An optimization based numerical approach for free boundary problems modeled by variational inequalities of the second kind

Juan Carlos De Los Reyes

Research Group on Numerical Optimization and Scientific Computing Departamento de Matemática
Escuela Politécnica Nacional de Quito, Ecuador
Free Boundary Problems, June 2012
(1) Motivation and problem statement
(2) Dual based approach I (joint with S. González)

3 Dual based approach II (joint with M. Hintermüller)

4 Concluding remarks

What is a viscoplastic (Bingham) flow?

What is a viscoplastic (Bingham) flow?

What is a viscoplastic (Bingham) flow?

Mathematical model

Boundary value problem

$$
\begin{array}{ll}
-\operatorname{Div} \sigma+(y \cdot \nabla) y+\nabla \phi=f & \text { in } \Omega \\
\operatorname{div} y=0, & \text { in } \Omega \\
y=0, & \text { on } \Gamma, \\
\sigma=2 \mu \mathcal{E} y &
\end{array}
$$

y : velocity vector field \mathcal{E} : rate of strain tensor
ϕ : pressure
f : volume force μ : viscosity coefficient

Mathematical model

Boundary value problem

$$
\begin{array}{ll}
-\operatorname{Div} \sigma+(y \cdot \nabla) y+\nabla \phi=f & \text { in } \Omega \\
\operatorname{div} y=0, & \text { in } \Omega \\
y=0, & \text { on } \Gamma, \\
\sigma=2 \mu \mathcal{E} y+g \frac{\mathcal{E} y}{|\mathcal{E} y|}, & \text { if } \mathcal{E} y \neq 0, \\
|\sigma| \leq g, & \text { if } \mathcal{E} y=0,
\end{array}
$$

y : velocity vector field
\mathcal{E} : rate of strain tensor
g : plasticity threshold
ϕ : pressure
f : volume force
μ : viscosity coefficient

Challenges in the numerical simulation

Identification of fluid zones, rigid solid motion zones and stagnation zones.

Simplified case

Pipe of cross section Ω

Simplified mathematical model

Energy minimization (Mosolov-Miasnikov (1965))

$$
\min _{y(x) \in H_{0}^{1}(\Omega)} \int_{\Omega}|\nabla y|^{2} d x+g \int_{\Omega}|\nabla y| d x-\int_{\Omega} f \cdot y d x
$$

Simplified mathematical model

Energy minimization (Mosolov-Miasnikov (1965))

$$
\min _{y(x) \in H_{0}^{1}(\Omega)} \int_{\Omega}|\nabla y|^{2} d x+g \int_{\Omega}|\nabla y| d x-\int_{\Omega} f \cdot y d x
$$

Convex nondifferentiable term!

Simplified mathematical model

Energy minimization (Mosolov-Miasnikov (1965))

$$
\min _{y(x) \in H_{0}^{1}(\Omega)} \int_{\Omega}|\nabla y|^{2} d x+g \int_{\Omega}|\nabla y| d x-\int_{\Omega} f \cdot y d x
$$

Convex nondifferentiable term!

Variational inequality (necessary and sufficient condition)

$$
a(y, v-y)+g \int_{\Omega}|\nabla v| d x-g \int_{\Omega}|\nabla y| d x \geq \int_{\Omega} f(v-y) d x, \forall v \in H_{0}^{1}(\Omega)
$$

where $a(y, w):=\int_{\Omega} \nabla y^{\top} \nabla w d x$.

Duality

Primal problem

$$
\inf _{y \in H_{0}^{\prime}(\Omega)} J(y)=\frac{1}{2} a(y, y)+g \int_{\Omega}|\nabla y| d x-\int_{\Omega} f \cdot y d x .
$$

Duality

Primal problem

$$
\inf _{y \in H_{0}^{\prime}(\Omega)} J(y)=\frac{1}{2} a(y, y)+g \int_{\Omega}|\nabla y| d x-\int_{\Omega} f \cdot y d x .
$$

\Uparrow

Dual Problem

$$
\sup _{|q(x)| \leq g}-\frac{1}{2} a(y, y)
$$

subject to:

$$
a(y, v)+(q, \nabla v)=(f, v), \text { for all } v \in H_{0}^{1}(\Omega)
$$

Some references

Primal approach: direct global regularization
Glowinski-Lions-Tremolieres (1976), Glowinski (1984), Frigaard-Nouar (2005), Dean-Glowinski-Guidoboni (2007),...

