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What is a viscoplastic (Bingham) flow?
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Mathematical model

Boundary value problem

− Divσ + (y · ∇)y +∇φ = f in Ω

div y = 0, in Ω

y = 0, on Γ,

σ = 2µEy

+ g
Ey
|Ey |

, if Ey 6= 0,

|σ| ≤ g, if Ey = 0,

y : velocity vector field φ : pressure
E : rate of strain tensor f : volume force

g : plasticity threshold

µ : viscosity coefficient



Outline Motivation Dual based approach I Dual based approach II Conclusions

Mathematical model

Boundary value problem

− Divσ + (y · ∇)y +∇φ = f in Ω

div y = 0, in Ω

y = 0, on Γ,

σ = 2µEy + g
Ey
|Ey |

, if Ey 6= 0,

|σ| ≤ g, if Ey = 0,

y : velocity vector field φ : pressure
E : rate of strain tensor f : volume force
g : plasticity threshold µ : viscosity coefficient



Outline Motivation Dual based approach I Dual based approach II Conclusions

Challenges in the numerical simulation

Identification of fluid zones, rigid solid motion zones and
stagnation zones.
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Simplified case

Pipe of cross section Ω
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Simplified mathematical model

Energy minimization (Mosolov-Miasnikov (1965))

min
y(x)∈H1

0 (Ω)

∫
Ω
|∇y |2 dx + g

∫
Ω
|∇y | dx −

∫
Ω

f · y dx

Convex nondifferentiable term!

Variational inequality (necessary and sufficient condition)

a(y , v−y)+g
∫
Ω

|∇v |dx−g
∫
Ω

|∇y |dx ≥
∫
Ω

f (v−y)dx ,∀v ∈ H1
0 (Ω)

where a(y ,w) :=
∫

Ω∇yT∇w dx .
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Duality

Primal problem

inf
y∈H1

0 (Ω)
J(y) =

1
2

a(y , y) + g
∫

Ω
|∇y | dx −

∫
Ω

f · y dx .

m

Dual Problem

sup
|q(x)|≤g

− 1
2a(y , y)

subject to:
a(y , v) + (q,∇v) = (f , v), for all v ∈ H1

0 (Ω)
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Some references

Primal approach: direct global regularization
Glowinski-Lions-Tremolieres (1976), Glowinski (1984),
Frigaard-Nouar (2005), Dean-Glowinski-Guidoboni (2007),...

Drawbacks: physical properties not reflected, poor identification of
free boundary, ill-conditioned for large parameter values.

Multiplier approach: use of dual information
Glowinski (1984), Glowinski-Le Tallec (1989), Sánchez (1998),
Roquet-Saramito (2003,2008), Huilgol-You (2005), Dean et al.
(2007), Muravleva-Muravleva (2009), Olshanskii (2009)
Drawback: use of rather slow methods.

Guiding Idea: design Newton type algorithms in combination
with multiplier approach
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Tikhonov’s Regularization

Penalized

Dual Problem
min
|q(x)|≤g

1
2a(y , y)

+ 1
2γ ‖q‖

2
L2

subject to:
a(y , v) + (q,∇v) = (f , v), for all v ∈ H1

0 (Ω)

No unique solution!

Theorem

There exists a unique solution (qγ , yγ) ∈ L2(Ω)× H1
0 (Ω) to the

penalized dual problem.
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Theorem
The regularized dual solutions qγ converge to a solution q
weakly in L2(Ω) as γ →∞. Moreover, the correspondent primal
solutions yγ converge to the original solution y strongly in
H1

0 (Ω) as γ →∞.

Regularized optimality system

a(yγ , v) + (qγ ,∇v) = (f , v), for all v ∈ H1
0 (Ω)

max (g, γ|∇(yγ)|) qγ = gγ∇(yγ), for γ > 0.

Difficulty for Newton type algorithm: max function is not
differentiable!
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Semismooth Newton method

Definition (Newton differentiability)

If there exists a neighborhood N(x∗) ⊂ S and a family of
mappings G : N(x∗)→ L(X ,Y ) such that

lim
‖h‖X→0

‖F(x∗ + h)−F(x∗)−G(x∗ + h)(h)‖Y

‖h‖X
= 0,

then F is called Newton differentiable at x∗.

Semi-smooth Newton step

xk+1 = xk −G(xk )−1F(xk ).

References: Hintermüller-Ito-Kunisch (2003), M. Ulbrich (2003).



