Stable Approximation of Stefan Problems with fully anisotropic Gibbs–Thomson Law

Robert Nürnberg

Department of Mathematics, Imperial College London

In collaboration with

John W. Barrett

and

Harald Garcke

Imperial College London

Universität Regensburg

Introduction

Consider a Stefan Problem for Undercooled Solidification.

Container $\Omega \subset \mathbb{R}^d$, d = 2 or 3.

Solid-Liquid interface $\Gamma(t)$.

 $\Omega_s(t)$, the interior of $\Gamma(t)$, is the solid region.

 $\Omega_l(t) := \Omega \setminus \overline{\Omega_s(t)}$ is the liquid region.

Unit normal of $\Gamma(t)$, $\vec{\nu}$, pointing into $\Omega_l(t)$.

Let \mathcal{V} denote normal velocity of $\Gamma(t)$.

$$\left[\frac{\partial \cdot}{\partial \vec{\nu}}\right]_{\Gamma(t)} := \frac{\partial \cdot}{\partial \vec{\nu}} |_{\text{liquid}} - \frac{\partial \cdot}{\partial \vec{\nu}} |_{\text{solid}} \cdot$$

Stefan Problem with Kinetic Undercooling Find the temperature $u(\cdot,t) : \Omega \to \mathbb{R}$ and the interface $\Gamma(t) \subset \Omega$ such that for $t \in (0,T]$

$$\begin{split} \vartheta \, u_t - \Delta u &= f & \text{in } \Omega \setminus \Gamma(t), \\ \left[\frac{\partial u}{\partial \vec{\nu}} \right]_{\Gamma(t)} &= -\lambda \, \mathcal{V} & \text{on } \Gamma(t), & \text{(Stefan condition)} \\ \rho \, \mathcal{V} &= \beta(\vec{\nu}) \, \left[\alpha \, \varkappa_\gamma - a \, u \right] & \text{on } \Gamma(t), & \text{(Gibbs-Thomson condition)} \\ u &= u_D & \text{on } \partial \Omega \end{split}$$

with $u(\cdot, 0)$ and $\Gamma(0)$ specified.

Here $\lambda \in \mathbb{R}_{>0}$ is the latent heat, ϑ , ρ , $\alpha \in \mathbb{R}_{>0}$ and $a \in \mathbb{R}_{>0}$.

In addition, \varkappa_{γ} is the weighted mean curvature of Γ , based on a given anisotropy function $\gamma(\cdot)$, and $\beta(\cdot)$ is a given anisotropic mobility.

AIM: Introduce a stable finite element approximation for the Stefan problem.

Crucial: A stable, variational formulation of \varkappa_{γ} .

Anisotropic mean curvature flow

A stable approximation of the Stefan problem with

 $\rho \mathcal{V} = \beta(\vec{\nu}) [\alpha \varkappa_{\gamma} - a u]$ on $\Gamma(t)$, (Gibbs-Thomson condition)

hinges on a stable numerical method for the much simpler problem

 $\mathcal{V} = \varkappa_{\gamma}$ on $\Gamma(t)$, (MC_{γ})

i.e. motion by anisotropic mean curvature.

For simplicity, consider first the isotropic case, i.e. $\gamma(\vec{\nu}) = |\vec{\nu}| = 1$. Then $\varkappa_{\gamma} = \varkappa$ and (MC_{γ}) collapses to

$$\mathcal{V} = \varkappa$$
 on $\Gamma(t)$, (MC)

i.e. the mean curvature flow.

On noting that $-\varkappa$ can be defined as the first variation of the surface area $|\Gamma|$, (MC) is often interpreted as the L^2 -gradient flow of $|\Gamma|$.

Planar curvature flow

For simplicity, let d = 2. Let $\vec{x}(\rho, t)$, $\rho \in I := \mathbb{R}/\mathbb{Z}$ (periodic [0,1]), be a parameterization of $\Gamma(t) \subset \mathbb{R}^2$ with unit tangent $\vec{\tau} = \vec{x}_s = \frac{\vec{x}_\rho}{|\vec{x}_\rho|}$ and curvature vector $\vec{x} = \vec{\tau}_s = \vec{x}_{ss} = \frac{1}{|\vec{x}_\rho|} \left(\frac{\vec{x}_\rho}{|\vec{x}_\rho|}\right)_{\rho}$. It is easy to see that $\vec{x}_{ss} \cdot \vec{x}_s = 0$, and so $\vec{x} = \varkappa \vec{\nu}$, where \varkappa denotes curvature and $\vec{\nu} := -\vec{x}_s^{\perp}$ is a chosen unit normal. $(\cdot^{\perp}$ is clockwise rotation by $\frac{\pi}{2}$)

Then the first variation of

$$|\Gamma(t)| := \int_{\Gamma(t)} 1 \, \mathrm{d}s = \int_{I} |\vec{x}_{\rho}| \, \mathrm{d}\rho$$

can be computed as

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} |\Gamma(t)| &= \int_{I} \frac{\vec{x}_{\rho}}{|\vec{x}_{\rho}|} \cdot \vec{x}_{\rho,t} \,\mathrm{d}\rho = -\int_{I} \left(\frac{\vec{x}_{\rho}}{|\vec{x}_{\rho}|} \right)_{\rho} \cdot \vec{x}_{t} \,\mathrm{d}\rho = -\int_{\Gamma(t)} \vec{x}_{ss} \cdot \vec{x}_{t} \,\mathrm{d}s \\ &= -\int_{\Gamma(t)} \varkappa \left(\vec{x}_{t} \cdot \vec{\nu} \right) \,\mathrm{d}s \,. \end{aligned}$$

Hence the L^2 -gradient flow of $|\Gamma|$ is: $\vec{x}_t \cdot \vec{\nu} = \varkappa$. (MC)

Weak formulation of (MC)

Based on

$$\vec{x}_t \cdot \vec{\nu} = \varkappa$$
 and $\varkappa \vec{\nu} = \vec{x}_{ss}$.