Some references

Primal approach: direct global regularization

Glowinski-Lions-Tremolieres (1976), Glowinski (1984), Frigaard-Nouar (2005), Dean-Glowinski-Guidoboni (2007),...
Drawbacks: physical properties not reflected, poor identification of free boundary, ill-conditioned for large parameter values.

Some references

Primal approach: direct global regularization

Glowinski-Lions-Tremolieres (1976), Glowinski (1984), Frigaard-Nouar (2005), Dean-Glowinski-Guidoboni (2007),...
Drawbacks: physical properties not reflected, poor identification of free boundary, ill-conditioned for large parameter values.

Multiplier approach: use of dual information

Glowinski (1984), Glowinski-Le Tallec (1989), Sánchez (1998), Roquet-Saramito (2003,2008), Huilgol-You (2005), Dean et al. (2007), Muravleva-Muravleva (2009), Olshanskii (2009)

Some references

Primal approach: direct global regularization

Glowinski-Lions-Tremolieres (1976), Glowinski (1984), Frigaard-Nouar (2005), Dean-Glowinski-Guidoboni (2007),...
Drawbacks: physical properties not reflected, poor identification of free boundary, ill-conditioned for large parameter values.

Multiplier approach: use of dual information

Glowinski (1984), Glowinski-Le Tallec (1989), Sánchez (1998), Roquet-Saramito (2003,2008), Huilgol-You (2005), Dean et al. (2007), Muravleva-Muravleva (2009), Olshanskii (2009)

Drawback: use of rather slow methods.

Some references

Primal approach: direct global regularization

Glowinski-Lions-Tremolieres (1976), Glowinski (1984), Frigaard-Nouar (2005), Dean-Glowinski-Guidoboni (2007),...
Drawbacks: physical properties not reflected, poor identification of free boundary, ill-conditioned for large parameter values.

Multiplier approach: use of dual information

Glowinski (1984), Glowinski-Le Tallec (1989), Sánchez (1998), Roquet-Saramito (2003,2008), Huilgol-You (2005), Dean et al. (2007), Muravleva-Muravleva (2009), Olshanskii (2009) Drawback: use of rather slow methods.

Guiding Idea: design Newton type algorithms in combination with multiplier approach

Tikhonov's Regularization

Dual Problem

$$
\left\{\begin{array}{l}
\min _{|q(x)| \leq g} \frac{1}{2} a(y, y) \\
\text { subject to: } \\
a(y, v)+(q, \nabla v)=(f, v), \text { for all } v \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

Tikhonov's Regularization

Dual Problem

$$
\left\{\begin{array}{l}
\min _{|q(x)| \leq g} \frac{1}{2} a(y, y) \\
\text { subject to: } \\
a(y, v)+(q, \nabla v)=(f, v), \text { for all } v \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

No unique solution!

Tikhonov's Regularization

Penalized Dual Problem

$$
\left\{\begin{array}{l}
\min _{\mid q(x) \leq g} \frac{1}{2} a(y, y)+\frac{1}{2 \gamma}\|q\|_{\mathbb{L}^{2}}^{2} \\
\text { subject to: } \\
a(y, v)+(q, \nabla v)=(f, v), \text { for all } v \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

Tikhonov's Regularization

Penalized Dual Problem

$$
\left\{\begin{array}{l}
\min _{|q(x)| \leq g} \frac{1}{2} a(y, y)+\frac{1}{2 \gamma}\|q\|_{\mathbb{L}^{2}}^{2} \\
\text { subject to: } \\
a(y, v)+(q, \nabla v)=(f, v), \text { for all } v \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

Theorem

There exists a unique solution $\left(q_{\gamma}, y_{\gamma}\right) \in \mathbb{L}^{2}(\Omega) \times H_{0}^{1}(\Omega)$ to the penalized dual problem.

