ON A MODEL FOR THE CODIFFUSION OF ISOTOPES

E. Comparini*, A. Mancini*, C. Pescatore ${ }^{+}$, M. Ughi ${ }^{\text {i }}$
* Dipartimento di Matematica "U. Dini" Università degli Studi di Firenze, Italy
+ OECD/Nuclear Energy Agency Issy-les-Moulineaux, France
${ }^{\circ}$ Dipartimento di Matematica e Geoscienze, Università di Trieste, Italy

FBP 2012

different isotopes of the same chemical element A should not be considered as distinct chemical species and should contribute jointly to the chemical potential of A.

The total flux J_{i} of a particular isotope A_{i} of an element A has two components:

- one representing the effects of interaction of A_{i} with the solvent molecules B (classical Fick's law):

$$
A-B \text { interaction } \rightarrow \text { flux }=-\tilde{D}_{i} \nabla c_{i}
$$

- the other representing the interaction with the kin isotopes, depending on the total concentrations of the A-molecules:

$$
A-A \text { interaction } \rightarrow \text { flux }=-D_{i} \frac{c_{i}}{c} \nabla c
$$

where c_{i} is the concentration of A_{i}, c is the total concentration of A, \tilde{D}_{i} is the diffusivity of A in the solvent B, D_{i} is a measure of the mobility of the A_{i} molecules due to the $A-A$ interactions within the solvent B.

diffusion of n species of isotopes of the same element

the flux of the i component J_{i} is given by

$$
J_{i}=-\left(\tilde{D}_{i} \nabla c_{i}+D_{i} \frac{c_{i}}{c} \nabla c\right), \quad i=1, \ldots, n, \quad c=\sum_{i=1}^{n} c_{i} .
$$

In the case of radioactive isotopes, we have to take into account the radioactive decay law, which for spacially homogeneous distributions is a linear ODE system

$$
\frac{d \underline{C}}{d t}=\Lambda \underline{C}, \quad \underline{C} \in \mathbb{R}^{n}
$$

with Λ a suitable $n \times n$ constant matrix.

general case of positive diffusion coefficients with Dirichlet boundary conditions

$$
\begin{cases}\frac{\partial c_{i}}{\partial t}=-\operatorname{div} J_{i}+\sum_{j=1}^{n} \Lambda_{i j} c_{j}, & \text { in } \Omega \times(0, T) \\ \left.c_{i}\right|_{\partial \Omega}=f_{i}, & \text { in } \partial \Omega \times(0, T), \\ c_{i}(x, 0)=c_{i 0}(x) & \text { in } \bar{\Omega}, \\ J_{i}=-\left(\tilde{D}_{i} \nabla c_{i}+D_{i} \frac{c_{i}}{c} \nabla c\right), & i=1, \ldots, n\end{cases}
$$

Ω bounded domain of \mathbb{R}^{n} with regular boundary $\partial \Omega$.
existence and uniqueness of classical solutions are proved in the physically relevant assumption that

$$
K \geq c_{i} \geq 0, \quad i=1, \ldots, n, \quad c \geq k>0
$$

k, K constant.

The system can be written as a quasilinear parabolic system in separated divergence form

$$
\begin{aligned}
& \left\{\begin{array}{c}
\frac{\partial \tilde{\mathbf{C}}}{\partial t}=\sum_{j, k=1}^{n} \frac{\partial}{\partial x_{j}}\left(\mathcal{A}_{j k}(\tilde{\mathbf{C}}) \frac{\partial \tilde{\mathbf{C}}}{\partial x_{k}}\right)+\tilde{\Lambda} \tilde{\mathbf{C}}, \\
\tilde{\mathbf{C}}=\left(c_{1}, \ldots, c_{n-1}, c\right), \\
\mathcal{A}_{j k}(\tilde{\mathbf{C}})=A(\tilde{\mathbf{C}}) \delta_{j k}, j, k=1, \ldots, n
\end{array}\right. \\
& \left(\begin{array}{ccccc}
\tilde{D}_{1} & 0 & \ldots & 0 & \operatorname{in} \Omega \times(0, T) \\
0 & \tilde{D}_{2} & \ldots & 0 & D_{1} \frac{c_{1}}{c} \\
\vdots & \vdots & \ddots & \vdots & D_{2} \frac{c_{2}}{c} \\
0 & 0 & & \tilde{D}_{n-1} & \vdots \\
\tilde{D}_{1}-\tilde{D}_{n} & \tilde{D}_{2}-\tilde{D}_{n} & \ldots & \tilde{D}_{n-1}-\tilde{D}_{n} & \tilde{D}_{n}+D_{n}+\sum_{i=1}^{n-1}\left(D_{i}-D_{n}\right) \frac{c_{i}}{c}
\end{array}\right)
\end{aligned}
$$