Given $\Gamma(0)$, for $t \in (0,T]$ find $\vec{x}(t) \in \underline{V} := H^1(I; \mathbb{R}^2)$ and $\varkappa(t) \in V := H^1(I; \mathbb{R})$ such that

$$\int_{\Gamma} \vec{x}_t \cdot \vec{\nu} \,\varphi \,\mathrm{d}s - \int_{\Gamma} \varkappa \,\varphi \,\mathrm{d}s = 0 \quad \forall \,\varphi \in V \,,$$
$$\int_{\Gamma} \varkappa \,\vec{\nu} \cdot \vec{\varphi} \,\mathrm{d}s + \int_{\Gamma} \vec{x}_s \cdot \vec{\varphi}_s \,\mathrm{d}s = 0 \quad \forall \,\vec{\varphi} \in \underline{V} \,.$$

"Stability": Choose $\varphi = \varkappa$ and $\vec{\varphi} = \vec{x}_t$ to obtain

$$0 = \int_{\Gamma} \varkappa^2 \, \mathrm{d}s + \int_{\Gamma} \vec{x}_s \, \cdot \vec{x}_{t,s} \, \mathrm{d}s$$
$$= \int_{\Gamma} \varkappa^2 \, \mathrm{d}s + \int_{I} \frac{\vec{x}_{\rho}}{|\vec{x}_{\rho}|} \, \cdot \vec{x}_{\rho,t} \, \mathrm{d}\rho$$
$$= \int_{\Gamma} \varkappa^2 \, \mathrm{d}s + \frac{\mathrm{d}}{\mathrm{d}t} \left| \Gamma(t) \right| \, .$$

Semidiscrete Finite Element Approximation Let $I \equiv \mathbb{R}/\mathbb{Z} = \bigcup_{j=1}^{N} J_j$, $N \geq 3$, partitioned into intervals $J_j = [q_{j-1}, q_j]$. $\underline{V}^h := \{\vec{\chi} \in C(I, \mathbb{R}^2) : \vec{\chi}|_{J_j}$ is linear $\forall j = 1 \rightarrow N\} =: [V^h]^2 \subset H^1(I, \mathbb{R}^2)$. Let $\{\phi_j\}_{j=1}^N$ denote the standard basis of V^h .

 $\vec{X}^{h}(t) \in \underline{V}^{h}$ approximating $\vec{x}(t) \Rightarrow$ a polygonal approximation, $\Gamma^{h}(t)$, to $\Gamma(t)$.

Given $\Gamma^h(0)$, for $t \in (0,T]$ find $\vec{X}^h(t) \in \underline{V}^h$ and $\kappa^h(t) \in V^h$ such that

$$\langle \vec{X}_{t}^{h}, \chi \, \vec{\nu}^{h} \rangle_{\Gamma^{h}}^{h} - \langle \kappa^{h}, \chi \rangle_{\Gamma^{h}}^{h} = 0 \qquad \forall \ \chi \in V^{h};$$
$$\langle \kappa^{h} \, \vec{\nu}^{h}, \vec{\eta} \rangle_{\Gamma^{h}}^{h} + \langle \vec{X}_{s}^{h}, \vec{\eta}_{s} \rangle_{\Gamma^{h}} = 0 \qquad \forall \ \vec{\eta} \in \underline{V}^{h};$$

where

$$\langle f,g\rangle_{\Gamma^h} := \int_{\Gamma^h(t)} f \cdot g \, \mathrm{d}s = \int_I f \cdot g \, |\vec{X}^h_{\rho}(t)| \, \mathrm{d}\rho$$

with $\langle \cdot, \cdot \rangle_{\Gamma^h}^h$ the mass lumped inner product.

Stability: Choose $\chi = \kappa^h$ and $\vec{\eta} = \vec{X}^h_t$ to obtain

$$0 = \langle \kappa^h, \kappa^h \rangle_{\Gamma^h}^h + \langle \vec{X}_s^h, \vec{X}_{t,s}^h \rangle_{\Gamma^h} = \langle \kappa^h, \kappa^h \rangle_{\Gamma^h}^h + \frac{\mathsf{d}}{\mathsf{d}t} \left| \Gamma^h(t) \right|.$$

Semi-Implicit Fully Discrete Finite Element Approximation Let $0 = t_0 < t_1 < \ldots < t_{M-1} < t_M = T$ be a partitioning of [0,T], $\tau_m := t_{m+1} - t_m$, $m = 0 \rightarrow M - 1$, and $\tau := \max_{m=0 \rightarrow M-1} \tau_m$.

Given $\Gamma^0 = \vec{X}^0(I)$, $\vec{X}^0 \in \underline{V}^h$, for $m = 0 \to M - 1$ find $\vec{X}^{m+1} \in \underline{V}^h$ and $\kappa^{m+1} \in V^h$ such that

$$\langle \frac{\vec{X}^{m+1} - \vec{X}^m}{\tau_m}, \chi \vec{\nu}^m \rangle_{\Gamma^m}^h - \langle \kappa^{m+1}, \chi \rangle_{\Gamma^m}^h = 0 \qquad \forall \ \chi \in V^h;$$

$$\langle \kappa^{m+1} \vec{\nu}^m, \vec{\eta} \rangle^h_{\Gamma^m} + \langle \vec{X}^{m+1}_s, \vec{\eta}_s \rangle_{\Gamma^m} = 0 \qquad \forall \ \vec{\eta} \in \underline{V}^h.$$