Outline Motivation Dual based approach I Dual based approach II Conclusions

Semismooth Newton method

Definition (Newton differentiability)

If there exists a neighborhood N(x∗) ⊂ S and a family of
mappings G : N(x∗)→ L(X ,Y ) such that

lim
‖h‖X→0

‖F(x∗ + h)−F(x∗)−G(x∗ + h)(h)‖Y

‖h‖X
= 0,

then F is called Newton differentiable at x∗.

Semi-smooth Newton step

xk+1 = xk −G(xk )−1F(xk ).

References: Hintermüller-Ito-Kunisch (2003), M. Ulbrich (2003).



Outline Motivation Dual based approach I Dual based approach II Conclusions

Differentiability of the max function

The mapping y 7→ max(0, y) from Rn → Rn with

g(y) =

{
1 if y ≥ 0
0 if y < 0

as generalized derivative, is Newton differentiable.

In function space

The mapping max(0, ·) from Lq(Ω)→ Lp(Ω), with
1 ≤ p < q ≤ ∞ and

g(v)(x) =

{
1 if v(x) ≥ 0
0 if v(x) < 0

as generalized derivative, is Newton differentiable.
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Algorithm for discretized problem

No regularity gain⇒ finite dimensional analysis

Convergence

If (y0
h ,q

0
h) is sufficiently close to (yh,qh) then the iterates

(yk
h ,q

k
h ) converge superlinearly to (yh,qh) .

Globalization based on modified Jacobian:
M. Hintermüller and G. Stadler.
An infeasible primal-dual algorithm for TV-based inf-convolution-type image restoration. SIAM Journal on
Scientific Computing, 28 (1), pp. 1-23, 2006.
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Numerics

Data: Ω = (0,1)2, g = 1, µ = 0.1, γ = 103 and f = 10.
Finite differences, centered differences for the gradient

Superlinear convergence
Very accurate determination of solid-fluid zones.
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Extension to 2d Bingham flow model

Stationary model

min
y∈V

µ

∫
Ω
|E(y)|2 dx + g

∫
Ω
|E(v)| dx −

∫
Ω

f · y dx

where V := {v ∈ H1
0 : div v = 0}, E(v) = 1

2

(
∇v + (∇v)T )

Discretization (cross-grid P1)-Q0 elements

De Los R. and S. González.
Numerical simulation of two-dimensional Bingham fluid flow by semismooth Newton methods. Journal of
Computational and Applied Mathematics, 2010.
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Driven cavity flow

Data: Ω =]0,1[2, g = 2.5, µ = 1, γ = 103 and f = 0.
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Time-dependent convective problem

Regularized system

∂tyγ(t)− Div ∆yγ(t)− Div qγ(t) + (y(t) · ∇)y(t) +∇p(t) = f(t)

div yγ(t) = 0,

max
(

g
γ , ‖Eyγ(x , t)‖

)
qγ(x , t) = gEyγ(x , t), a.e. in Q, γ > 0,

+ I.C. and B.C..

Property: ‖qγ(x , t)‖ ≤ g a.e. in Q.
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Suitability of the Regularized-Multiplier Approach

Theorem

There exists a unique solution yγ ∈ L2(0,T ; V ) for the proposed
regularized system of equations, for an appropriate initial
condition y0.

Theorem

The regularized solutions (yγ ,qγ) converge to the original
solution (y,q), as γ →∞, in the sense that∫

Q
|yγ − y|2 +

∫
Q
‖∇(yγ − y)‖2 → 0, and

qγ ⇀ q weakly in L2(L2×2).
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Semi-Discretized Regularized-Multiplier System

Mh ∂
∂t
~y(t) + Ah

µ~y(t) + Qh~q(t) + Ch(~y(t))~y(t) + Bh~p(t) =~f(t)

−(Bh)>~y(t) = 0

max
(

g
γ ,N(Eh ~y(t))

)
? ~q(t) = gEh ~y(t),

+ I.C.

where Ch(~w) is the F.E.M. matrix associated with the nonlinear
form (y(t) · ∇)y(t).
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Time-Discretization

Backward differentiation formulae
When applied to y ′ = Ψ(y), the BDF2 scheme reads as:

yk+2 − 4
3

yk+1 +
1
3

yk =
2
3

k Ψk+2, for k ≤ N − 2

where yk : approximation of y at each time step k .

Property: Second order in time

BDF2: multistep method⇒ requires initialization for y0 and y1.
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Fully-Discretized Regularized-Multiplier System

BDF2 discretization: at tk+1 = (k + 1)δt , for k = 0, . . . ,N − 1:( 3
2δt M

h + Ah
µ

)
~y k+2 + Qh~q k+2 + Bh~p k+2 = F̃ k+2

−(Bh)>~y k+2 = 0

max
(

g
γ ,N(Eh ~y k+2)

)
? ~q k+2 = gEh ~y k+2.