Space operator NOT STRONGLY ELLIPTIC but satisfies a normal ellipticity condition (see [1], [2]),

$$
n-1 \text { eigenvalues } \simeq \tilde{D}_{i}, 1 \text { eigenvalue } \simeq D_{i}+\tilde{D}_{i}
$$

$\tilde{D}_{i} \ll D_{i} \longrightarrow$ appearance of a "hyperbolic" behaviour for the c_{i}

setting $\tilde{D}_{i}=0$ and $D_{1}=\max D_{j}, D_{n}=\min D_{j}, \quad j=1, \ldots, n, \quad c_{n}=c-\sum_{j=1}^{n-1} c_{j}$

$$
\left\{\begin{array}{l}
c_{i t}=\left(D_{i} \frac{c_{i}}{c} c_{x}\right)_{x}+\sum_{j=1}^{n-1} \beta_{i j} c_{j}+\beta_{i n} c, \quad i, j=1, \ldots n-1 \\
c_{t}=\left(a\left(c, c_{1}, \ldots c_{n-1}\right) c_{x}\right)_{x}+\sum_{j=1}^{n-1} \beta_{n j} c_{j}+\beta_{n n} c, \\
a=D_{n}+\sum_{j=1}^{n-1}\left(D_{j}-D_{n}\right) \frac{c_{i}}{c}
\end{array}\right.
$$

$\beta_{i j}$ constants depending on $\Lambda_{i j}$.
$0 \leq c_{i} \leq c, \quad \longrightarrow \quad c$ satisfies a uniformly parabolic quasilinear equation in divergence form $(0<$ $\left.D_{n} \leq a \leq D_{1}, \forall c_{i}, c \geq 0\right)$.
$c(x, t)$ has a "parabolic" behaviour while, once c is given, the equations for the single species c_{i} are first order linear equations, so that we expect for c_{i} a "hyperbolic" behaviour.
c_{i} will have finite speed of propagation and will in general be non smooth for $t>0$ (in qualitative accordance with experimental results).

If $\Lambda_{i j} \equiv 0$ with $D_{i}=1 \forall i$, after scaling on t, the system reduces to

$$
\left\{\begin{array}{l}
c_{i t}=\left(\frac{c_{i}}{c} c_{x}\right)_{x}, \quad i=1, \ldots n-1 \\
c_{t}=c_{x x}
\end{array}\right.
$$

diffusion of the total concentration c governed by the classical heat equation, system for the c_{i} uncoupled; each equation is a linear first order equation for c_{i}.
similar situation also for $\Lambda_{i j} \neq 0$ in the following examples:
Example 1. All the species decay with almost the same coefficient λ (i.e. $\Lambda_{i j}=-\lambda \delta_{i j}$) \longrightarrow same system, with c_{i}, c replaced by $c_{i} e^{\lambda t}, c e^{\lambda t}$.

Example 2. A triplet c_{1}, c_{2}, c_{3} with decay law respectively $-\lambda_{1} c_{1}, \lambda_{1} c_{1}-\lambda_{2} c_{2}, \lambda_{2} c_{2}$.

