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Macroscopic traffic flow models

First order macroscopic models

Lighthill-Whitham ’55, Richards ’56, Greenshields ’35:

◮ Traffic state: density ρ(t, x) of vehicles at time t and location x

◮ Non-linear transport equation: scalar one dimensional conservation law

∂tρ+ ∂xf(ρ) = 0, f(ρ) = ρv(ρ)

◮ Empirical flux function: the fundamental diagram

with R the maximal or jam density, and ρc the critical density:

◮ flux is increasing for ρ ≤ ρc: free-flow phase

◮ flux is decreasing for ρ ≥ ρc: congested phase
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Macroscopic traffic flow models

Motivation for higher order models

◮ Traffic satisfies “mass” conservation. What about other fundamental
conservation principles from fluid dynamics: conservation of
momentum, conservation of energy?

◮ Experimental observations of fundamental diagrams are more complex
than postulated by first order traffic models
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Macroscopic traffic flow models

Second order models

◮ Payne ’71:






∂tρ+ ∂x(ρv) = 0

∂tv + v∂xv = −
c20
ρ
∂xρ+

v∗(ρ)− v

τ

Critics (Del Castillo et al. ’94, Daganzo ’95):
◮ drivers should have only positive speeds;
◮ anisotropy: drivers should react only to stimuli from the front.
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Macroscopic traffic flow models

Second order models

◮ Payne ’71:






∂tρ+ ∂x(ρv) = 0

∂tv + v∂xv = −
c20
ρ
∂xρ+

v∗(ρ)− v

τ

◮ Aw-Rascle ’00:
{

∂tρ+ ∂x(ρv) = 0
∂t(ρw) + ∂x(ρvw) = 0

v = v(ρ,w)

w = v + p(ρ) Lagrangian marker, p = p(ρ) “pressure”
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Macroscopic traffic flow models

Second order models

◮ Payne ’71:






∂tρ+ ∂x(ρv) = 0

∂tv + v∂xv = −
c20
ρ
∂xρ+

v∗(ρ)− v

τ

◮ Aw-Rascle ’00:
{

∂tρ+ ∂x(ρv) = 0
∂t(ρw) + ∂x(ρvw) = 0

v = v(ρ,w)

w = v + p(ρ) Lagrangian marker, p = p(ρ) “pressure”

◮ Colombo ’02:
{

∂tρ+ ∂x(ρv) = 0
∂tq + ∂x((q −Q)v) = 0

v = v(ρ, q)

q “momentum”, Q road parameter
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Traffic flow models with phase transitions

Phase transition (Colombo ’02)

Fluid flow: (ρ, q) ∈ Ωf

{
∂tρ+ ∂x(ρvf ) = 0
q = ρV

vf (ρ) =
(
1−

ρ

R

)
V

Congestion: (ρ, q) ∈ Ωc

{
∂tρ+ ∂x(ρvc) = 0
∂tq + ∂x((q −Q)vc) = 0

vc(ρ, q) =
(
1−

ρ

R

) q

ρ
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Traffic flow models with phase transitions

Aw-Rascle model with phase transition

Fluid flow: (ρ, y) ∈ Ωf

{
∂tρ+ ∂x(ρvf ) = 0
y = ρV

vf (ρ) =
(
1−

ρ

R

)
V

Congestion: (ρ, y) ∈ Ωc

{
∂tρ+ ∂x(ρv) = 0
∂ty + ∂x(yv) = 0

y = ρ(v + p(ρ)), p(ρ) = Vref ln
ρ

R

(Goatin ’06)
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Traffic flow models with phase transitions

General view point

Fluid flow: in Ωf

∂tρ+ ∂x(ρvf ) = 0

vf (ρ) = V

Congestion: in Ωc{
∂tρ+ ∂x(ρvc) = 0

vc(ρ, q) = veqc (ρ)

(Blandin-Work-Goatin-Piccoli-Bayen ’11)
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Traffic flow models with phase transitions

General view point

Fluid flow: in Ωf

∂tρ+ ∂x(ρvf ) = 0

vf (ρ) = V

Congestion: in Ωc{
∂tρ+ ∂x(ρvc) = 0
∂tq + ∂x(qvc) = 0

vc(ρ, q) = veqc (ρ)(1 + q)