Theorem

The regularized dual solutions q_{γ} converge to a solution \bar{q} weakly in $\mathbb{L}^{2}(\Omega)$ as $\gamma \rightarrow \infty$. Moreover, the correspondent primal solutions y_{γ} converge to the original solution \bar{y} strongly in $H_{0}^{1}(\Omega)$ as $\gamma \rightarrow \infty$.

Theorem

The regularized dual solutions q_{γ} converge to a solution \bar{q} weakly in $\mathbb{L}^{2}(\Omega)$ as $\gamma \rightarrow \infty$. Moreover, the correspondent primal solutions y_{γ} converge to the original solution \bar{y} strongly in $H_{0}^{1}(\Omega)$ as $\gamma \rightarrow \infty$.

Regularized optimality system

$$
\begin{aligned}
& a\left(y_{\gamma}, v\right)+\left(q_{\gamma}, \nabla v\right)=(f, v), \text { for all } v \in H_{0}^{1}(\Omega) \\
& \max \left(g, \gamma\left|\nabla\left(y_{\gamma}\right)\right|\right) q_{\gamma}=g \gamma \nabla\left(y_{\gamma}\right), \text { for } \gamma>0 .
\end{aligned}
$$

Theorem

The regularized dual solutions q_{γ} converge to a solution \bar{q} weakly in $\mathbb{L}^{2}(\Omega)$ as $\gamma \rightarrow \infty$. Moreover, the correspondent primal solutions y_{γ} converge to the original solution \bar{y} strongly in $H_{0}^{1}(\Omega)$ as $\gamma \rightarrow \infty$.

Regularized optimality system

$$
\begin{aligned}
& a\left(y_{\gamma}, v\right)+\left(q_{\gamma}, \nabla v\right)=(f, v), \text { for all } v \in H_{0}^{1}(\Omega) \\
& \max \left(g, \gamma\left|\nabla\left(y_{\gamma}\right)\right|\right) q_{\gamma}=g \gamma \nabla\left(y_{\gamma}\right), \text { for } \gamma>0 .
\end{aligned}
$$

Difficulty for Newton type algorithm: max function is not differentiable!

Semismooth Newton method

Definition (Newton differentiability)

If there exists a neighborhood $N\left(x^{*}\right) \subset S$ and a family of mappings $G: N\left(x^{*}\right) \rightarrow \mathcal{L}(X, Y)$ such that

$$
\lim _{\|h\|_{x \rightarrow 0}} \frac{\left\|\mathcal{F}\left(x^{*}+h\right)-\mathcal{F}\left(x^{*}\right)-G\left(x^{*}+h\right)(h)\right\|_{Y}}{\|h\|_{X}}=0,
$$

then \mathcal{F} is called Newton differentiable at x^{*}.

Semismooth Newton method

Definition (Newton differentiability)

If there exists a neighborhood $N\left(x^{*}\right) \subset S$ and a family of mappings $G: N\left(x^{*}\right) \rightarrow \mathcal{L}(X, Y)$ such that

$$
\lim _{\|h\|_{x \rightarrow 0}} \frac{\left\|\mathcal{F}\left(x^{*}+h\right)-\mathcal{F}\left(x^{*}\right)-G\left(x^{*}+h\right)(h)\right\|_{Y}}{\|h\|_{X}}=0,
$$

then \mathcal{F} is called Newton differentiable at x^{*}.
Semi-smooth Newton step

$$
x^{k+1}=x^{k}-G\left(x^{k}\right)^{-1} \mathcal{F}\left(x^{k}\right)
$$

References: Hintermüller-Ito-Kunisch (2003), M. Ulbrich (2003).

Differentiability of the max function

The mapping $y \mapsto \max (0, y)$ from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with

$$
g(y)=\left\{\begin{array}{l}
1 \text { if } y \geq 0 \\
0 \text { if } y<0
\end{array}\right.
$$

as generalized derivative, is Newton differentiable.