$$
\left\{\begin{aligned}
c_{1 t} & =\left(\frac{c_{1}}{c} c_{x}\right)_{x}-\lambda_{1} c_{1} \\
c_{2 t} & =\left(\frac{c_{2}}{c} c_{x}\right)_{x}+\lambda_{1} c_{1}-\lambda_{2} c_{2} \\
c_{t} & =c_{x x}
\end{aligned}\right.
$$

the ratio $r_{i}=\frac{c_{i}}{c}$ has an evolution law simpler than the one of c_{i}
in the case of isotopes r_{i} related to the "activity ratio".
problem without decay:

$$
r_{i t}=r_{i x} \frac{c_{x}}{c}, \quad i=1, \ldots n-1
$$

$\longrightarrow r_{i}$ are constant on the characteristics.
problem with decay ($D_{i} \equiv 1, a=1$)

$$
r_{i t}=r_{i x} \frac{c_{x}}{c}+P_{i}\left(r_{1}, . . r_{n-1}\right), \quad i=1, \ldots n-1
$$

P_{i} polinomial of 2 degree.
$\longrightarrow r_{i}$ evolve on each characteristic independently of c.

Example 3: couple $\left(U^{238}, U^{234}\right)$
decay law respectively

$$
\dot{c}_{1}=-\lambda_{1} c_{1}, \quad \dot{c}_{2}=\lambda_{1} c_{1}-\lambda_{2} c_{2}, \quad \lambda_{1} \ll \lambda_{2}
$$

then

$$
\begin{cases}c_{t}=c_{x x}+\lambda_{2} c\left(r_{1}-1\right), & \text { in } \Omega \times(0, T), \\ r_{1 t}=r_{1 x} \frac{c_{x}}{c}+\lambda_{2} r_{1}\left(r_{E}-r_{1}\right), & r_{E}=\frac{\lambda_{2}-\lambda_{1}}{\lambda_{2}}\end{cases}
$$

along the characteristics:

$$
\begin{aligned}
& r_{1}(0)=0 \quad \rightarrow \quad r_{1}(t) \equiv 0, \quad t>0 \\
& 0<r_{1}(0) \leq 1 \quad \rightarrow \quad r_{1}(t)=\frac{r_{E} r_{1}(0) \exp \left(\lambda_{2}-\lambda_{1}\right) t}{r_{E}-r_{1}(0)+r_{1}(0) \exp \left(\lambda_{2}-\lambda_{1}\right) t}, \\
& r_{1}(t) \rightarrow r_{E} \quad \text { as } t \rightarrow \infty
\end{aligned}
$$

in accordance with the physical fact that for the couple (U^{238}, U^{234}) has a "secular equilibrium" positive and attractive (i.e. normally the two isotopes are found in a precise positive ratio).

characteristics

- define the characteristic for any $\left(x_{0}, t_{0}\right), t_{0}>0$ fixed, $x_{0} \in \Omega$,
- think r_{i} given on $t=t_{0}$ ($t=t_{0}$ is not a characteristic itself)
- extend it in a neighborhood of $t=t_{0}$
$X\left(t ; x_{0}, t_{0}\right)$ denotes the characteristic starting in x_{0}, t_{0}, whose equation is

$$
\left\{\begin{array}{l}
\frac{d X\left(t ; x_{0}, t_{0}\right)}{d t}=-\left.\frac{c_{x}}{c}\right|_{x=X\left(t ; x_{0}, t_{0}\right)}, \quad\left(x_{0}, t_{0}\right) \in \Omega \times(0, T) \\
X\left(t_{0} ; x_{0}, t_{0}\right)=x_{0}
\end{array}\right.
$$

main fact:

the masses between two characteristics behave as the solution of the ODE.

$$
\mathbf{m}_{1,2}(t)=\int_{X_{1}(t)}^{X_{2}(t)} \tilde{\mathbf{C}}(\xi, t) d \xi, \quad \tilde{\mathbf{C}}=\left(c_{1}, \ldots, c_{n-1}, c\right)
$$

is solution of ODE:

$$
\left\{\begin{array}{l}
\dot{\mathbf{Y}}=\tilde{\Lambda} \mathbf{Y} \\
\mathbf{Y}(0)=\int_{X_{1}(0)}^{X_{2}(0)} \tilde{\mathbf{C}}_{0}(\xi) d \xi
\end{array}\right.
$$

