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The Nonlinear Stefan Boundary Problem

(1)


ut − d∆u = g(u) for x ∈ Ω(t), t > 0,

u = 0 and ut = µ|∇xu|2 for x ∈ Γ(t), t > 0,

u(0, x) = u0(x) for x ∈ Ω0,

where Ω(t) ⊂ Rn (n ≥ 2) is bounded by the free boundary Γ(t),
with Ω(0) = Ω0, µ and d are given positive constants.

For Ω0, we assume that it is a bounded domain that agrees with
the interior of its closure Ω0, ∂Ω0 satisfies the interior ball
condition, and u0 ∈ C (Ω0) ∩ H1(Ω0) is positive in Ω0 and vanishes
on ∂Ω0.
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For the nonlinear function g , we make the following assumptions:

(2)


(i) g(0) = 0,

(ii) g ∈ C 1,α([0, δ0]) for some δ0 > 0 and α ∈ (0, 1),

(iii) g(u) is locally Lipschitz in [0,∞),

(iv) g(u) ≤ 0 in [M,∞) for some M > 0.

We note that these conditions are satisfied by standard
monostable, bistable and combustion type nonlinearities.

By a result in Y. Du and Zongming Guo (JDE 2012), under these
conditions (1) has a unique weak solution defined for all t > 0.
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Main Results

Theorem 1.

1 For fixed t > 0, Γ̃(t) := Γ(t) \ co(Ω0) is a C 2,α hypersurface
in Rn,

2 Γ̃ := {(t, x) : x ∈ Γ̃(t), t > 0} is a C 2,α hypersurface in Rn+1.

In particular, the free boundary is always C 2,α smooth if Ω0 is
convex.

Here co(Ω0) stands for the closed convex hull of Ω0.
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Theorem 2.

1 Ω(t) is expanding in the sense that Ω0 ⊂ Ω(t) ⊂ Ω(s) if
0 < t < s.

2 Ω∞ := ∪t>0Ω(t) is either the entire space Rn, or it is a
bounded set.

3 When Ω∞ = Rn, for all large t, Γ(t) is a smooth closed
hypersurface in Rn, and there exists a continuous function
M(t) such that

(3) Γ(t) ⊂ {x : M(t)− πd0 ≤ |x | ≤ M(t)}.

4 When Ω∞ is bounded, limt→∞ ‖u(t, ·)‖L∞(Ω(t)) = 0.

Here d0 is the diameter of Ω0.
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Theorem 3. If g(u) = au − bu2 with a, b positive constants, then
there exists µ∗ > 0 such that

1 Ω∞ = Rn if µ > µ∗, and Ω∞ is bounded if µ ∈ (0, µ∗];

2 when Ω∞ = Rn, the following holds:

lim
t→∞

M(t)

t
= k0(µ), lim

t→∞
max
|x |≤ct

∣∣∣u(t, x)−a

b

∣∣∣ = 0 ∀c ∈ (0, k0(µ)),

where k0(µ) is a positive increasing function of µ satisfying
limµ→∞ k0(µ) = 2

√
ad .

Further analysis of the function k0(µ) is given in G. Bunting, Y.
Du and K. Krakowski (preprint,2011).
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For example, we have

k0(µ) = λ0(
aµ

bd
)
√
ad

with λ0(α) satisfying

0 < λ0(α) < 2, lim
α→∞

λ0(α) = 2, lim
α→0

λ0(α)

α
=

1√
3
.

The following tables are obtained from numerical calculations.

α 1 10 102 103 104 105 106 107 108

λ0(α) 0.36 1.01 1.49 1.72 1.84 1.90 1.93 1.95 1.96

α 109 1010 1011 1012 1013 1014 1015 1016 ∞
λ0(α) 1.97 1.98 1.98 1.99 1.99 1.99 1.99 1.99 2.00

Table : λ0(α) for α ≥ 1
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α 0.01 0.1 0.2 0.3 0.4 0.5 0.7 0.9

λ0(α) 0.006 0.05 0.10 0.15 0.19 0.22 0.28 0.34
λ0(α)
α

√
3 0.99 0.94 0.89 0.84 0.80 0.77 0.70 0.65

Table : λ0(α) for α ≤ 1
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Some Background

1 In one space dimension problem (1) with the logistic
nonlinearity g(u) = au − bu2 was introduced in Y. Du and
Zhigui Lin (SIAM J. Math. Anal., 2010) to better understand
the spreading of invasive species, where u represents the
population density of the species, and the free boundary
stands for the spreading front.

2 The high dimension case with radial symmetry was studied in
Y. Du and Zongming Guo (JDE, 2011).

In these special cases it was proved in these papers that problem
(1) exhibits a spreading-vanishing dichotomy:

As t →∞, either Ω(t) expands to the entire Rn and u converges
to the positive steady-state a/b (spreading), or Ω(t) stays bounded
and u → 0 (vanishing).

In these cases the special geometry ensures that the free boundary
and the solution are automatically smooth, which greatly simplifies
the analysis.
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3 In Y. Du and Zongming Guo (JDE 2012), the existence and
uniqueness of a weak solution for (1) with a general Ω0 was
established.

