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Introduction

Consider a Stefan Problem for Undercooled Solidification.

Container Q c R%, d = 2 or 3.

Solid-Liquid interface I'(t).

Qs(t), the interior of '(t), is the solid region.
Q;(t) ==\ Qs(t) is the liquid region.

Unit normal of I'(¢), 7, pointing into €;(t).

Let V denote normal velocity of IM'(¢).
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Stefan Problem with Kinetic Undercooling

Find the temperature u(-,t) : Q2 — R and the interface IN'(¢t) C Q such that
for t € (0,T]

Yur — DAu=f in Q\ I(t),
ou .
[—J = -V on I(¢), (Stefan condition)
V1T (t)
pV = B(V) [asy —au] on IM(t), (Gibbs-Thomson condition)
U =up on 0f2

with u(-,0) and "'(0) specified.

Here A € Ry is the latent heat, ¥, p, « € R>g and a € Ryg.

In addition, s is the weighted mean curvature of I, based on a given
anisotropy function ~(-), and B(-) is a given anisotropic mobility.

AIM: Introduce a stable finite element approximation for the Stefan problem.

Crucial: A stable, variational formulation of s,.



Anisotropic mean curvature flow

A stable approximation of the Stefan problem with
pV = B(V) [asy —au] on M(t), (Gibbs-Thomson condition)
hinges on a stable numerical method for the much simpler problem
V = 32y on (1), (MC5)

Il.e. motion by anisotropic mean curvature.

For simplicity, consider first the isotropic case, i.e. v(¥) = || = 1. Then
sy = 2 and (MC5) collapses to

Y = x on (t), (MQC)

i.e. the mean curvature flow.

On noting that —s can be defined as the first variation of the surface area
|, (MC) is often interpreted as the L2-gradient flow of |I|.



Planar curvature flow

For simplicity, let d = 2. Let Z(p,t), p € I ;= R/Z (periodic [0,1]), be a

parameterization of '(¢) C R? with unit tangent ¥ = Zs = W and curvature

VEeCtor »x = 75 = Zgs = |£1| (lfﬂ) . It is easy to see that Zss.Zs = 0, and so
P P
p
» = » v, where » denotes curvature and v = —ch is a chosen unit normal.

(-1 is clockwise rotation by %)

Then the first variation of

@)= [ 1ds= [ 17| dp

can be computed as

7 7
—rt_ Lo d——/—p .fd:—/ Tos . iy ds
()] p,t YUp I(f )p t Up () ss - It

I |Zp] %l

%(ftlj) ds.

- Jre

(MC)

81
<y
|
N

Hence the L2-gradient flow of || is:



Weak formulation of (MC)

Based on
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Ty .V = x and i

Given IM(0), for t € (0,T] find Z(t) € V := HY(I;R?) and »(t) € V := H1(I;R)
such that

/rft.ﬁgads—/l_%godszO VeV,

/I_%D’.@’ds—l-/l_fs.@’sds:O V@ev.

“Stability’” : Choose ¢ = » and ¢ = 7+ to obtain

O—/% ds—I—/:cs Tt s ds

_/ 2 ds—I—/ Tyt dp
I|Z)p|

_ 2 ~
_/r% ds—l—dt|l'(t)|.



Semidiscrete Finite Element Approximation
Let I =R/Z = UL, J;, N >3, partitioned into intervals J; = [gj_1, q;].

Vh.={xeC(,R?): Xy, islinear v j =1 — N} =: (VP2 c H1(1,R?).
Let {¢;};L; denote the standard basis of V"

Xh(t) e VP approximating #(¢t) = a polygonal approximation, I(¢), to (¢).

Given (0), for t € (0,T] find X"(t) € V" and x"(t) € V! such that

(X[ x 7" — (") = v x evh

(&M R, (X Ay =0 vievh
where

(Fgpni= [, fgds= [ f.gIX}®)dp

rh(t)

with (-,-)ﬁh the mass lumped inner product.