Stability: Choose $\chi = \kappa^{m+1}$ and $\vec{\eta} = \frac{\vec{X}^{m+1} - \vec{X}^m}{\tau_m}$ to obtain

 $0 = \tau_m \langle \kappa^{m+1}, \kappa^{m+1} \rangle_{\Gamma^m}^h + \langle \vec{X}_s^{m+1}, (\vec{X}^{m+1} - \vec{X}^m)_s \rangle_{\Gamma^m},$ where, on letting $\vec{h}_j^m := \vec{X}^m(q_{j+1}) - \vec{X}^m(q_j),$

$$\begin{split} \vec{X}_{s}^{m+1}, (\vec{X}^{m+1} - \vec{X}^{m})_{s} \rangle_{\Gamma^{m}} &= \sum_{j=1}^{N} \left[\frac{|\vec{h}_{j}^{m+1}|^{2} - \vec{h}_{j}^{m+1} \cdot \vec{h}_{j}^{m}}{|\vec{h}_{j}^{m}|} \right] \\ &= \sum_{j=1}^{N} \left[\frac{(|\vec{h}_{j}^{m+1}| - |\vec{h}_{j}^{m}|)^{2} + |\vec{h}_{j}^{m+1}| \cdot |\vec{h}_{j}^{m}| - \vec{h}_{j}^{m+1} \cdot \vec{h}_{j}^{m}}{|\vec{h}_{j}^{m}|} + |\vec{h}_{j}^{m+1}| - |\vec{h}_{j}^{m}| \right] \\ &\geq \sum_{j=1}^{N} \left[|\vec{h}_{j}^{m+1}| - |\vec{h}_{j}^{m}| \right] = |\Gamma^{m+1}| - |\Gamma^{m}| \,. \end{split}$$

Anisotropic Surface Energy

$$|\Gamma|_{\gamma} := \int_{\Gamma} \gamma(\vec{\nu}) \, \mathrm{d}s$$

where $\gamma : \mathbb{R}^d \setminus \{\vec{0}\} \to \mathbb{R}_{>0}$ is a given anisotropy function, which we will assume is positively homogeneous of degree one, i.e.

$$\gamma(\lambda \vec{p}) = \lambda \gamma(\vec{p}) \quad \forall \vec{p} \in \mathbb{R}^d \setminus \{\vec{0}\}, \ \forall \ \lambda \in \mathbb{R}_{>0}.$$

Let $\Gamma(\varepsilon) := \{\vec{z} + \varepsilon \, \vec{g}(\vec{z}) : \vec{z} \in \Gamma\}$. First variation of this energy yields $\frac{\mathrm{d}}{\mathrm{d}\varepsilon} |\Gamma(\varepsilon)|_{\gamma}|_{\varepsilon=0} = -\int_{\Gamma} \vec{\varkappa}_{\gamma} \cdot \vec{g} \, \mathrm{d}s;$

where

Weighted mean curvature vector: Weighted mean curvature:

Cahn–Hoffmann vector:

 $\begin{aligned} \vec{\varkappa}_{\gamma} &:= \varkappa_{\gamma} \vec{\nu}, \\ \varkappa_{\gamma} &:= -\nabla_{s} \cdot \vec{\nu}_{\gamma}, \\ \vec{\nu}_{\gamma} &:= \gamma'(\vec{\nu}) \qquad \text{Cahn, Hoffmann (74).} \end{aligned}$

Planar Anisotropic Curvature Flow

In the case d = 2 it holds that $\varkappa_{\gamma} \vec{\nu} = [\gamma'(\vec{\nu})]_s^{\perp} = [\gamma'(-\vec{x}_s^{\perp})]_s^{\perp}$ since

$$\frac{\mathrm{d}}{\mathrm{d}t} |\Gamma(t)|_{\gamma} = \frac{\mathrm{d}}{\mathrm{d}t} \int_{I} \gamma(-\vec{x}_{\rho}^{\perp}) \,\mathrm{d}\rho = \int_{I} \gamma'(-\vec{x}_{\rho}^{\perp}) \cdot (-\vec{x}_{\rho,t}^{\perp}) \,\mathrm{d}\rho = \int_{I} [\gamma'(-\vec{x}_{s}^{\perp})]^{\perp} \cdot \vec{x}_{\rho,t} \,\mathrm{d}\rho$$
$$= -\int_{I} [\gamma'(-\vec{x}_{s}^{\perp})]^{\perp}_{\rho} \cdot \vec{x}_{t} \,\mathrm{d}\rho = -\int_{\Gamma(t)} [\gamma'(-\vec{x}_{s}^{\perp})]^{\perp}_{s} \cdot \vec{x}_{t} \,\mathrm{d}s \,.$$

Weak formulation of

$$\mathcal{V} = \varkappa_{\gamma}$$
 on $\Gamma(t)$ (MC _{γ})

is then: Given $\Gamma(0)$, for $t \in (0,T]$ find $\vec{x}(t) \in V$ and $\varkappa_{\gamma}(t) \in V$ such that

$$\langle \vec{x}_t, \vec{\nu} \, \varphi \rangle_{\Gamma} - \langle \varkappa_{\gamma}, \varphi \rangle_{\Gamma} = 0 \quad \forall \, \varphi \in V \,,$$
$$\langle \varkappa_{\gamma} \, \vec{\nu}, \vec{\varphi} \rangle_{\Gamma} - \langle \gamma'(\vec{\nu}), \vec{\varphi}_s^{\perp} \rangle_{\Gamma} = 0 \quad \forall \, \vec{\varphi} \in \underline{V} \,.$$