Differentiability of the max function

The mapping $y \mapsto \max (0, y)$ from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with

$$
g(y)=\left\{\begin{array}{l}
1 \text { if } y \geq 0 \\
0 \text { if } y<0
\end{array}\right.
$$

as generalized derivative, is Newton differentiable.

In function space

The mapping $\max (0, \cdot)$ from $L^{q}(\Omega) \rightarrow L^{p}(\Omega)$, with $1 \leq p<q \leq \infty$ and

$$
g(v)(x)=\left\{\begin{array}{l}
1 \text { if } v(x) \geq 0 \\
0 \text { if } v(x)<0
\end{array}\right.
$$

as generalized derivative, is Newton differentiable.

Algorithm for discretized problem

No regularity gain \Rightarrow finite dimensional analysis

Algorithm for discretized problem

No regularity gain \Rightarrow finite dimensional analysis

Convergence

If $\left(y_{h}^{0}, q_{h}^{0}\right)$ is sufficiently close to $\left(y_{h}, q_{h}\right)$ then the iterates (y_{h}^{k}, q_{h}^{k}) converge superlinearly to (y_{h}, q_{h}).

Globalization based on modified Jacobian:
\square M. Hintermüller and G. Stadler.

An infeasible primal-dual algorithm for TV-based inf-convolution-type image restoration. SIAM Journal on
Scientific Computing, 28 (1), pp. 1-23, 2006.

Numerics

- Data: $\Omega=(0,1)^{2}, g=1, \mu=0.1, \gamma=10^{3}$ and $f=10$.
- Finite differences, centered differences for the gradient

- Superlinear convergence
- Very accurate determination of solid-fluid zones.

Extension to 2d Bingham flow model

Stationary model

$$
\min _{y \in V} \mu \int_{\Omega}|\mathcal{E}(y)|^{2} d x+g \int_{\Omega}|\mathcal{E}(v)| d x-\int_{\Omega} f \cdot y d x
$$

where $V:=\left\{v \in \mathbb{H}_{0}^{1}: \operatorname{div} v=0\right\}, \mathcal{E}(v)=\frac{1}{2}\left(\nabla v+(\nabla v)^{T}\right)$

Extension to 2d Bingham flow model

Stationary model

$\min _{y \in V} \mu \int_{\Omega}|\mathcal{E}(y)|^{2} d x+g \int_{\Omega}|\mathcal{E}(v)| d x-\int_{\Omega} f \cdot y d x$
where $V:=\left\{v \in \mathbb{H}_{0}^{1}: \operatorname{div} v=0\right\}, \mathcal{E}(v)=\frac{1}{2}\left(\nabla v+(\nabla v)^{T}\right)$
Discretization (cross-grid \mathbb{P}_{1})- \mathbb{Q}_{0} elements
De Los R. and S. González.
Numerical simulation of two-dimensional Bingham fluid flow by semismooth Newton methods. Journal of Computational and Applied Mathematics, 2010.

Driven cavity flow

Data: $\Omega=] 0,1\left[^{2}, g=2.5, \mu=1, \gamma=10^{3}\right.$ and $f=0$.

Time-dependent convective problem

Regularized system
$\partial_{t} \mathbf{y}_{\gamma}(t)-\operatorname{Div} \Delta \mathbf{y}_{\gamma}(t)-\operatorname{Div} \mathbf{q}_{\gamma}(t)+(\mathbf{y}(t) \cdot \nabla) \mathbf{y}(t)+\nabla p(t)=\mathbf{f}(t)$
$\operatorname{div} \mathbf{y}_{\gamma}(t)=0$,
$\max \left(\frac{g}{\gamma},\left\|\mathcal{E} \mathbf{y}_{\gamma}(x, t)\right\|\right) \mathbf{q}_{\gamma}(x, t)=g \mathcal{E} \mathbf{y}_{\gamma}(x, t)$, a.e. in $Q, \gamma>0$,

+ I.C. and B.C..

Property: $\left\|\mathbf{q}_{\gamma}(x, t)\right\| \leq g$ a.e. in Q.