It was shown that as µ→∞, the weak solution of (1) converges
to the solution of the corresponding Cauchy problem with initial
function ũ0 which is u0 extended by 0 into the entire Rn.
Moreover, if g(u) = au − bu2, it was shown in this paper that
under suitable conditions on the initial values, as t →∞, Ω(t)
expands to the entire space Rn and u converges to the positive
equilibrium solution a/b, and under a set of different conditions
Ω(t) remains bounded and u converges to 0. However, these two
sets of conditions are not complementing to each other, and
whether there is a sharp spreading-vanishing dichotomy as in the
1-d and radial cases, was left open. Our Theorem 3 here gives a
complete answer to this question.
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Weak Formulations of (1)
In order to obtain our results, we need two different weak
formulations of (1). The first one is modeled on the approach of
A. Friedman (TAMS 1968), and is given in Du-Guo (JDE 2012).

Define
α(ξ) = ξ − dµ−1χ{ξ≤0},

ũ0 = u0 in Ω0, ũ0 = 0 outside Ω0.

For a large ball BR and T > 0, if
u ∈ H1((0,T )×BR)∩L∞((0,T )×BR)) satisfies in the weak sense

(4)


∂t [α(u)]− d∆u = g(u) in (0,T )× BR ,

u = 0 on (0,T )× ∂BR ,

u(0, x) = ũ0(x) in BR ,

it is called a weak solution of (1). It can be shown that the weak
solution does not depend on the choice of the large ball BR , it is
unique and agrees with the classical solution if the free boundary is
smooth enough.
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The idea is to approximate the discontinuous function α by a
sequence of suitable smooth functions αm, and for each
approximate problem one obtains a classical solution um, and then
show that um converges to a unique weak solution of (4).

For fixed t > 0, the set Ω(t) := {x : u(t, x) > 0} is contained in a
compact subset of BR . Γ(t) := ∂Ω(t) is the free boundary of the
weak solution.

The advantage of this formulation is that comparison results follow
easily from the definition and the approximation process. However,
as in the classical Stefan problem, this formulation is difficult to
use to obtain regularity for the free boundary.
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A Second Weak Formulation

For T > 0 and large BR , define ΩT ,R = (0,T )× BR and

f (x) =

{
u0(x), x ∈ Ω0,
−d/µ, x ∈ BR \ Ω0.

Theorem 4. If w is a W 1,2
2 (ΩT ,R)-solution of

(5)

wt − d∆w =

∫ t

0
g(wt)dτ + dµ−1χ{w≤0} + f in ΩT ,R ,

w = 0 on ∂p(ΩT ,R),

then wt is a weak solution of (4).

Theorem 5.

1 w ∈W 1,2
p (ΩT ,R) for all p > 1,

2 {x : w(t, x) > 0} = Ω(t) := {x : u(t, x) > 0},
3 Ω0 ⊂ Ω(t) ⊂ Ω(s) if 0 < t < s.

Yihong Du Nonlinear Stefan Problem



For the classical one-phase Stefan problem (which is roughly the
case g(u) ≡ 0 in our setting), G. Duvaut (CRAS Paris, 1973) first
introduced the weak form satisfied by w(t, x) =

∫ t
0 u(τ, x)dτ , and

this approach was further developed by A. Friedman and D.
Kinderlehrer (Indiana UMJ, 1975). This enabled the further
development of the regularity theory for the one-phase Stefan
problem:

Lipschitz regularity implies C 1,α regularity [L. Caffarelli (Acta
Math. 1977)].

C 1,α regularity implies C∞ regularity [D. Kinderlehrer and L.
Nirenberg (ASNS Pisa, 1977)].

The nonlinear term g(u) in (1) gives rise to a nonlocal term

h(t, x) =

∫ t

0
g(wt(τ, x))dτ =

∫ t

0
g(u(τ, x))dτ

in (5). This causes some difficulties. In particular it is difficult to
obtain a comparison principle for (5).
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To overcome the difficulty with the comparison principle, we use
the first weak formulation whenever comparison arguments are
needed.

To adapt the regularity theory developed for the classical
one-phase Stefan problem to (5), we use the following result.

Lemma 1. Near a free boundary point (t0, x0) ∈ ∂{w > 0},
h(t, x) is close to 0 and moreover,

1 h is Hölder continuous in {w > 0} near (t0, x0) if the free
boundary is Lipschitz continuous,

2 h is Lipschitz near (t0, x0) if the free boundary is C 1,

3 h is C 1,α near (t0, x0) if further g is C 1,α near 0 and u = wt is
C 1,α near (t0, x0).
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Regularity Results

Using Lemma 1 and with a lot of effort, we can prove
Proposition 1. If g satisfies (i), (iii) and (iv) in (2), and if the free
boundary is Lipschitz near (t0, x0), then the free boundary is C 1,γ

near (t0, x0) for any γ ∈ (0, 1). If g also satisfies (ii) in (2), then
the free boundary is C 2,α near (t0, x0).