"Stability": Choose $\varphi = \varkappa_{\gamma}$ and $\vec{\varphi} = \vec{x}_t$ to obtain

$$0 = \langle \varkappa_{\gamma}, \varkappa_{\gamma} \rangle_{\Gamma} - \langle \gamma'(\vec{\nu}), \vec{x}_{s,t}^{\perp} \rangle_{\Gamma} = \langle \varkappa_{\gamma}, \varkappa_{\gamma} \rangle_{\Gamma} + \frac{\mathsf{d}}{\mathsf{d}t} |\Gamma(t)|_{\gamma}.$$

Semidiscrete Finite Element Approximation

Given $\Gamma^h(0)$, for $t \in (0,T]$ find $\vec{X}^h(t) \in \underline{V}^h$ and $\kappa^h_{\gamma}(t) \in V^h$ such that

$$\langle \vec{X}_t^h, \chi \, \vec{\nu}^h \rangle_{\Gamma^h}^h - \langle \kappa_{\gamma}^h, \chi \rangle_{\Gamma^h}^h = 0 \qquad \forall \ \chi \in V^h;$$
$$\langle \kappa_{\gamma}^h \, \vec{\nu}^h, \vec{\eta} \rangle_{\Gamma^h}^h - \langle \gamma'(\vec{\nu}^h), \vec{\eta}_s^\perp \rangle_{\Gamma^h} = 0 \qquad \forall \ \vec{\eta} \in \underline{V}^h.$$

Stability: Choose $\chi = \kappa^h_\gamma$ and $\vec{\eta} = \vec{X}^h_t$ to obtain

$$0 = \langle \kappa_{\gamma}^{h}, \kappa_{\gamma}^{h} \rangle_{\Gamma^{h}}^{h} - \langle \gamma'(\vec{\nu}^{h}), [\vec{X}_{t,s}^{h}]^{\perp} \rangle_{\Gamma^{h}} = \langle \kappa_{\gamma}^{h}, \kappa_{\gamma}^{h} \rangle_{\Gamma^{h}}^{h} + \frac{\mathrm{d}}{\mathrm{d}t} |\Gamma^{h}(t)|_{\gamma}.$$

Problem: For a general anisotropy γ it does not appear possible to derive a (linear) semi-implicit fully discrete finite element approximation that mimicks this behaviour, i.e. that satisfies

$$\Gamma^{m+1}|_{\gamma} + \tau_m \, \langle \kappa_{\gamma}^{m+1}, \kappa_{\gamma}^{m+1} \rangle_{\Gamma^m}^h \leq |\Gamma^m|_{\gamma}$$

and so is **unconditionally stable**.

IDEA: Restrict class of admissible anisotropies.

Example Anisotropy

As the simplest example, take the following "elliptic" anisotropy:

$$\gamma(\vec{p}) := \sqrt{\vec{p} \cdot G \vec{p}},$$

where $G \in \mathbb{R}^{2 \times 2}$ is symmetric and positive definite.

Note that

$$\gamma'(\vec{p}) = [\gamma(\vec{p})]^{-1} G \vec{p}.$$

For the semi-implicit fully discrete scheme we then approximate $\gamma'(\vec{\nu}^h)$ by

$$[\gamma(\vec{\nu}^m)]^{-1} G \vec{\nu}^{m+1} = -[\gamma(\vec{\nu}^m)]^{-1} G [\vec{X}_s^{m+1}]^{\perp}$$

to obtain a linear, unconditionally stable approximation.

Given $\Gamma^0 = \vec{X}^0(I)$, $\vec{X}^0 \in \underline{V}^h$, for $m = 0 \rightarrow M - 1$ find $\vec{X}^{m+1} \in \underline{V}^h$ and $\kappa_{\gamma}^{m+1} \in V^h$ such that

$$\langle \frac{\vec{X}^{m+1} - \vec{X}^m}{\tau_m}, \chi \vec{\nu}^m \rangle_{\Gamma^m}^h - \langle \kappa_{\gamma}^{m+1}, \chi \rangle_{\Gamma^m}^h = 0 \qquad \forall \ \chi \in V^h;$$

$$\langle \kappa_{\gamma}^{m+1} \vec{\nu}^{m}, \vec{\eta} \rangle_{\Gamma^{m}}^{h} + \langle [\gamma(\vec{\nu}^{m})]^{-1} G [\vec{X}_{s}^{m+1}]^{\perp}, \vec{\eta}_{s}^{\perp} \rangle_{\Gamma^{m}} = 0 \qquad \forall \ \vec{\eta} \in \underline{V}^{h}$$