(Blandin-Work-Goatin-Piccoli-Bayen ’11)
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Analytical study

Analysis of congestion phase

Eigenvalues λ1(ρ, q) = veqc (ρ) (1 + q) +
q veqc (ρ) + ρ (1 + q)∂ρ veqc (ρ)

λ2(ρ, q) = veqc (ρ)(1 + q)

Eigenvectors r1 =

(

ρ
q

)

r2 =

(

veqc (ρ)
−(1 + q) ∂ρ veqc (ρ)

)

Nature of the
Lax-curves

∇λ1.r1 = ρ2 (1 + q)∂2
ρρ veqc (ρ) +

2 ρ (1+2 q) ∂ρ veqc (ρ)+2 q veqc (ρ)

∇λ2.r2 = 0

Riemann in-
variants

veqc (ρ) (1 + q) q/ρ

◮ First family of Lax-curves is not genuinely-non-linear (in flux-density
coordinates curves GNL equivalent to all Lax-curves have same
concavity)

◮ Second family of Lax-curves is linearly degenerate (information
propagates at a constant speed)

◮ System is Temple class (shock and rarefaction curves coincide)
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Analytical study

Domain definition

Definition of free-flow and congestion phases as invariant domains of
dynamics

Ωf = {(ρ, q) | (ρ, q) ∈ [0, R]× [0,+∞[ , vc(ρ, q) = V , 0 ≤ ρ ≤ σ+}

Ωc =

{
(ρ, q) | (ρ, q) ∈ [0, R]× [0,+∞[ , vc(ρ, q) < V ,

q−

R
≤

q

ρ
≤

q+

R

}

−1 σ− ρc σ+ ρ

0

q

R

q+

q−
 

 

σ− ρc σ+ R ρ

ρ v

Model parameters: free-flow speed V , jam density R, critical density ρc,
upper and lower bound for perturbation q− and q+
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Analytical study

Riemann solver

◮ free-flow to free-flow: contact discontinuity
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Analytical study

Riemann solver

◮ free-flow to free-flow: contact discontinuity

◮ congestion to congestion: shock or rarefaction + contact discontinuity
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Analytical study

Riemann solver

◮ free-flow to free-flow: contact discontinuity

◮ congestion to congestion: shock or rarefaction + contact discontinuity

◮ congestion to free-flow: shock or rarefaction + contact discontinuity
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Analytical study

Riemann solver

◮ free-flow to free-flow: contact discontinuity

◮ congestion to congestion: shock or rarefaction + contact discontinuity

◮ congestion to free-flow: shock or rarefaction + contact discontinuity

◮ free-flow to congestion: phase transition + (rarefaction) + contact
discontinuity
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Analytical study

Cauchy problem - admissible solutions

Consider weak solutions u = (ρ, q) of

{
∂tu+ ∂xf(u) = 0

u(0, x) = u0(x)

where 



f(u) = ff (u) =

(
ρvf (ρ)
qvf (ρ)

)
if (ρ, q) ∈ Ωf

f(u) = fc(u) =

(
ρvc(ρ, q)
qvc(ρ, q)

)
if (ρ, q) ∈ Ωc

Paola GOATIN June 14, 2012 - 14



Analytical study

Cauchy problem - admissible solutions

Consider weak solutions u = (ρ, q) of

{
∂tu+ ∂xf(u) = 0

u(0, x) = u0(x)

where 



f(u) = ff (u) =

(
ρvf (ρ)
qvf (ρ)

)
if (ρ, q) ∈ Ωf

f(u) = fc(u) =

(
ρvc(ρ, q)
qvc(ρ, q)

)
if (ρ, q) ∈ Ωc

◮ ∀ϕ in C1
c (R

2) with compact support contained in u−1(Ωf )
∫∫

(u∂tϕ+ ff (u)∂xϕ) dxdt+

∫
u0(x)ϕ(0, x)dx = 0
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Analytical study

Cauchy problem - admissible solutions

◮ Mass conservation at phase transitions:
phase transition speed Λ must satisfy Rankine-Hugoniot conditions

Λ(ρ+ − ρ−) = F+ − F−

with

F− =

{
ρ− vf (ρ−) if ρ− ∈ Ωf

ρ− vc(ρ−, q−) if ρ− ∈ Ωc

F+ =

{
ρ+ vf (ρ+) if ρ+ ∈ Ωf

ρ+ vc(ρ+, q+) if ρ+ ∈ Ωc
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Analytical study

Cauchy problem - well posedness

Theorem (Colombo-Goatin-Priuli ’06)

∀M > 0,there exists a semigroup S : IR+ ×D 7→ D s.t.