$\Omega=(-L, L)$ bounded then there will be:
. a set $\Omega_{1}\left(t_{0}\right)=\left(-L, l_{1}\right)$ such that the characteristics starting from $\left(x_{0}, t_{0}\right), x_{0} \in \Omega_{1}, t_{0}>0$, will reach the lateral boundary $x=-L$,
. a set $\Omega_{2}\left(t_{0}\right)=\left(l_{1}, l_{2}\right)$ such that they go to the initial set $\Omega \times\{t=0\}$,
. a set $\Omega_{3}\left(t_{0}\right)=\left(l_{2}, L\right)$ such that they go to $x=L$.
Assume that two characteristics, denoted by $X_{1}(t), X_{2}(t)$ with $X_{1}\left(t_{0}\right)<X_{2}\left(t_{0}\right)$ starting from $t_{0}>0$ reach $t=0$, then:

$$
X_{1}(0)<X_{2}(0), \quad c_{0}(x) \not \equiv 0, \quad x \in\left(X_{1}(0), X_{2}(0)\right)
$$

In other words if $c_{0}(x) \equiv 0, x \in I, I$ interval of Ω, then there cannot be two distinct characteristics ending in I. This fact is due to the "infinite speed of propagation" of the total concentration i.e. to the fact that $c(x, t)>0, \forall t>0, x \in \Omega$.

"holes" of the initial data for c

- Let us assume that

$$
\begin{aligned}
& c_{0}(x) \equiv 0, \quad x \in I_{0}=(a, b) \subset \Omega \\
& c_{0}(x)>0, \quad x \in I=(a-\delta, b+\delta)-\bar{I}_{0}, \quad \delta>0 \text { such that } I \subset \Omega
\end{aligned}
$$

Then there exists a curve $x=s(t)$ separating two regions

$$
\begin{aligned}
& C_{-}=\{\text {characteristics from }(a-\delta, a)\} \\
& C_{+}=\{\text {characteristics from }(b, b+\delta)\}
\end{aligned}
$$

- Let us assume that $\Omega=(-L, L)$,

$$
c_{0}(x)>0, \quad x \in[-L, a], \quad c_{0}(x) \equiv 0, \quad x \in(a, L]
$$

$a \in \Omega$, then $\Omega_{2}(t) \rightarrow(-L, a) \quad$ as $\quad t \rightarrow 0$.

- Assume $\Omega=(-L, L)$ and $c_{0} \equiv 0$ in Ω, then Ω_{2} is at most one curve, moreover:
- if the boundary data are such that both Ω_{1} and Ω_{3} are not empty, that is the case e.g. of incoming flux at both boundaries, then Ω_{2} is precisely a line;
- if either Ω_{1} or Ω_{3} is empty (e.g. incoming flux from only one boundary) then Ω_{2} is empty.

EXAMPLE, stable isotopes

$$
c_{0}(x)= \begin{cases}c_{L}, & x<a \\ 0, & a<x<b, \\ c_{R}, & b<x\end{cases}
$$

either Cauchy Problem or Homogeneous Neumann Problem with $-L<a<b<L$

$$
s(t) \rightarrow \bar{x}=\frac{a+b}{2} \quad \text { as } \quad t \rightarrow 0^{+}
$$

For Cauchy Problem $\bar{x}-\alpha t \leq s(t) \leq \bar{x}, \alpha=\frac{2}{b-a} \ln \frac{c_{R}}{c_{L}}$
similar estimates for Homogeneous Neumann Problem.

Exact solutions confirm that if instead $c_{L}=0<c_{R}$ then all the characteristics starts in $\{x>b\}$.

Other results on initial behaviour of the characteristics for $x=0$, which confirm the a priori results

- c_{0} smooth $\longrightarrow X(t ; 0) \simeq-\frac{c_{0}^{\prime}(0)}{c_{0}(0)} t$
- jump in c_{0}^{\prime} e.g.

$$
c_{0}(x)=c_{0}(0)+ \begin{cases}\gamma_{-}, & x<0 \\ \gamma_{+} & x>0\end{cases}
$$

1. $c_{0}(0)>0 \longrightarrow X(t ; 0) \simeq-\frac{\gamma_{+}+\gamma_{-}}{2 c_{0}(0)} t$,
2. $c_{0}(0)=0, \gamma_{-}<0 \longrightarrow X(t ; 0) \simeq-2 \alpha \sqrt{t}, \alpha$ depending explicitely on γ_{+}, γ_{-},
3. $c_{0}(0)=0, \gamma_{-}=0 \longrightarrow$ all characteristics start from $x>0$.