Semi-Implicit Fully Discrete Finite Element Approximation

$$\begin{split} & \langle \frac{\vec{X}^{m+1} - \vec{X}^m}{\tau_m}, \chi \, \vec{\nu}^m \rangle_{\Gamma^m}^h - \langle \kappa_{\gamma}^{m+1}, \chi \rangle_{\Gamma^m}^h = 0 \qquad \forall \ \chi \in V^h; \\ & \langle \kappa_{\gamma}^{m+1} \, \vec{\nu}^m, \vec{\eta} \rangle_{\Gamma^m}^h + \langle [\gamma(\vec{\nu}^m)]^{-1} \, G \, [\vec{X}_s^{m+1}]^{\perp}, \vec{\eta}_s^{\perp} \rangle_{\Gamma^m} = 0 \qquad \forall \ \vec{\eta} \in \underline{V}^h. \\ \\ \text{Stability: Choose } \chi = \kappa_{\gamma}^{m+1} \text{ and } \vec{\eta} = \frac{\vec{X}^{m+1} - \vec{X}^m}{\tau_m} \text{ and observe that} \\ & \langle [\gamma(\vec{\nu}^m)]^{-1} G \, [\vec{X}_s^{m+1}]^{\perp}, [\vec{X}^{m+1} - \vec{X}^m]_s^{\perp} \rangle_{\Gamma^m} = \sum_{j=1}^N \frac{[\vec{h}_j^{m+1}]^{\perp} \cdot G \, ([\vec{h}_j^{m+1}]^{\perp} - [\vec{h}_j^m]^{\perp}))}{\gamma([\vec{h}_j^m]^{\perp})} \\ &= \sum_{j=1}^N \frac{(\gamma([\vec{h}_j^{m+1}]^{\perp}) - \gamma([\vec{h}_j^m]^{\perp}))^2}{\gamma([\vec{h}_j^m]^{\perp})} \\ & + \sum_{j=1}^N \frac{\gamma([\vec{h}_j^{m+1}]^{\perp}) \gamma([\vec{h}_j^m]^{\perp}) - [\vec{h}_j^{m+1}]^{\perp} \cdot G \, [\vec{h}_j^m]^{\perp}}{\gamma([\vec{h}_j^m]^{\perp})} \\ &+ \sum_{j=1}^N \left[\gamma([\vec{h}_j^{m+1}]^{\perp}) - \gamma([\vec{h}_j^m]^{\perp})\right] \\ &\geq \sum_{j=1}^N \left[\gamma([\vec{h}_j^{m+1}]^{\perp}) - \gamma([\vec{h}_j^m]^{\perp})\right] = \int_{\Gamma^{m+1}} \gamma(\vec{\nu}^{m+1}) \, \mathrm{d}s - \int_{\Gamma^m} \gamma(\vec{\nu}^m) \, \mathrm{d}s. \end{split}$$

Note: Inequality also holds element-wise.

 $\langle |$

Admissible Anisotropies

Idea: Consider an l_r -norm of such "elliptic" anisotropies.

$$\gamma(\vec{p}) = \left(\sum_{\ell=1}^{L} [\gamma_{\ell}(\vec{p})]^r\right)^{\frac{1}{r}}, \qquad \gamma_{\ell}(\vec{p}) := \sqrt{\vec{p} \cdot G_{\ell} \vec{p}}, \qquad r \in [1, \infty),$$

where $G_{\ell} \in \mathbb{R}^{2 \times 2}$, $\ell = 1 \rightarrow L$, are symmetric and positive definite.

Note that

$$\gamma'(\vec{p}) = [\gamma(\vec{p})]^{1-r} \sum_{\ell=1}^{L} [\gamma_{\ell}(\vec{p})]^{r-1} \gamma'_{\ell}(\vec{p}).$$

For the semi-implicit fully discrete scheme we then approximate $\gamma'(\vec{\nu}^h)$ by

$$\sum_{\ell=1}^{L} \left[\frac{\gamma_{\ell}(\vec{\nu}^{m+1})}{\gamma(\vec{\nu}^{m+1})} \right]^{r-1} [\gamma_{\ell}(\vec{\nu}^{m})]^{-1} G_{\ell} \vec{\nu}^{m+1}$$
$$= -\sum_{\ell=1}^{L} \left[\frac{\gamma_{\ell}(\vec{\nu}^{m+1})}{\gamma(\vec{\nu}^{m+1})} \right]^{r-1} [\gamma_{\ell}(\vec{\nu}^{m})]^{-1} G_{\ell} [\vec{X}_{s}^{m+1}]^{\perp}$$

to obtain an unconditionally stable approximation that is linear for r = 1.

Semi-Implicit Fully Discrete Finite Element Approximation Given $\Gamma^0 = \vec{X}^0(I), \ \vec{X}^0 \in \underline{V}^h$, for $m = 0 \to M - 1$ find $\vec{X}^{m+1} \in \underline{V}^h$ and $\kappa_{\gamma}^{m+1} \in V^h$ such that

$$\langle rac{ec{X}^{m+1}-ec{X}^m}{ au_m}, \chi \, ec{
u}^m
angle_{\Gamma^m}^h - \langle \kappa_{\gamma}^{m+1}, \chi
angle_{\Gamma^m}^h = 0 \quad \forall \, \chi \in V^h;$$

$$\langle \kappa_{\gamma}^{m+1} \vec{\nu}^{m}, \vec{\eta} \rangle_{\Gamma^{m}}^{h} + \sum_{\ell=1}^{L} \langle \left[\frac{\gamma_{\ell}(\vec{\nu}^{m+1})}{\gamma(\vec{\nu}^{m+1})} \right]^{r-1} [\gamma_{\ell}(\vec{\nu}^{m})]^{-1} G_{\ell} \left[\vec{X}_{s}^{m+1} \right]^{\perp}, \vec{\eta}_{s}^{\perp} \rangle_{\Gamma^{m}} = 0 \quad \forall \ \vec{\eta} \in \underline{V}^{h}.$$

Stability: Choose $\chi = \kappa_{\gamma}^{m+1}$ and $\vec{\eta} = \frac{\vec{X}^{m+1} - \vec{X}^m}{\tau_m}$, use element-wise inequality for each γ_{ℓ} and apply Hölder to obtain that