F̃ k+2 :=~f k+2 − Ch(~̃y
k

) ~̃y
k

+ Mh ( 2
δt
~y k+1 − 1

2δt
~y k) and

~̃y := 2~y k+1 − ~yk

Here ~y 0 ⇒ I.C. and ~y 1 ⇒ implicit Euler.

G.A. Baker, V.A. Dougalis and O.A. Karakashian
On a Higher Order Accuracy Fully Discrete Galerkin Approximation to the Navier-Stokes Equations.
Mathematics of Computation., 1982.
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Flow driven cavity.

Ω := (0,1)2, plasticity threshold g = 2.5 and viscosity µ = 1.

Mesh information: h = 1
300 and δt = 0.001(≈ 0.2 ∗ (h4/5))

Figure: Vector velocity field (left) and Rigid-Plastic zones (right)
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What about mesh independence?
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Regularization

Regularized dual


min
|q(x)|≤g

1
2a(y , y)

+ γ
2‖(|q| − g)+‖2L2(Ω)

+ 1
2γ ‖q‖

2
H1

0(Ω)

subject to:
a(y , v) + (q,∇v) = (f , v), for all v ∈ H1

0 (Ω)

where γ > 0, (·)+ = max(0, ·).
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Theorem (Convergence as γ →∞)

The solutions {qγ} to the regularized dual problem converge to
the original solution q weakly in L2(Ω) as γ →∞ and

div qγ → div q strongly in H−1(Ω) as γ →∞.

Moreover, the correspondent primal solutions yγ converge to
the original solution y strongly in H1

0 (Ω) as γ →∞.

Optimality system

− µ∆yγ − div qγ = f

∇yγ −
1
γ

−→
∆qγ + max(0, γ(|qγ | − g))

qγ
|qγ |

= 0
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Nonsmooth system

Reformulation as operator equation

W (qγ , yγ) =

(
−µ∆yγ − div qγ − f

∇yγ − 1
γ

−→
∆qγ + γmax(0, |qγ | − g)

qγ

|qγ |

)
= 0.

max function is not differentiable
=⇒ semismooth Newton method
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Semismoothness

The mapping
q 7→ (|q| − g)+ q

|q|
is Newton differentiable from Lq(Ω)→ Lp(Ω), q > p with
derivative

M(q) = χA(q)
qqT

|q|
+ (|q| − g)+ 1

|q|
(id +

qqT

|q|2
).

Here χA(q) denotes the characteristic function of

A(q) = {x ∈ S : |q(x)| > ḡ}.



Outline Motivation Dual based approach I Dual based approach II Conclusions

SSN Algorithm

(i) Choose a q0 ∈ H; set k := 0
(ii) Solve(

−µ∆ −div
∇ − 1

γ

−→
∆ + γM(qk )

)(
δy
δq

)

=

(
µ∆yk + div qk + f

−∇yk + 1
γ

−→
∆qk + γmax(0, |qk | − g) qk

|qk |

)

(iii) Set qk+1 = qk + δq, yk+1 = yk + δk
y and k = k + 1. Return

to (ii).
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Convergence

Theorem (Local superlinear convergence)

The Newton derivative operator is uniformly invertible. If q0 is
sufficiently close to qγ , then the generalized Newton iteration is
well-defined and satisfies

‖qk+1 − qγ‖L2(Ω) = o(‖qk − qγ‖L2(Ω)) as k →∞.

Theorem (Global convergence)

The Newton direction is a descent direction and (with a suitable
line search rule) the method converges globally.
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Convergence behavior

Superlinear convergence

Iteration | Ak | increment rate
1 12800 0.3551 -
2 6518 1.3968 3.934147
3 11456 0.4949 0.354309
...

...
...

...
11 9932 0.001176 0.088149
12 9928 2.2032e-5 0.018734
13 9928 1.8242e-9 0.000083

Mesh independence:

1/h 10 20 30 40 50 80
# it. 15 14 13 15 14 15
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Reservoir flow

Ω =]0,1[2, g = 10, µ = 1, γ = 104, f = 300(x2− 0.5,0.5− x1)T .
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Conclusions

Based on dual based regularization and a generalized
differentiability notion, two Newton type algorithms for the
solution of viscoplastic flow were constructed

Numerical algorithm I
1 Global and local superlinear convergence in finite

dimensions
2 Determines active and inactive sets very accurately
3 Can be used for the time-dependent convective problem in

combination with BDF2
Numerical algorithm II

1 Local superlinear convergence in infinite dimensions (mesh
independence)

2 No globalization needed

Extension to other phenomena modeled by variational
inequalities of the second kind.
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Thank you!
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