- jump in c_{0} e.g.

$$
c_{0}(x)=\left\{\begin{array}{ll}
c_{L}, & x<0 \\
c_{R} & x>0,
\end{array} \quad c_{L}<c_{R}\right.
$$

1. $c_{L}>0 \longrightarrow X(t ; 0) \simeq-2 \alpha \sqrt{t}, \alpha$ depending explicitely on c_{L}, c_{R},
2. $c_{L}=0 \longrightarrow$ all characteristics start from $x>0$.

"holes" of the initial data for c_{i} (stable isotopes)

- $r_{i}=\frac{c_{i}}{c}$ constant along the characteristics $\longrightarrow \quad c_{i}(x, t)$ inside the domain can be recovered from the initial and boundary data,
- the oscillations of initial and boundary data persist in the interior of the domain (consistent with the experimental results).
- possible existence of interior regions depleted of c_{i}
the "holes" of c_{i} remain in time only if they do not coincide with the "holes" of c_{0}.
-if $c_{i}(x, 0) \equiv 0$ in $I=(a, b) \subset \Omega$ and $c_{0}(x) \not \equiv 0$ in I, then, for any time t there exists an interval \tilde{I} where $c_{i}(x, t) \equiv 0$ for $x \in \tilde{I}$.
-On the contrary, suppose that $\Omega_{1}=\Omega_{3}=\emptyset$ and that supp $c_{i}(x, 0) \equiv \operatorname{supp} c_{0}(x)$, then $c_{i}(x, t)>0$ a.e. for any $t>0$.

Page 23
nZsCs-4 - c1

nZsCs-4 - c1/(c1+c2)

case with decay ($\Lambda \neq 0$)

c depending on c_{i}, but the characteristics for each c_{i} are defined as before; the behaviour of the solution does not change, provided the assumptions:

- (H1) \exists ! solution of the equation $\underline{\dot{u}}=\Lambda \underline{u}, u \in R^{n}$ for any initial datum \underline{u}_{0}.
- (H2) if $u_{i 0} \geq 0$, then $u_{i}(t) \geq 0, \quad i=1, \ldots n$. (positive property)

$$
0 \leq r_{i 0} \leq 1 \quad \longrightarrow \quad 0 \leq r_{i}(X(t), t) \leq 1
$$

therefore $c(x, t)$ satisfies the following equation

$$
\begin{equation*}
c_{t}=c_{x x}+c\left(\beta_{n n}+\sum_{i}^{n-1} \beta_{n i} r_{i}\right)=c_{x x}+b(x, t) c, \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
|b(x, t)|<B, \quad \bar{\Omega} \times[0, T] . \tag{2}
\end{equation*}
$$

From the classical theory we get then explicit bounds for c.
As for the behaviour of the "holes" of c_{i}, we have similar results as in the case without decay iff the elements of Λ satisfy the following assumption

- (H3) if $u_{i 0}=0$ and $u_{j 0} \geq 0, u_{j 0}(x) \neq 0 \quad j \neq i$, then $u_{i}(t)=0$ for any t.

example: cauchy problem for the couple $\left(U^{238}, U^{234}\right)$

suppose c_{1} and c_{2} initially separated, i.e.

$$
c_{0}(x)>0, \quad c_{10}(x)=c_{0}(x) H(x)
$$

where $H(x)$ is the Heaviside function,
then $(c(x, t), s(t))$ can be regarded as solution of the free boundary problem

$$
\left\{\begin{array}{l}
c_{t}=c_{x x}+\lambda_{2} c(\tilde{r}(t) H(x-s(t))-1) \\
\cdot \dot{s}(t)=-\frac{c_{x}}{c} \\
s(0)=0, \quad c(x, 0)=c_{0}(x)
\end{array}\right.
$$

where

$$
\tilde{r}(t)=\frac{r_{E} \exp \left(\lambda_{2}-\lambda_{1}\right) t}{r_{E}-1+\exp \left(\lambda_{2}-\lambda_{1}\right) t}, \quad r_{E}=\frac{\lambda_{2}-\lambda_{1}}{\lambda_{2}}
$$