$$\begin{split} \sum_{\ell=1}^{L} \langle \left[\frac{\gamma_{\ell}(\vec{\nu}^{m+1})}{\gamma(\vec{\nu}^{m+1})} \right]^{r-1} [\gamma_{\ell}(\vec{\nu}^{m})]^{-1} G_{\ell} [\vec{X}_{s}^{m+1}]^{\perp}, [\vec{X}^{m+1} - \vec{X}^{m}]_{s}^{\perp} \rangle_{\Gamma^{m}} \\ &\geq \sum_{\ell=1}^{L} \int_{\Gamma^{m+1}} \left[\frac{\gamma_{\ell}(\vec{\nu}^{m+1})}{\gamma(\vec{\nu}^{m+1})} \right]^{r-1} \gamma_{\ell}(\vec{\nu}^{m+1}) \, \mathrm{d}s - \sum_{\ell=1}^{L} \int_{\Gamma^{m}} \left[\frac{\gamma_{\ell}(\vec{\nu}^{m+1})}{\gamma(\vec{\nu}^{m+1})} \right]^{r-1} \gamma_{\ell}(\vec{\nu}^{m}) \, \mathrm{d}s \\ &\geq \int_{\Gamma^{m+1}} \sum_{\ell=1}^{L} \left[\frac{\gamma_{\ell}(\vec{\nu}^{m+1})}{\gamma(\vec{\nu}^{m+1})} \right]^{r} \gamma(\vec{\nu}^{m+1}) \, \mathrm{d}s - \int_{\Gamma^{m}} \left(\sum_{\ell=1}^{L} [\gamma_{\ell}(\vec{\nu}^{m})]^{r} \right)^{\frac{1}{r}} \, \mathrm{d}s \\ &= \int_{\Gamma^{m+1}} \gamma(\vec{\nu}^{m+1}) \, \mathrm{d}s - \int_{\Gamma^{m}} \gamma(\vec{\nu}^{m}) \, \mathrm{d}s \, . \end{split}$$

Numerical Results for (MC $_{\gamma}$)

Extension to 3d

Extending the approximation from 2d to 3d is **not straightforward**.

But using ideas from differential geometry, Barrett, Garcke, Nürnberg (08) reformulated the anisotropic mean curvature \varkappa_{γ} in a way that lends itself to a stable variational approximation for d = 2 and d = 3.

In particular, for

$$\gamma(\vec{p}) = \left(\sum_{\ell=1}^{L} [\gamma_{\ell}(\vec{p})]^r \right)^{\frac{1}{r}}, \qquad \gamma_{\ell}(\vec{p}) := \sqrt{\vec{p} \cdot G_{\ell} \vec{p}}, \qquad r \in [1, \infty),$$

where $G_{\ell} \in \mathbb{R}^{d \times d}$, $\ell = 1 \rightarrow L$, are symmetric and positive definite, we obtain the identity

$$\varkappa_{\gamma} \vec{\nu} = \sum_{\ell=1}^{L} \gamma_{\ell}(\vec{\nu}) \, \tilde{G}_{\ell} \, \nabla_{s}^{\widetilde{G}_{\ell}} \, \cdot \left[\left[\frac{\gamma_{\ell}(\vec{\nu})}{\gamma(\vec{\nu})} \right]^{r-1} \nabla_{s}^{\widetilde{G}_{\ell}} \vec{x} \right] \, .$$

Here

$$\widetilde{G}_{\ell} := \left[\det G_{\ell}\right]^{\frac{1}{2}} G_{\ell}^{-1}, \qquad \ell = 1 \to L,$$

and $\nabla_{\!\!s}^{\widetilde{G}_\ell}$, $\nabla_{\!\!s}^{\widetilde{G}_\ell}$. are anisotropic surface gradient and divergence operators induced by the inner product

$$(\vec{u},\vec{v})_{\widetilde{G}_{\ell}} := \vec{u} \cdot \widetilde{G}_{\ell} \vec{v} \qquad \forall \vec{u}, \vec{v} \in \mathbb{R}^d.$$

Parametric Finite Element Approximation

Note: In contrast to

$$\varkappa_{\gamma} \vec{\nu} = -\nabla_s \, (\vec{\nu} \, [\gamma'(\vec{\nu})]^T) + \nabla_s \, (\gamma(\vec{\nu}) \, \nabla_s \, \vec{x}) - \gamma(\vec{\nu}) \, \Delta_s \, \vec{x} \, ,$$

which is based on the standard, isotropic differential operators, the identity

$$\varkappa_{\gamma} \vec{\nu} = \sum_{\ell=1}^{L} \gamma_{\ell}(\vec{\nu}) \, \widetilde{G}_{\ell} \, \nabla_{s}^{\widetilde{G}_{\ell}} \, \cdot \left[\left[\frac{\gamma_{\ell}(\vec{\nu})}{\gamma(\vec{\nu})} \right]^{r-1} \nabla_{s}^{\widetilde{G}_{\ell}} \vec{x} \right] \,,$$

gives rise to a symmetric formulation. In particular, we obtain:

Find $\{\vec{X}^{m+1}, \kappa_{\gamma}^{m+1}\} \in \underline{V}^{h}(\Gamma^{m}) \times V^{h}(\Gamma^{m})$ such that

$$\langle \frac{\vec{X}^{m+1} - \vec{X}^m}{\tau_m}, \chi \vec{\nu}^m \rangle_{\Gamma^m}^h - \langle \kappa_{\gamma}^{m+1}, \chi \rangle_{\Gamma^m}^h = 0 \qquad \forall \ \chi \in V^h(\Gamma^m),$$

$$\langle \kappa_{\gamma}^{m+1} \vec{\nu}^m, \vec{\eta} \rangle_{\Gamma^m}^h + \langle \nabla_s^{\widetilde{G}} \vec{X}^{m+1}, \nabla_s^{\widetilde{G}} \vec{\eta} \rangle_{\gamma,\Gamma^m} = 0 \qquad \forall \ \vec{\eta} \in \underline{V}^h(\Gamma^m),$$

where

$$\langle \nabla_s^{\widetilde{G}} \vec{X}^{m+1}, \nabla_s^{\widetilde{G}} \vec{\eta} \rangle_{\gamma, \Gamma^m} := \sum_{\ell=1}^L \int_{\Gamma^m} \left[\frac{\gamma_\ell(\vec{\nu}^{m+1})}{\gamma(\vec{\nu}^{m+1})} \right]^{r-1} (\nabla_s^{\widetilde{G}_\ell} \vec{X}^{m+1}, \nabla_s^{\widetilde{G}_\ell} \vec{\eta})_{\widetilde{G}_\ell} \gamma_\ell(\vec{\nu}^m) \, \mathrm{d}s \, .$$

r = 1: Linear system. Existence, uniqueness and stability.

r > 1: Nonlinear system. Stability.