It remains to prove the Lipschitz regularity of the free boundary
outside co(Ω0). To do this, we use a monotonicity method, which
relies on a reflection and comparison technique, similar to the
moving plane method in elliptic problems. Such a technique was
first used in parabolic problems by Aronson-Caffarelli (TAMS
1983), C.K.R.T. Jones (Rocky Mountain JM, 1983) and H.
Matano (Conf. Proceedings, 1983).
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For any given z0 6∈ co(Ω0), we can associate a uniquely determined
open set of unit vectors Sz0 and an open cone Cz0 with vertex 0 in
the following way:

Sz0 := {ν ∈ RN : |ν| = 1 , ν · (x − z0) < 0 ∀x ∈ co(Ω0)},

Cz0 := {λν : λ ∈ (0, 1), ν ∈ Sz0}.

Cz0 has the following geometric characterization: For any
x ∈ z0 + Cz0 , the straight line l0 passing through z0 and x must
intersect co(Ω0), and the plane passing through z0 normal to l0
does not intersect co(Ω0).
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Lemma 2. For (s, z) ∈ (0,T )× [BR \ co(Ω0)], and all ν ∈ Sz , we
have ∂νu(s, z) ≤ 0. Moreover, for every s0 ∈ (0,T ),
z0 ∈ Ω(s0) \ co(Ω0) and ν ∈ Sz0 , we have ∂νu(s0, z0) < 0.

Making use of Lemma 2, we can show

Lemma 3. Suppose that t0 ∈ (0,T ), x0 ∈ Γ(t0) \ co(Ω0) and
δ > 0 is small. Then there exists ε > 0 small such that u(t0, x) ≡ 0
in (x0 + C δx0

) ∩ Bε(x0), and u(t0, x) > 0 in (x0 − C δx0
) ∩ Bε(x0).

Here C δx0
⊂ Cx0 is a cone with vertex 0 and the same axis as Cx0 ,

and Bε(x0) = {|x − x0| < ε}.
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By Lemma 3, it is easy to show that Γ(t0) is the graph of a
Lipschitz function near x0.

Using (5) it can further be proved that near (t0, x0), ∂{w > 0} is
the graph of a Lipschitz function with parabolic distance

|(t, x)− (s, y)| =
√
|t − s|+ |x − y |2.

Thus we have proved the following result.

Proposition 2. If (t0, x0) ∈ ∂{w > 0} with t0 > 0 and
x0 6∈ co(Ω0), then ∂{w > 0} is Lipschitz near (t0, x0).

Clearly Theorem 1 is a consequence of Propositions 1 and 2.
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Global Properties and Dichotomy

Using Lemma 2, it is not difficult to prove the following result.

Theorem 6. At any point x0 ∈ Γ(t) \ co(Ω0), the inward normal
line to Γ(t) at x0 intersects co(Ω0). Moreover, if ` is any ray
emanating from Ω0, then ` ∩

(
Γ(t) \ co(Ω0)

)
contains at most one

point.

One important consequence of this result is

Theorem 7. Let x∗ be any point in Ω0 and put

m(t) = min
x∈Γ(t)\co(Ω0)

|x − x∗|, M(t) = max
x∈Γ(t)

|x − x∗|.

Suppose BR0(x∗) ⊃ co(Ω0), and there exists t0 > 0 such that
M(t0) > (2π + 1)R0. Then m(t) > M(t)− 2πR0 for all t ≥ t0.
Hence for t ≥ t0, Γ̃(t) := Γ(t) \ co(Ω0) is a C 2,α closed
hypersurface in Rn satisfying

Γ̃(t) ⊂ {x ∈ Rn : M(t)− 2πR0 < |x − x∗| ≤ M(t)}.
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If Ω0 is convex, then Γ(t) is always C 2,α (for t > 0), and Theorem
7 implies that

Ω∞ = ∪t>0Ω(t)

is either the entire Rn, or it is a bounded set.

If Ω0 is not convex, we have the following result.

Theorem 8. In the case that Ω∞ is unbounded and Ω0 is not
convex, there is a T0 > 0, such that for all t ≥ T0,

co(Ω0) ⊂ Ω(t).

Thus Ω∞ unbounded implies Ω∞ = Rn.
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If Ω∞ is bounded, we can choose a big ball BR such that
Ω∞ ⊂ BR . We then define

E (t) =

∫
BR

[
d

2
|∇u|2 − G (u)]dx , G (u) =

∫ u

0
g(ξ)dξ.

We have the following energy inequality

E (t2)− E (t1) ≤ −
∫ t2

t1

∫
BR

|ut |2dxdt

for the weak solution u of (1) and 0 < t1 < t2 <∞.

Making use of this energy inequality we can prove

Theorem 9. If Ω∞ is bounded, then u(t, ·)→ 0 uniformly as
t →∞.

Theorem 2 clearly follows from Theorems 5, 7, 8 and 9.
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Finally Theorem 3 is proved by making use of suitable comparison
principles (by the first weak formulation), results on the radial case
in Du-Guo (JDE 2011), and the results obtained above. To obtain
the threshold number µ∗, we also need the continuous dependence
of the weak solution on µ, for which we use the second weak
formulation.
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Thank You!
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