

u∂Ω = [ 0.08 |0.004 |0.08 ] u∂Ω = [ 0.2 |0.4 |0.08 |0.004 |0.08 |0.004 |0.08 ]
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Numerical Results – 3d

ρV = β(~ν) [ακγ + u] on Γ(t)

Define βflat,`(~p) := [p2
1 + p2

2 + 10−2` p2
3]

1
2 (to encourage flat growth),

and βtall,`(~p) := [10−2` (p2
1 + p2

2) + p2
3]

1
2 (to encourage tall growth).
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Numerical Results – 3d

Solid plates. (u∂Ω = 0.004, β = βflat,3)

Dendrites. (u∂Ω = 0.004, β = βflat,3)
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Numerical Results – 3d

Solid prisms. (u∂Ω = 0.002, β = βtall,1)

Hollow columns. (u∂Ω = 0.008, β = βtall,2)
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Numerical Results – 3d

Needles. (u∂Ω = 0.004, β = βtall,3)

Capped columns. (u∂Ω = 0.02, β = βflat,3)
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Numerical Results – 3d

Sectored plates. (u∂Ω = [ 0.004 |0.024 |0.004 ], β = βflat,3)

Scrolls on plates. (u∂Ω = 0.004, β = [βflat,3 |βtall,3 ])
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