Example Anisotropies, d = 3

Examples of Frank diagrams \mathcal{F} and associated Wulff shapes \mathcal{W} :

Stefan Problem with Kinetic Undercooling

Find the temperature $u(\cdot, t) : \Omega \to \mathbb{R}$ and the interface $\Gamma(t) \subset \Omega$ such that for $t \in (0, T]$

$$\begin{split} \vartheta \, u_t - \Delta u &= f & \text{in } \Omega \setminus \Gamma(t), \\ \left[\frac{\partial u}{\partial \vec{\nu}} \right]_{\Gamma(t)} &= -\lambda \, \mathcal{V} & \text{on } \Gamma(t), & \text{(Stefan condition)} \\ \rho \, \mathcal{V} &= \beta(\vec{\nu}) \, \left[\alpha \,\varkappa_{\gamma} - a \, u \right] & \text{on } \Gamma(t), & \text{(Gibbs-Thomson condition)} \\ u &= u_D & \text{on } \partial \Omega \end{split}$$

with $u(\cdot, 0)$ and $\Gamma(0)$ specified.

Here $\lambda \in \mathbb{R}_{>0}$ is the latent heat, ϑ , ρ , $\alpha \in \mathbb{R}_{>0}$ and $a \in \mathbb{R}_{>0}$.

In addition, \varkappa_{γ} is the weighted mean curvature of Γ , based on a given anisotropy function $\gamma(\cdot)$, and $\beta(\cdot)$ is a given anisotropic mobility.

Weak Formulation

Let $(\eta, \phi) := \int_{\Omega} \eta \phi \, d\vec{z}$. For a test function φ with $\varphi = 0$ on $\partial \Omega$, we have that

$$\vartheta\left(u_{t},\varphi\right) + \left(\nabla u,\nabla\varphi\right) - \left(f,\varphi\right) = -\int_{\Gamma(t)} \left[\frac{\partial u}{\partial\vec{\nu}}\right]_{\Gamma(t)} \varphi \,\mathrm{d}s = \lambda \int_{\Gamma(t)} (\vec{x}_{t} \cdot \vec{\nu}) \varphi \,\mathrm{d}s \,. \tag{1}$$

Moreover

$$\rho\left(\vec{x}_t \cdot \vec{\nu}\right) = \beta(\vec{\nu}) \left[\alpha \varkappa_{\gamma} - a u\right]$$
(2)

and

$$\varkappa_{\gamma} \vec{\nu} = \sum_{\ell=1}^{L} \gamma_{\ell}(\vec{\nu}) \, \tilde{G}_{\ell} \, \nabla_{s}^{\widetilde{G}_{\ell}} \, \cdot \left[\left[\frac{\gamma_{\ell}(\vec{\nu})}{\gamma(\vec{\nu})} \right]^{r-1} \nabla_{s}^{\widetilde{G}_{\ell}} \, \vec{x} \right] \, . \tag{3}$$

Testing (1) with $\varphi = u - u_D$, (2) with $\chi = \frac{\lambda}{a} \vec{x_t} \cdot \vec{\nu}$ and (3) with $\vec{\eta} = \frac{\alpha \lambda}{a} \vec{x_t}$ yields that

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\vartheta}{2} |u - u_D|_{\Omega}^2 + \frac{\alpha \lambda}{a} |\Gamma(t)|_{\gamma} + \lambda u_D \operatorname{vol}(\Omega_s(t)) \right) + |\nabla u|_{\Omega}^2 + \frac{\lambda \rho}{a} \int_{\Gamma(t)} \frac{\mathcal{V}^2}{\beta(\vec{\nu})} \,\mathrm{d}s$$
$$= (f, u - u_D).$$

We will directly discretize (1)-(3), resulting in a coupled system, and obtain a discrete analogue of this energy bound.

Parametric Finite Element Approximation

Based on continuous piecewise linear approximations of u, Γ and \varkappa_{γ} .

For $m \geq 0$, given $U^m \in S_D^h$ and $\vec{X}^m \in \underline{V}^h(\Gamma^m)$, find $U^{m+1} \in S_D^h$, $\vec{X}^{m+1} \in \underline{V}^h(\Gamma^m)$ and $\kappa_{\gamma}^{m+1} \in W^h(\Gamma^m)$ such that for all $\varphi \in S_0^h$, $\chi \in W^h(\Gamma^m)$, $\vec{\eta} \in \underline{V}^h(\Gamma^m)$

$$\vartheta \left(\frac{U^{m+1} - U^m}{\tau_m}, \varphi \right)^h + (\nabla U^{m+1}, \nabla \varphi) - \lambda \left\langle \pi^m \left[\frac{\vec{X}^{m+1} - \vec{X}^m}{\tau_m} \cdot \vec{\omega}^m \right], \varphi \right\rangle_{\Gamma^m} \\ = (f^{m+1}, \varphi)^h, \\ \rho \left\langle [\beta(\vec{\nu}^m)]^{-1} \frac{\vec{X}^{m+1} - \vec{X}^m}{\tau_m}, \chi \vec{\nu}^m \right\rangle_{\Gamma^m}^h - \alpha \left\langle \kappa_{\gamma}^{m+1}, \chi \right\rangle_{\Gamma^m}^h + a \left\langle U^{m+1}, \chi \right\rangle_{\Gamma^m} = 0, \\ \left\langle \kappa_{\gamma}^{m+1} \vec{\nu}^m, \vec{\eta} \right\rangle_{\Gamma^m}^h + \left\langle \nabla_s^{\widetilde{G}} \vec{X}^{m+1}, \nabla_s^{\widetilde{G}} \vec{\eta} \right\rangle_{\gamma,\Gamma^m} = 0. \end{cases}$$

Coupled system of equations.

r = 1: Linear system. Existence, uniqueness and stability.

$$r > 1$$
: Nonlinear system. Stability.