◮ D ⊇ {u ∈ L1 : TV(u) ≤ M};

◮ ‖St1u1 − St2u2‖L1 ≤ L(M) ·
(
‖u1 − u2‖L1 + |t1 − t2|

)
∀u1,u2 ∈ D.

Sketch of proof

◮ Existence:
◮ Construction of sequence of approximate solutions by wave-front

tracking method (piecewise constant approximations: Dafermos ’72,
DiPerna ’76, Bressan ’92, Risebro ’93)

◮ Proof of convergence of the sequence of approximate solutions using BV
compactness result (Helly’s theorem)

◮ Show that limit is a weak solution to the Cauchy problem

◮ Uniqueness: shift differentials
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Finite volume numerical schemes

Finite volume numerical schemes

tn+1

tn

xj−3/2 xj−1/2 xj+1/2 xj+3/2

Ωf Ωf

Ωc

Problem:
Ωf ∪ Ωc is not convex −→ Godunov method doesn’t work in general

un
j ∈ Ωc,u

n
j+1 ∈ Ωf 6⇒ un+1

j ∈ Ωf ∪ Ωc
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Finite volume numerical schemes

Finite volume numerical schemes

tn+1

tn

xj−3/2 xj−1/2 xj+1/2 xj+3/2

Ωf Ωf

Ωc

Problem:
Ωf ∪ Ωc is not convex −→ Godunov method doesn’t work in general

un
j ∈ Ωc,u

n
j+1 ∈ Ωf 6⇒ un+1

j ∈ Ωf ∪ Ωc

Solutions

◮ moving meshes for phase transitions:
Zhong - Hou - LeFloch ’96;

◮ transport-equilibrium method: Chalons ’07.
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Finite volume numerical schemes

Godunov method

tn+1

tn

xj−3/2 xj−1/2 xj+1/2 xj+3/2

Ωf Ωf

Ωc

un+1
j =

1

∆x

∫ xj+1/2

xj−1/2

v(∆t, x)dx
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Finite volume numerical schemes

Modified Godunov method (Chalons-Goatin ’08)

tn+1

tn

xj−3/2 xj−1/2 xj+1/2 xj+3/2

xj−1/2 xj+1/2

Ωf Ωf

Ωc

un+1
j =

1

∆xj

∫ xj+1/2

xj−1/2

v(∆t, x)dx

Paola GOATIN June 14, 2012 - 19



Finite volume numerical schemes

Modified Godunov method (Chalons-Goatin ’08)

tn+1

tn

xj−3/2 xj−1/2 xj+1/2 xj+3/2

xj−1/2 xj+1/2

Ωf Ωf

Ωc

un+1
j =

1

∆xj

∫ xj+1/2

xj−1/2

v(∆t, x)dx

Green’s formula:

un+1
j =

∆x

∆xj

un
j −

∆t

∆xj

(f
n,−
j+1/2 − f

n,+
j−1/2)

with numerical flux

f
n,±
j+1/2 = f(vr(σ

±

j+1/2;u
n
j ,u

n
j+1))− σj+1/2vr(σ

±

j+1/2;v
n
j ,v

n
j+1)
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Finite volume numerical schemes

Random sampling

tn+1

tn

xj−3/2 xj−1/2 xj+1/2 xj+3/2

un+1
j−1 un+1

j un+1
j+1

Ωf Ωf

Ωc

(an) equi-distributed random sequence in ]0, 1[ (ex. Van der Corput)

un+1
j =






un+1
j−1 si an+1 ∈ ]0, ∆t

∆x
σ+

j−1/2[

un+1
j si an+1 ∈ [ ∆t

∆x
σ+

j−1/2
, 1 + ∆t

∆x
σ−

j+1/2
[

un+1
j+1 si an+1 ∈ [1 + ∆t

∆x
σ−

j+1/2, 1[

σj+1/2 = phase transition speed at xj+1/2

σ+

j+1/2 = max{σj+1/2, 0}, σ
−

j+1/2 = min{σj+1/2, 0}
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Finite volume numerical schemes

Benchmark tests

Newell-Daganzo with V = 45, R = 1000, ρc = 220, σ− = 190, σ+ = 270:
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Exact solution
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x

Free-flow to congestion: density at T=0.55
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Scheme solution
Exact solution

x

Free-flow to congestion: speed at T=0.55

Initial data: ul = (100, 0) ∈ Ωf , ur = (700, 0.5) ∈ Ωc above equilibrium.
Gives: phase transition + 2-contact discontinuity linked by
um = (474,−0.42) ∈ Ωc.