Stability: Choose x = &/ and 7= X to obtain

S - d
0 = (k" ") 4 (X, Xelhpn = (5", )P + T (0]



Semi-Implicit Fully Discrete Finite Element Approximation

Let 0 =tg < t1 < ... < tpy_1 < tyy =T be a partitioning of [0,T], 7m =
tm—l—l —tm, m=0— M —1, and 7= MaX,,,—=0—-sM—1Tm-

Given M0 = X9(1), X0 e v, for m =0 - M — 1 find X™t! ¢ vt and
xmt1 ¢ VP such that

X”m—l—l . X”m
( . X T — (T X m = 0 vV xevh
m
(kmFLpm ph 4 (XML my =0 Ve vh
Stability: Choose y = k™11 and 7= th;—xm to obtain

0 = 7y (5" L, AT (XPTL (XMFL = X)),
where, on letting A" := X" (gj41) — X™(q;),

<)Z";n—|-1’ (Xm+1 B Xv’m)s>|_m — Z _
=1 |5

m-+1 2 m-+1 m-+1
8 [ORER D2 R = B
=1 |hm|

N |fL;?%+1|2 o fL}n-Fl . flfjrn]

N
> Z [hm_l_l hm|] — ||—m—|-1| o ||—m|
j=1



Anisotropic Surface Energy

My = /ry(ﬁ) ds

where ~ : R?\ {0} — R+ is a given anisotropy function,
which we will assume is positively homogeneous of degree one, i.e.

v(AP) = Av(P) VYV FeR\ {0}, VAeRyg.

Let '(e) .= {2+ e4g(2) : Z€}. First variation of this energy yields

d - o
de IF(e)ly le=0= —/r%’y-g ds;

where

Weighted mean curvature vector: My 1= My U,

Weighted mean curvature: s~y 1= —Vs. Uy,

Cahn—Hoffmann vector: Uy 1=+ (V) Cahn, Hoffmann (74).



Planar Anisotropic Curvature Flow

In the case d = 2 it holds that s, 7 = [/ (¥)]+ = [¥/(—#1)]+ since

& Ty = /I'v(—i%) dp = /Ify’(—fﬁ) (=5 dp = /][fy’(—fﬁ)]L Ty dp
— _/I[,y’(_fgl_)]j‘ . Tt dp = _/I_( )[’7/( CB‘L)]J" Z; ds .

Weak formulation of

V = 5y on (1) (MC5)
is then: Given M(0), for t € (0,T] find Z(¢t) € V and s (t) € V such that

(T, Ve)r — Gy, )r =0 VoeV,
ey U, B — (VY (D), @5 )r =0 V@FEV.
“Stability” : Choose ¢ = sy and ¢ = x; to obtain

d
0 = (s, 53 )r = (Y (), F5)r = Gy om)r + - [T ()



Semidiscrete Finite Element Approximation
Given I'*(0), for t € (0,T] find X"(¢t) € V" and xl(t) € V? such that
(XPox oM, — (sl ook, =0 v xevh

< 777>|-h_<7/(’7h)777§]_>rh:0 v ijevh

Stability: Choose x = sl and 7= X[ to obtain

0 = (kP kI, — (v (™), (XL e = (I, mh>rh+ IO

Problem: For a general anisotropy ~ it does not appear possible to derive a
(linear) semi-implicit fully discrete finite element approximation that mimicks
this behaviour, i.e. that satisfies

Ty i (T R <7,

and so is unconditionally stable.

IDEA: Restrict class of admissible anisotropies.
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Example Anisotropy
As the simplest example, take the following “elliptic” anisotropy:

v(p) ;= p.GP,

where G € R2%X2 js symmetric and positive definite.

Note that

Y (B = @] TGP

For the semi-implicit fully discrete scheme we then approximate 7’(ﬁh) by
(@™t Gt = —[y (™) G X

to obtain a linear, unconditionally stable approximation.

Given % = X0(1), X0 ¢ v, for m = 0 - M — 1 find Xmt1 ¢ v and
It e VR such that

X"m—l—l _X”m

( X T ™Y e — (KT ) Em = 0 vV x e VP

T™m

(R i 4+ (V@™ G X i e =0 VeV
11



Semi-Implicit Fully Discrete Finite Element Approximation

X”m—l—l . X”m
( XTIV m — (5T Em =0 ¥V x eV

™m
(KITLET Pl + (@™ G XTI iy rm =0 VeV
+1

Xm—|—1 _Xm

Stability: Choose y = ﬁﬂ}“ and = and observe that

T™m

hm—I—l]J_ G( [hm‘l—l]J_ [hgn]J_)

N
Zm —1G X—’m—l—l J_’ Xv’m—l-l Xm
(MG IR Is) =2 (D)

_ 3 (R =y ([RF14)?
j=1 y([RH)
S w([hm“]l)v([hm]i) [P G R
j=1 7([h§n]J—)
N
)

Y[R = (R

N

> 3 [W(ETY = (ED] = [ @Y ds— [ A ds.