Stability

$$\vartheta \left(\frac{U^{m+1} - U^m}{\tau_m}, \varphi \right)^h + (\nabla U^{m+1}, \nabla \varphi) - \lambda \left\langle \pi^m \left[\frac{\vec{X}^{m+1} - \vec{X}^m}{\tau_m} \cdot \vec{\omega}^m \right], \varphi \right\rangle_{\Gamma^m} = (f^{m+1}, \varphi)^h,$$

$$\rho \left\langle [\beta(\vec{\nu}^m)]^{-1} \frac{\vec{X}^{m+1} - \vec{X}^m}{\tau_m}, \chi \vec{\omega}^m \right\rangle_{\Gamma^m}^h - \alpha \left\langle \kappa_{\gamma}^{m+1}, \chi \right\rangle_{\Gamma^m}^h + a \left\langle U^{m+1}, \chi \right\rangle_{\Gamma^m} = 0,$$
$$\langle \kappa_{\gamma}^{m+1} \vec{\omega}^m, \vec{\eta} \rangle_{\Gamma^m}^h + \left\langle \nabla_s^{\widetilde{G}} \vec{X}^{m+1}, \nabla_s^{\widetilde{G}} \vec{\eta} \right\rangle_{\gamma,\Gamma^m} = 0.$$

Stability: Choose $\varphi = U^{m+1} - u_D$, $\chi = \frac{\lambda}{a} \pi^m [(\vec{X}^{m+1} - \vec{X}^m) \cdot \vec{\omega}^m]$ and $\vec{\eta} = \frac{\alpha \lambda}{a} (\vec{X}^{m+1} - \vec{X}^m)$ yields, on recalling that

$$\langle \nabla_s^{\widetilde{G}} \vec{X}^{m+1}, \nabla_s^{\widetilde{G}} (\vec{X}^{m+1} - \vec{X}^m) \rangle_{\gamma, \Gamma^m} \ge |\Gamma^{m+1}|_{\gamma} - |\Gamma^m|_{\gamma},$$

that

$$\begin{split} \mathcal{E}(U^{m+1}, \vec{X}^{m+1}) + \lambda \, u_D \, \langle \vec{X}^{m+1} - \vec{X}^m, \vec{\nu}^m \rangle_{\Gamma^m}^h + \frac{\vartheta}{2} |U^{m+1} - U^m|_{\Omega,h}^2 \\ + \tau_m \, |\nabla U^{m+1}|_{\Omega}^2 + \tau_m \, \frac{\lambda \, \rho}{a} \, \left| [\beta(\vec{\nu}^m)]^{-\frac{1}{2}} \, \frac{\vec{X}^{m+1} - \vec{X}^m}{\tau_m} \, . \, \vec{\omega}^m \right|_{\Gamma^m,h}^2 \\ & \leq \mathcal{E}(U^m, \vec{X}^m) + (f^{m+1}, U^{m+1} - u_D)^h \, ; \\ \text{where } \, \mathcal{E}(U^m, \vec{X}^m) := \frac{\vartheta}{2} \, |U^m - u_D|_{\Omega,h}^2 + \frac{\alpha \, \lambda}{a} \, |\Gamma^m|_{\gamma}. \end{split}$$

Numerical Results

 $\gamma(\vec{\nu})$ is a cubic anisotropy ($\{G_{\ell}\}_{\ell=1}^{3}$, with r = 9 and reg. $\varepsilon = 0.6$).

 $\beta(\vec{\nu}) = \gamma(\vec{\nu}), \ u_D = -1, \ \Omega = (-4, 4)^3, \ \Gamma(0) \text{ sphere radius } \frac{1}{10}.$

 $ec{X}(t)$ at times t = 0.1, 0.2, 0.25, 0.3, 0.34. Mesh parameters $N_f = 512$, $N_c = 32$ for Ω , $J_{\Gamma}^0 = 768$ for Γ and uniform time step $\tau = 2 \times 10^{-4}$. Anisotropic Mullins–Sekerka ($\vartheta = \rho = 0$, $\lambda = a = \alpha = 1$)

 $\vec{X}(t)$ at times t = 0.05, 0.150.3, 0.45, T = 0.6, and the energy $|\Gamma^m|$.

References

- J. W. Barrett, H. Garcke, and R. Nürnberg, A parametric finite element method for fourth order geometric evolution equations, J. Comput. Phys., 222 (2007), pp. 441–467.
- 2. __, On the variational approximation of combined second and fourth order geometric evolution equations, SIAM J. Sci. Comput., **29** (2007), pp. 1006–1041.
- 3. ___, Numerical approximation of anisotropic geometric evolution equations in the plane, IMA J. Numer. Anal., **28** (2008), pp. 292–330.
- 4. ___, A variational formulation of anisotropic geometric evolution equations in higher dimensions, Numer. Math., **109** (2008), pp. 1–44.
- __, On stable parametric finite element methods for the Stefan problem and the Mullins–Sekerka problem with applications to dendritic growth, J. Comp. Phys., 229 (2010), pp. 6270–6299.
- 6. __, Finite element approximation of one-sided Stefan problems with anisotropic, approximately crystalline, Gibbs–Thomson law, arXiv: 1201.1802 (2012).
- 7. ___, Numerical computations of facetted pattern formation in snow crystal growth, arXiv:1202.1272 (2012).