Once the couple (c, s) is given

$$
\begin{aligned}
& c_{1}(x, t)=\tilde{r}(t) c(x, t) H(x-s(t)) \\
& c_{2}(x, t)=c(x, t)-c_{1}(x, t)
\end{aligned}
$$

with c_{1} discontinuous across $x=s(t)$ and zero for $x<s(t)$.
remark: if we drop the assumption of c_{0} positive, e.g. we take $c_{0}(x) \equiv 0, x<0$ so that $c_{10}(x)=$ $c_{0}(x), x \in R$ then we will have instead

$$
\begin{aligned}
& c_{1}(x, t)=\tilde{r} c(x, t), \quad x \in \mathbb{R}, \quad t \geq 0 \\
& c_{2}(x, t)=(1-\tilde{r}(t)) c(x, t)
\end{aligned}
$$

and $c(x, t)$ is the known solution of

$$
c_{t}=c_{x x}-\lambda_{2} c(1-\tilde{r}(t)), \quad \text { in } \mathbb{R} \times(0, t),
$$

therefore c can be calculated explicitely and c_{1} will be strictly positive everywhere.

regularity and weak solutions

- irregular initial data give irregular solutions, (i.e. no parabolic effect)
- also if the data are C^{∞} the solution can have discontinuities.

Example 4 Cauchy problem without decay

$$
c_{0} \in C^{\infty}, c_{0}(x) \equiv 0, x \in I=[-L, L], c_{0}(x)>0, x \in \mathcal{R} / I
$$

c_{0} symmetric w.r.to $x=0$ (hence $x=0$ is a characteristic) and for a given i

$$
c_{i 0}(x)=\left\{\begin{array}{l}
\gamma_{1 i} c_{0}(x), \quad x \leq-L \\
0, \quad x \in I \\
\gamma_{2 i} c_{0}(x), \quad x \geq L
\end{array}\right.
$$

with $\gamma_{1 i} \not \equiv \gamma_{2 i}$ constants in $[0,1]$.

For $t>0$ we have the explicit solution

$$
c_{i}(x, t)= \begin{cases}\gamma_{1 i} c(x, t), & x<0 \\ \gamma_{2 i} c(x, t), & x>0\end{cases}
$$

so that c_{i} has a jump $\forall t>0$ in $x=0$ increasing in time

$$
\gamma\left[c_{i}^{+}-c_{i}^{-}\right]=\left(\gamma_{2 i}-\gamma_{1 i}\right) c(0, t) \neq 0
$$

a similar behaviour can be showed if c_{0} is not symmetric and in the case with $\Lambda \neq 0$.

hyperbolic model as limit of the parabolic one

if the total concentration is strictly positive, the solution constructed along the characteristics is the "viscosity solution" obtained as the limit of the complete physical model, with $\tilde{D}_{i}=\tilde{D} \neq 0, D_{i}=D=1$ as $\tilde{D} \rightarrow 0$.

The numerical simulations all confirm the convergence also if c_{0} is allowed to become zero.
In the limit, boundary layers will appear (see again Ref. BLN).
For smooth data one can prove existence and uniqueness of classical solution.

asymptotic behaviour, $t \rightarrow \infty$, Homogeneous Neumann Problem

It depends strongly on the decay law $\tilde{\mathbf{C}}=\tilde{\Lambda} \tilde{\mathbf{C}}, \tilde{\mathbf{C}}=\left(\mathbf{c}_{\mathbf{1}}, \ldots, \mathbf{c}_{\mathbf{n}-\mathbf{1}}, \mathbf{c}\right)$.
Natural assumptions:

- $\tilde{\Lambda}$ has real nonpositive eigenvalues $\sigma_{s}<\ldots<\sigma_{1} \leq 0$
- if $\sigma_{1}=0$ then it is semisimple.