J=1

Note: Inequality also holds element-wise.
12



Admissible Anisotropies

Idea: Consider an [,-norm of such “elliptic’ anisotropies.

L
v(p) = (Z [W(ﬁ)]r) , Ye(P) = \JP.GyP, r € [1,00),
=1

where Gy € RQXQ, ¢ =1 — L, are symmetric and positive definite.

3|

Note that

L
Y@ =@ Y @) @) -

(=1

For the semi-implicit fully discrete scheme we then approximate fy’(ﬁh) by

Ye(7m T
b

r—1
7(17m+1)] e (7™ G

sm—+1 r—1 .
- [MER] b Gatry

to obtain an unconditionally stable approximation that is linear for r = 1.
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Semi-Implicit Fully Discrete Finite Element Approximation
Given % = X0(1), X0 ¢ v, for m = 0 - M — 1 find Xmt1 ¢ v and
kT e v such that

X"m-l—l . X”m
{ . XTI Em — (KT ) =0 ¥V x €V
m
ym~+1
(") B,
(T T ) + Z €(~m+1)] [ve (ﬁrn)] LG XTI i yrm =0 Vije VI
eqe . . m_l_l - Xm+1_im . . .

Stability: Choose x = ky and 7 = - , use element-wise inequality

for each ~, and apply HoOlder to obtain that

[w( NG, (X (X - Xmhy s

—m+1 r—1 —m+1 r—1
=p3 /m-l—l 7j((ﬁerl)) (@) ds Z /m [fy(ﬁm-l—lﬂ (") ds

L omA1y]7 L
> /rm+1 2 _Wvg((ﬁmﬂ))_ v (7" dS—/rm (g:l[w(ﬁm)]r) ds
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Numerical Results for (MC,)

Gy = R(—Qg)D(e’-:g)R(eﬁ)a where D(E) = (

1 O .__ [ cosf sind
0 52>’ R(9) = <—sin0 cos 6

).

€y = 10_21 (917 .. °79L) — (%7%%) E¢ = 10_21 (917 .. '70L) — (07%72%)

N =128, r = 103,
t=0, 0.05,...,7T=0.35

G <:>§

\=7/7

N =128, r = 1073,
t=0, 0.05,...,7T=0.25
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Extension to 3d
Extending the approximation from 2d to 3d is not straightforward.

But using ideas from differential geometry, Barrett, Garcke, Nirnberg (08)
reformulated the anisotropic mean curvature s, in a way that lends itself to
a stable variational approximation for d =2 and d = 3.

In particular, for

L ;
v(P) = (Z [w(ﬁ)]r) : Ye(P) 1= \/P.G¢P, r€[1,00),

/=1
where Gy € RdXd, ¢ =1 — L, are symmetric and positive definite, we obtain

the identity
N17—1 -
(D) |" oCrz|
v(7) ’

- - o0
/=1

Here
~ 1
Gy = [detGy2G, T, =11,
and VSGE, SGK. are anisotropic surface gradient and divergence operators
induced by the inner product
(@,0) = =a.Gy¥ V @, 7€ RY.
16



Parametric Finite Element Approximation
Note: In contrast to

sy 7= —Vs. (Z[Y (@) + Vs. (v(P) Vs B) — v(P) As &,
which is based on the standard, isotropic differential operators, the identity
L ~ ~1r—1 =<
R N~ G v Gy
/=1 v(¥)
gives rise to a symmetric formulation. In particular, we obtain:

Y

Find {X™+1 1y ¢ yh(rmy x vh(rm) such that

X”m—l—l . X”m

™

(kT o™ P+ (VE XML VO, =0 Ve Vv(™),

where

~ ~ L 413171 o _
Y 1 . W(V ) Gy 1 —Gy =
(VXL iy = 3 m[%ﬁmﬂ)] (VXML O ) 6 () ds.
/=1
r = 1: Linear system. EXistence, uniqueness and stability.

r > 1: Nonlinear system. Stability.
17



Example Anisotropies, d = 3

Examples of Frank diagrams F and associated Wulff shapes W:
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Stefan Problem with Kinetic Undercooling

Find the temperature u(-,t) : 2 — R and the interface N'(¢t) C 2 such that
for t € (0,T]

Yur — DAu=f in Q\ I(t),
ou .
[—J = -V on I(¢t), (Stefan condition)
V1T (t)
pV = B(V) [y —au] on IM(¢), (Gibbs-Thomson condition)
U =up on 0f2

with u(-,0) and "'(0) specified.