Suitability of the Regularized-Multiplier Approach

Theorem

There exists a unique solution $\mathbf{y}_{\gamma} \in L^{2}(0, T ; V)$ for the proposed regularized system of equations, for an appropriate initial condition \mathbf{y}_{0}.

Suitability of the Regularized-Multiplier Approach

Theorem

There exists a unique solution $\mathbf{y}_{\gamma} \in L^{2}(0, T ; V)$ for the proposed regularized system of equations, for an appropriate initial condition \mathbf{y}_{0}.

Theorem

The regularized solutions $\left(\mathbf{y}_{\gamma}, \mathbf{q}_{\gamma}\right)$ converge to the original solution ($\mathbf{y}, \overline{\mathbf{q}}$), as $\gamma \rightarrow \infty$, in the sense that

$$
\begin{aligned}
\int_{Q}\left|\mathbf{y}_{\gamma}-\mathbf{y}\right|^{2} & +\int_{Q}\left\|\nabla\left(\mathbf{y}_{\gamma}-\mathbf{y}\right)\right\|^{2} \rightarrow 0, \text { and } \\
\mathbf{q}_{\gamma} & \rightharpoonup \overline{\mathbf{q}} \text { weakly in } L^{2}\left(\mathbb{L}^{2 \times 2}\right) .
\end{aligned}
$$

Semi-Discretized Regularized-Multiplier System

$$
\begin{aligned}
& \mathbf{M}^{h} \frac{\partial}{\partial t} \overrightarrow{\mathbf{y}}(t)+\mathbf{A}_{\mu}^{h} \overrightarrow{\mathbf{y}}(t)+\mathbf{Q}^{h} \overrightarrow{\mathbf{q}}(t)+\mathbf{C}^{h}(\overrightarrow{\mathbf{y}}(t)) \overrightarrow{\mathbf{y}}(t)+B^{h} \overrightarrow{\boldsymbol{p}}(t)=\overrightarrow{\mathbf{f}}(t) \\
& -\left(B^{h}\right)^{\top} \overrightarrow{\mathbf{y}}(t)=0 \\
& \max \left(\frac{g}{\gamma}, N\left(\mathcal{E}^{h} \mathbf{y}(t)\right)\right) \star \mathbf{q}(t)=g \mathcal{E}^{h} \mathbf{y}(t) \\
& + \text { I.C. }
\end{aligned}
$$

where $\mathbf{C}^{h}(\overrightarrow{\mathbf{w}})$ is the F.E.M. matrix associated with the nonlinear form $(\mathbf{y}(t) \cdot \nabla) \mathbf{y}(t)$.

Time-Discretization

Backward differentiation formulae

When applied to $y^{\prime}=\Psi(y)$, the BDF2 scheme reads as:

$$
y^{k+2}-\frac{4}{3} y^{k+1}+\frac{1}{3} y^{k}=\frac{2}{3} k \psi^{k+2}, \text { for } k \leq \mathcal{N}-2
$$

where y^{k} : approximation of y at each time step k.

Time-Discretization

Backward differentiation formulae

When applied to $y^{\prime}=\Psi(y)$, the BDF2 scheme reads as:

$$
y^{k+2}-\frac{4}{3} y^{k+1}+\frac{1}{3} y^{k}=\frac{2}{3} k \psi^{k+2}, \text { for } k \leq \mathcal{N}-2
$$

where y^{k} : approximation of y at each time step k.
Property: Second order in time

Time-Discretization

Backward differentiation formulae

When applied to $y^{\prime}=\Psi(y)$, the BDF2 scheme reads as:

$$
y^{k+2}-\frac{4}{3} y^{k+1}+\frac{1}{3} y^{k}=\frac{2}{3} k \psi^{k+2}, \text { for } k \leq \mathcal{N}-2
$$

where y^{k} : approximation of y at each time step k.
Property: Second order in time
BDF2: multistep method \Rightarrow requires initialization for y^{0} and y^{1}.