(Blandin-Work-Goatin-Piccoli-Bayen ’11)
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Finite volume numerical schemes

Benchmark tests

Newell-Daganzo with V = 45, R = 1000, ρc = 220, σ− = 190, σ+ = 270:
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Congestion to free-flow: density at T=0.24
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Exact solution
Scheme solution

Congestion to free-flow: velocity at T=0.24

x

Initial data: ul = (500, 0.3) ∈ Ωc under equilibrium, ur = (40, 0) ∈ Ωf .
Gives: shock + 1-contact discontinuity linked by metastable state
um = (199,−0.12) ∈ Ωc.

(Blandin-Work-Goatin-Piccoli-Bayen ’11)
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Extension to road networks

Road networks with phase transitions

−

J

I: unidirectional roads Ii =]ai, bi[, i = 1, . . . , N
J : junctions
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Extension to road networks

Riemann problem at J

{
∂tuk + ∂xf(uk) = 0,
uk(0, x) = uk,0

J

Riemann solver RSJ : (u1,0, . . . ,un+m,0) 7−→ (û1, . . . , ûn+m) s.t.

◮ conservation of cars:
∑n

i=1
f1(ûi) =

∑n+m
j=n+1

f1(ûj);

◮ waves with negative speed in incoming roads;

◮ waves with positive speed in outgoing roads.
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Extension to road networks

Riemann problem at J

{
∂tuk + ∂xf(uk) = 0,
uk(0, x) = uk,0

J

Riemann solver RSJ : (u1,0, . . . ,un+m,0) 7−→ (û1, . . . , ûn+m) s.t.

◮ conservation of cars:
∑n

i=1
f1(ûi) =

∑n+m
j=n+1

f1(ûj);

◮ waves with negative speed in incoming roads;

◮ waves with positive speed in outgoing roads.

Consistency condition:

RSJ

(
RSJ (u1,0, . . . ,un+m,0)

)
= RSJ(u1,0, . . . ,un+m,0) (CC)
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Extension to road networks

Dynamics at junctions

(A) prescribe a fixed distribution of traffic in outgoing roads

A = {aji} ∈ R
m×n : 0 < aji < 1,

n+m∑

j=n+1

aji = 1

(B) maximize the flux through the junction

(Coclite-Garavello-Piccoli ’05)

Paola GOATIN June 14, 2012 - 26



Extension to road networks

Wave-front tracking

◮ piecewise constant approximate solutions uν

◮ bound on the total variation

Assumption (H)

∃ v̄ > 0 s.t. uν = (u1,ν , . . . ,uN,ν) takes values in the set

Ω̃ = Ωf ∪ (Ωc ∩ {(ρ, q) ∈ Ωc : vc(ρ, q) ≥ v̄}).

bound on TVf = TV(f1(uν)) ⇒ bound on TV(ρν) and TV(qν)

Existence theorem (Colombo-Goatin-Piccoli ’09)

If TV(u0) ≤ C and uν satisfies (H):

◮ uν → u in L1
loc;

◮ u is solution on I, ∀I ;

◮ consistency: RSJ (uJ (t)) = uJ (t), a.e. t > 0, ∀J .
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Extension to road networks

Joint works with:

◮ Alexandre Bayen (UC Berkeley)

◮ Sebastien Blandin (IBM Research Collaboratory - Singapore)

◮ Christophe Chalons (Université Paris Diderot Paris 7)

◮ Rinaldo Colombo (Università di Brescia)

◮ Benedetto Piccoli (Rutgers University)

◮ Fabio Priuli (Università di Padova)

◮ Daniel Work (University of Illinois)
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Extension to road networks

Thank you for your attention!
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