Denote:

- $h\left(\sigma_{1}\right)=$ dimension of the generalized autospace $E\left(\sigma_{1}\right)$
- $\hat{B} \mathbf{Y}=\frac{1}{\left(h\left(\sigma_{1}\right)-1\right)!}\left(\tilde{\Lambda}-\sigma_{1} I d\right)^{h\left(\sigma_{1}\right)-1} \mathbf{Y}_{0,1}, \mathbf{Y}_{0,1} \in E\left(\sigma_{1}\right), \quad \mathbf{Y} \in \mathbb{R}^{n}$
- $\mathbf{F}(x)=\hat{B} \tilde{\mathbf{C}}_{0}(x)=\left(F_{1}, \ldots, F_{n-1}, F\right)$.

The total mass $m(x, t)=\int_{-L}^{x} c(\xi, t) d \xi$ behaves as

$$
\begin{gathered}
m(x, t) \simeq t^{h\left(\sigma_{1}\right)-1} e^{\sigma_{1} t} \frac{x+L}{2 L} M_{\infty}, \quad M_{\infty}=\int_{-L}^{L} F(\xi) d \xi \\
\text { iff } M_{\infty}>0, \text { uniformly in } \bar{\Omega} .
\end{gathered}
$$

- characteristics:

$$
X\left(t, x_{0}\right) \rightarrow X_{\infty}\left(x_{0}\right)=\frac{2 L}{M_{\infty}} \int_{-L}^{x_{0}} F(\xi) d \xi-L \quad \text { as } t \rightarrow \infty
$$

- ratioes $r_{i}=\frac{c_{i}}{c}$:

$$
F(x)>0 \quad \Longrightarrow
$$

$$
r_{i}(x, t) \rightarrow r_{i \infty}(x)=\frac{F_{i}\left(X_{\infty}^{-1}(x)\right)}{F\left(X_{\infty}^{-1}(x)\right)}, i=1, \ldots, n-1, \quad \text { as } t \rightarrow \infty
$$

$$
F(x) \geq 0 \quad \Longrightarrow
$$

in general one cannot have an asymptotic distribution in the whole $\bar{\Omega}$.

EXAMPLES

1. stable isotopes

$$
F=c_{0}>0, M_{\infty}=\int_{-L}^{L} F(\xi) d \xi, m \simeq \frac{x+L}{2 L} M_{\infty}, \quad r_{i} \simeq \frac{c_{i 0}\left(X_{\infty}^{-1}(x)\right)}{c_{0}\left(X_{\infty}^{-1}(x)\right)}, i=1, \ldots, n-1,
$$

"asymptotic localization property"
2. chain of the type U^{238}, U^{234} :

$$
\begin{gathered}
\dot{c}_{1}=-\lambda_{1} c_{1}, \dot{c}_{2}=\lambda_{1} c_{1}-\lambda_{2} c_{2}, 0<\lambda_{1}<\lambda_{2} \\
F=\left(1-\frac{\lambda_{1}}{\lambda_{2}}\right) c_{10}, M_{\infty}=\int_{-L}^{L} F(\xi) d \xi, m \simeq e^{-\lambda_{1} t} \frac{x+L}{2 L} M_{\infty}, \\
\text { if } c_{10}>0 \quad \Longrightarrow \quad r \simeq r_{E}=1-\frac{\lambda_{1}}{\lambda_{2}}, \text { secular equilibrium } \\
\text { if } c_{10} \geq 0 \quad \Longrightarrow \quad \text { no limit near the points identified by the graph } X_{\infty}^{-1}
\end{gathered}
$$

Still example 2 but

$$
\begin{aligned}
& -0<\lambda_{2}<\lambda_{1} \Longrightarrow \\
& F=c_{0}+\frac{\lambda_{2}}{\lambda_{1}-\lambda_{2}} c_{10} \geq c_{0}>0, M_{\infty}=\int_{-L}^{L} F(\xi) d \xi, \\
& \quad m \simeq e^{-\lambda_{2} t} \frac{x+L}{2 L} M_{\infty}, r=\frac{c_{1}}{c} \rightarrow 0, \text { only isotope } 2 \text { is present at } t \rightarrow \infty \\
& -0<\lambda_{1}=\lambda_{2}=\lambda \Longrightarrow \\
& F=\lambda c_{10}, M_{\infty}=\int_{-L}^{L} F(\xi) d \xi \quad m \simeq t e^{-\lambda t} \frac{x+L}{2 L} M_{\infty} \\
& \text { but } \forall c_{10} \geq 0 \Rightarrow r=\frac{c_{1}}{c} \rightarrow 0 .
\end{aligned}
$$