Fully-Discretized Regularized-Multiplier System

BDF2 discretization: at $t_{k+1}=(k+1) \delta t$, for $k=0, \ldots, \mathcal{N}-1$:

$$
\begin{aligned}
& \left(\frac{3}{2 \delta t} \mathbf{M}^{h}+\mathbf{A}_{\mu}^{h}\right) \overrightarrow{\mathbf{y}}^{k+2}+\mathbf{Q}^{h} \overrightarrow{\mathbf{q}}^{k+2}+B^{h} \vec{p}^{k+2}=\widetilde{\mathbf{F}}^{k+2} \\
& -\left(B^{h}\right)^{\top} \overrightarrow{\mathbf{y}}^{k+2}=0 \\
& \max \left(\frac{g}{\gamma}, N\left(\mathcal{E}^{h} \mathbf{y}^{\overrightarrow{k+2}}\right)\right) \star \mathbf{q}^{\overrightarrow{k+2}}=g \mathcal{E}^{h} \mathbf{y}^{\overrightarrow{k+2}} .
\end{aligned}
$$

$\widetilde{\mathbf{F}}^{k+2}:=\overrightarrow{\mathbf{f}}^{k+2}-\mathbf{C}^{h}\left(\overrightarrow{\tilde{\mathbf{y}}}^{k}\right) \overrightarrow{\tilde{\mathbf{y}}}^{k}+\mathbf{M}^{h}\left(\frac{2}{\delta t} \overrightarrow{\mathbf{y}}^{k+1}-\frac{1}{2 \delta t} \overrightarrow{\boldsymbol{y}}^{k}\right)$ and
$\overrightarrow{\tilde{\mathbf{y}}}:=2 \overrightarrow{\mathbf{y}}^{k+1}-\overrightarrow{\mathbf{y}}^{k}$
Here $\overrightarrow{\mathbf{y}}^{0} \Rightarrow$ I.C. and $\overrightarrow{\mathbf{y}}^{1} \Rightarrow$ implicit Euler.
\square G.A. Baker, V.A. Dougalis and O.A. Karakashian

On a Higher Order Accuracy Fully Discrete Galerkin Approximation to the Navier-Stokes Equations. Mathematics of Computation., 1982.

Flow driven cavity.

$\Omega:=(0,1)^{2}$, plasticity threshold $g=2.5$ and viscosity $\mu=1$.

Flow driven cavity.

$\Omega:=(0,1)^{2}$, plasticity threshold $g=2.5$ and viscosity $\mu=1$.
Mesh information: $h=\frac{1}{300}$ and $\delta t=0.001\left(\approx 0.2 *\left(h^{4 / 5}\right)\right)$

Figure: Vector velocity field (left) and Rigid-Plastic zones (right)

What about mesh independence?

Regularization

Regularized dual

$\left\{\min _{|q(x)| \leq g} \frac{1}{2} a(y, y)\right.$
subject to:
$a(y, v)+(q, \nabla v)=(f, v)$, for all $v \in H_{0}^{1}(\Omega)$

Regularization

Regularized dual

$$
\left\{\begin{array}{l}
\min \frac{1}{2} a(y, y)+\frac{\gamma}{2}\left\|(|q|-g)^{+}\right\|_{L^{2}(\Omega)}^{2} \\
\text { subject to: } \\
a(y, v)+(q, \nabla v)=(f, v), \text { for all } v \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

where $\gamma>0,(\cdot)^{+}=\max (0, \cdot)$.

Regularization

Regularized dual

$\int \min \frac{1}{2} a(y, y)+\frac{\gamma}{2}\left\|(|q|-g)^{+}\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2 \gamma}\|q\|_{\mathbb{H}_{0}(\Omega)}^{2}$ subject to: $a(y, v)+(q, \nabla v)=(f, v)$, for all $v \in H_{0}^{1}(\Omega)$
where $\gamma>0,(\cdot)^{+}=\max (0, \cdot)$.