Here A € Ry is the latent heat, ¥, p, « € R>g and a € Ryg.

In addition, s is the weighted mean curvature of I, based on a given
anisotropy function ~v(-), and B(-) is a given anisotropic mobility.

19



Weak Formulation
Let (n,¢) = /anb dz. For a test function ¢ with ¢ = 0 on 92, we have

that

ou L
9 (. 0) + (V. V) = (fro) == [ [a—ﬁ]r(t) pds=x [ (@ .7)pds. (1)
Moreover
p(Zy.7) = B(7) [asy — aul (2)
and
- ZL: (—»)é vég 7507) T_lvég - (3)
%71/—621”}%1/ ¢ Vs - ’7(17) s X .

Testing (1) with ¢ = u — up, (2) with x = %ft.ﬁ and (3) with 7 = O%‘ft
yields that
d /9

A A
= (5w = upld + E2 MOl + Aup vol(u(0) ) +[Vufg + =2
a a

VQ

d
r@) BD)

We will directly discretize (1)—(3), resulting in a coupled system, and obtain

a discrete analogue of this energy bound.
20



Parametric Finite Element Approximation

Based on continuous piecewise linear approximations of «, [' and s¢,.

For m > 0, given U™ € S}, and X™ ¢ Vi(r™),
find Umtl e gh Xmtl ¢ yh(rm) and &7 e Wh(I™) such that for all
p € St x e Wh(rm), ij e V(™)

h - -
Um—|—1 _ym Xm‘l‘l —Xm
) ( ,go) + (VU™ T V) — ) <7rm [ .@m] ,gp>

T™m Tm rm
= (f™ T )",
~ S h
B Xm-l—l _xXxm
p<[6(17m)] ' . ,xﬂm’> — (K ) Em + a (U™ T x)rm =0,
m [m

Coupled system of equations.

r = 1: Linear system. Existence, uniqueness and stability.

r > 1: Nonlinear system. Stability.
21



Stability

h — —
Um—|—1 _ym Xm+1 —Xm
J ( w) + (VU™ T, V) — A <7Tm [ -@m] 790>
rm

T™m
= (™t o)h,

- - h
Xm-l—l _Xxm .
<[5( )t ,me> —a (T )t 4 a (U x)pm =0,
™ rm N N
1~ 2m—+1 -
< *Tyn—l_ m7ﬁ>|_m <v8GXm+ 7VSG77>’7,|_m —
Stability: Choose ¢ = U™t —up, x = 27a7[(X™T - X™).&™] and 7 =

ad (xm+l _ Xm) yields, on recalling that

(VE XML g& (XMt _ XMy pm > [T rm

that
. 5 . 0]
EQUMHL XD 4 Nup (X7 H! = X7, 7™ + U U,
— 2
1 Xm—l—l xm -
—I—Tm|VUm+1|Q+Tm [5( )] Ak
T™m rm’h

< EW™, X™) + (fm“, Ut _up)h

where (U™, X™) 1= 5 |U™ —up|3 , + %2 [[™|,.
22



Numerical Results

v(#) is a cubic anisotropy ({G,}7_;, with 7 =9 and reg. e = 0.6).

B(@) =~(@), up = —1, Q= (—4,4)3, (0) sphere radius 5.

e

X(t) at times t = 0.1, 0.2, 0.25, 0.3, 0.34.
Mesh parameters Nf = 512, N. = 32 for <2,
J,Q — 768 for I and uniform time step 7 = 2 x 10~ 4.
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Anisotropic Mullins—Sekerka (0 =p=0, A=a=a=1)

X (¢) at times t = 0.05, 0.150.3, 0.45, T'= 0.6, and the energy |™/.
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