References

[1] H. Amann, 'Dynamic theory of quasilinear parabolic systems. III Global existence', Math.Z, 202, (1989), pp. 219-250.
[2] H. Amann 'Dynamic theory of quasilinear parabolic systems. II Reaction-Diffusion systems, Diff. and Int. Eq., 3, n. 1 (1990), pp. 13-75.
[3] D. Ambrosi, L. Preziosi, On the closure of mass balance models for tumor growth, Math.Models Methods Appl. Sci. 12 (2002) 737-754.
[4] M. Bertsch, M.E. Gurtin, D. Hilhorst, 'On the interacting populations that disperse to avoid crowding: the case of equal dispersal velocities' . . Nonlinear Anal.Th.Meth.Appl. vol II, 4, (1987), pp. 493-499.
[5] H.F. Bremer, E.I. Cussler, 'Diffusion in the Ternary System d-Tartaric - Acid c-Tartaric Acid - Water at $25^{\circ} \mathrm{C}^{\prime}$. AIChE Journal, 16, 9 (1980) pp. 832-838.
[6] C. Bardos, A.Y. Leroux, J.C. Nedelec, 'First order quasilinear equations with boundary conditions'. Comm. In PDE, 4, 9 (1979) pp. 1017 -1034.
[7] E. Comparini, R. Dal Passo, C. Pescatore, M. Ughi On a model for the propagation of isotopic disequilibrium by diffusion Math.Models Methods Appl. Sci. 19, 8 (2009) pp 1277-1294.
[8] E. Comparini, A. Mancini, C. Pescatore, M. Ughi, Numerical results for the Codiffuson of Isotopes, Communications to SIMAI Congress, vol. 3, ISSN: 1827-9015 (2009).
[9] E. Comparini, C. Pescatore, M. Ughi On a quasilinear parabolic system modelling the diffusion of radioactive isotopes, RIMUT XXXIX (2007) 127-140.
[10] E. Comparini, M. Ughi Large time behaviour of the solution of a parabolic-hyperbolic system modelling the codiffusion of isotopes, to appear on Adv. in Math. Sc. and Appl. (2011).
[11] E. Comparini, M. Ughi On the asymptotic behaviour of the characteristics in the codiffusion of radioactive isotopes with general initial data, to appear on RIMUT (2012).
[12] A. Friedmann, Partial differential equations of parabolic type, Englewood Cliffs: Prentice-Hall, (1964).
[13] G.E. Hernandez, 'Existence of solutions in a population dynamics problem', Quarterly of Appl. Math., vol. XLIII 4, (1986) pp. 509-521.
[14] G.E. Hernandez, 'Localization of age-dependent anti-crowding populations', Quarterly of Appl. Math., vol. LIII 1, (1995) pp. 35-52.
[15] T. Gimmi, H.N. Waber, A. Gautschi, A. Riibel, 'Stable water isotopes in pore water of Jurassic argillaceous rocks as tracers for solute transport over large spatial and temporal scales', WATER RESOURCES RESEARCH, vol. 43, (2007).
[16] KASAM Nuclear Waste state of the art reports 2004', Swedish Government Official Reports SOU 2004-67, (2005).
[17] R.C. MacCamy, 'A population model with nonlinear diffusion', J.Diff.Eq. 39, (1981), pp. 52-72.
[18] C. Pescatore, Discordance in understanding of isotope solute diffusion and elements for resolution, Proceedings OECD/NEA "Radionuclide retention in geological media", Oskarsham, Sweden, (2002) pp. 247-255.
[19] A. Terracina, A free boundary problem for scalar conservation laws. SIAM J. of Math.Anal. 30 5, (1999) pp. 985-1009.
[20] R. Wang, P. Keast, P. H. Muir Algorithm 874:BACOLR - spatial and temporal error control software for PDEs based on high-order adaptive collocation ACM Transactions on Mathematical Software (TOMS) 34, 3 (2008).