Theorem (Convergence as $\gamma \rightarrow \infty$)

The solutions $\left\{q_{\gamma}\right\}$ to the regularized dual problem converge to the original solution q weakly in $\mathbb{L}^{2}(\Omega)$ as $\gamma \rightarrow \infty$ and

$$
\operatorname{div} q_{\gamma} \rightarrow \operatorname{div} q \text { strongly in } \mathbb{H}^{-1}(\Omega) \text { as } \gamma \rightarrow \infty
$$

Moreover, the correspondent primal solutions y_{γ} converge to the original solution \bar{y} strongly in $H_{0}^{1}(\Omega)$ as $\gamma \rightarrow \infty$.

Theorem (Convergence as $\gamma \rightarrow \infty$)

The solutions $\left\{q_{\gamma}\right\}$ to the regularized dual problem converge to the original solution q weakly in $\mathbb{L}^{2}(\Omega)$ as $\gamma \rightarrow \infty$ and

$$
\text { div } q_{\gamma} \rightarrow \text { div } q \text { strongly in } \mathbb{H}^{-1}(\Omega) \text { as } \gamma \rightarrow \infty .
$$

Moreover, the correspondent primal solutions y_{γ} converge to the original solution \bar{y} strongly in $H_{0}^{1}(\Omega)$ as $\gamma \rightarrow \infty$.

Optimality system

$$
\begin{aligned}
& -\mu \Delta y_{\gamma}-\operatorname{div} q_{\gamma}=f \\
& \nabla y_{\gamma}-\frac{1}{\gamma} \vec{\Delta} q_{\gamma}+\max \left(0, \gamma\left(\left|q_{\gamma}\right|-g\right)\right) \frac{q_{\gamma}}{\left|q_{\gamma}\right|}=0
\end{aligned}
$$

Nonsmooth system

Reformulation as operator equation

$$
W\left(q_{\gamma}, y_{\gamma}\right)=\binom{-\mu \Delta y_{\gamma}-\operatorname{div} q_{\gamma}-f}{\nabla y_{\gamma}-\frac{1}{\gamma} \vec{\Delta} q_{\gamma}+\gamma \max \left(0,\left|q_{\gamma}\right|-g\right) \frac{q_{\gamma}}{\mid q_{\gamma}}}=0 .
$$

Nonsmooth system

Reformulation as operator equation

$$
W\left(q_{\gamma}, y_{\gamma}\right)=\binom{-\mu \Delta y_{\gamma}-\operatorname{div} q_{\gamma}-f}{\nabla y_{\gamma}-\frac{1}{\gamma} \vec{\Delta} q_{\gamma}+\gamma \max \left(0,\left|q_{\gamma}\right|-g\right) \frac{q_{\gamma}}{\mid q_{\gamma}}}=0 .
$$

max function is not differentiable \Longrightarrow semismooth Newton method

Semismoothness

The mapping

$$
q \mapsto(|q|-g)^{+} \frac{q}{|q|}
$$

is Newton differentiable from $\mathbb{L}^{q}(\Omega) \rightarrow \mathbb{L}^{p}(\Omega), q>p$ with derivative

$$
\mathcal{M}(q)=\chi_{A}(q) \frac{q q^{T}}{|q|}+(|q|-g)^{+} \frac{1}{|q|}\left(i d+\frac{q q^{T}}{|q|^{2}}\right)
$$

Here $\chi_{A}(q)$ denotes the characteristic function of

$$
\mathcal{A}(q)=\{x \in S:|q(x)|>\bar{g}\} .
$$

SSN Algorithm

(i) Choose a $q^{0} \in H$; set $k:=0$
(ii) Solve

$$
\begin{aligned}
& \left(\begin{array}{cc}
-\mu \Delta & -\operatorname{div} \\
\nabla & -\frac{1}{\gamma} \vec{\Delta}+\gamma \mathcal{M}\left(q_{k}\right)
\end{array}\right)\binom{\delta_{y}}{\delta_{q}} \\
& \\
& \quad=\left(\begin{array}{l}
-\nabla y_{k}+\frac{1}{\gamma} \stackrel{\mu \Delta y_{k}+\operatorname{div} q_{k}+f}{ } q_{k}+\gamma \max \left(0,\left|q_{k}\right|-g\right) \frac{q_{k}}{\left|q_{k}\right|}
\end{array}\right)
\end{aligned}
$$

(iii) Set $q^{k+1}=q^{k}+\delta_{q}, y^{k+1}=y^{k}+\delta_{y}^{k}$ and $k=k+1$. Return to (ii).

Convergence

Theorem (Local superlinear convergence)

The Newton derivative operator is uniformly invertible. If q^{0} is sufficiently close to q_{γ}, then the generalized Newton iteration is well-defined and satisfies

$$
\left\|q^{k+1}-q_{\gamma}\right\|_{\mathbb{L}^{2}(\Omega)}=o\left(\left\|q^{k}-q_{\gamma}\right\|_{\mathbb{L}^{2}(\Omega)}\right) \text { as } k \rightarrow \infty
$$

Convergence

Theorem (Local superlinear convergence)

The Newton derivative operator is uniformly invertible. If q^{0} is sufficiently close to q_{γ}, then the generalized Newton iteration is well-defined and satisfies

$$
\left\|q^{k+1}-q_{\gamma}\right\|_{\mathbb{L}^{2}(\Omega)}=o\left(\left\|q^{k}-q_{\gamma}\right\|_{\mathbb{L}^{2}(\Omega)}\right) \text { as } k \rightarrow \infty .
$$

Theorem (Global convergence)

The Newton direction is a descent direction and (with a suitable line search rule) the method converges globally.

Convergence behavior

Superlinear convergence

Iteration	$\left\|\mathcal{A}_{k}\right\|$	increment	rate
1	12800	0.3551	-
2	6518	1.3968	3.934147
3	11456	0.4949	0.354309
\vdots	\vdots	\vdots	\vdots
11	9932	0.001176	0.088149
12	9928	$2.2032 \mathrm{e}-5$	0.018734
13	9928	$1.8242 \mathrm{e}-9$	0.000083

Convergence behavior

Superlinear convergence

Iteration	$\left\|\mathcal{A}_{k}\right\|$	increment	rate
1	12800	0.3551	-
2	6518	1.3968	3.934147
3	11456	0.4949	0.354309
\vdots	\vdots	\vdots	\vdots
11	9932	0.001176	0.088149
12	9928	$2.2032 \mathrm{e}-5$	0.018734
13	9928	$1.8242 \mathrm{e}-9$	0.000083

Mesh independence:

$1 / h$	10	20	30	40	50	80
$\#$ it.	15	14	13	15	14	15

Reservoir flow

$$
\Omega=] 0,1\left[^{2}, g=10, \mu=1, \gamma=10^{4}, f=300\left(x_{2}-0.5,0.5-x_{1}\right)^{T}\right. \text {. }
$$

Conclusions

- Based on dual based regularization and a generalized differentiability notion, two Newton type algorithms for the solution of viscoplastic flow were constructed

Conclusions

- Based on dual based regularization and a generalized differentiability notion, two Newton type algorithms for the solution of viscoplastic flow were constructed
- Numerical algorithm I
- Global and local superlinear convergence in finite dimensions
(3) Determines active and inactive sets very accurately
(3) Can be used for the time-dependent convective problem in combination with BDF2

Conclusions

- Based on dual based regularization and a generalized differentiability notion, two Newton type algorithms for the solution of viscoplastic flow were constructed
- Numerical algorithm I
- Global and local superlinear convergence in finite dimensions
(2) Determines active and inactive sets very accurately
(3) Can be used for the time-dependent convective problem in combination with BDF2
- Numerical algorithm II
(Local superlinear convergence in infinite dimensions (mesh independence)
(2) No globalization needed

Conclusions

- Based on dual based regularization and a generalized differentiability notion, two Newton type algorithms for the solution of viscoplastic flow were constructed
- Numerical algorithm I
- Global and local superlinear convergence in finite dimensions
(2) Determines active and inactive sets very accurately
(3) Can be used for the time-dependent convective problem in combination with BDF2
- Numerical algorithm II
(Local superlinear convergence in infinite dimensions (mesh independence)
(2) No globalization needed
- Extension to other phenomena modeled by variational inequalities of the second kind.

Thank you!

