A nonstandard phase field system of viscous Cahn-Hilliard type

Pierluigi Colli

FBP 2012

Frauenchiemsee, 11-15 June 2012

Session on "Allen-Cahn and Cahn-Hilliard models"

Pierluigi Colli (Università di Pavia) pierluigi.colli@unipv.it A nonstandard phase field system of viscous Cahn-Hilliard type

Joint work with

- Gianni Gilardi (Pavia)
- Paolo Podio-Guidugli (Roma 2)
- Jürgen Sprekels (WIAS Berlin)

Joint work with

- Gianni Gilardi (Pavia)
- Paolo Podio-Guidugli (Roma 2)
- Jürgen Sprekels (WIAS Berlin)

The Cahn-Hilliard system

$$\partial_t
ho - \kappa \Delta \mu = 0 \;, \quad \mu = -\Delta
ho + f'(
ho)$$

- aims to describe diffusion-driven phase-segregation processes in a two-phase material body;
- ρ, with ρ(x, t) ∈ [0, 1], is an order-parameter field interpreted as the scaled volumetric density of one of the two phases;
 κ > 0 is a mobility coefficient;
- μ is the *chemical potential*; *f* denotes a double-well potential with *f'* confined in (0, 1) and singular at endpoints.

The Cahn-Hilliard equation

 $\partial_t \rho = \kappa \Delta (-\Delta \rho + f'(\rho))$ \downarrow generalization by Fried and Gurtin

balance of contact and distance microforces

 $\operatorname{div} \boldsymbol{\xi} + \pi + \gamma = \mathbf{0}$

where ξ denotes the *microscopic stress* vector and the distance microforce is split in an internal part π and an external part γ;
balance law for the order parameter

 $\partial_t \rho = -\operatorname{div} \mathbf{h} + \sigma$

where the pair (\mathbf{h}, σ) is the *inflow* of ρ ;

dissipation inequality that accomodates diffusion

 $\partial_t \psi + (\pi - \mu) \partial_t \rho - \boldsymbol{\xi} \cdot \nabla(\partial_t \rho) + \mathbf{h} \cdot \nabla \mu \leq 0$

for the *free energy density* ψ .

Set of constitutive prescriptions is acceptable

$$\begin{split} \psi &= \widehat{\psi}(\rho, \nabla \rho), \quad \widehat{\pi}(\rho, \nabla \rho, \mu) = \mu - \partial_{\rho} \widehat{\psi}(\rho, \nabla \rho), \\ \widehat{\xi}(\rho, \nabla \rho) &= \partial_{\nabla \rho} \widehat{\psi}(\rho, \nabla \rho), \end{split}$$

together with $\mathbf{h} = -\mathbf{M}\nabla\mu$, where $\mathbf{M} = \widehat{\mathbf{M}}(\rho, \nabla\rho, \mu, \nabla\mu)$; the tensor-valued *mobility mapping* **M** must satisfy the inequality

 $\nabla \mu \cdot \widehat{\mathbf{M}}(
ho,
abla
ho, \mu,
abla \mu)
abla \mu \geq 0$. Then

$$\partial_t
ho = {\it div} \left({\sf M}
abla \left(\partial_
ho \widehat{\psi}(
ho,
abla
ho) - {\it div} \left(\partial_{
abla
ho} \widehat{\psi}(
ho,
abla
ho)
ight) - \gamma
ight)
ight) + \sigma$$

the Cahn-Hilliard equation is arrived at by taking

$$\widehat{\psi}(\rho, \nabla \rho) = f(\rho) + \frac{1}{2} |\nabla \rho|^2, \qquad \mathbf{M} = \kappa \mathbf{1}$$

both the microforce γ and the source σ identically pull.

Pierluigi Colli (Università di Pavia) pierluigi.colli@unipv.it

A nonstandard phase field system of viscous Cahn-Hilliard type

Podio-Guidugli proposed a modified version

• of Fried & Gurtin's derivation, where the order-parameter balance and dissipation inequality are both dropped and replaced by the *microenergy balance*

$$\partial_t \varepsilon = \mathbf{e} + \mathbf{w}, \quad \mathbf{e} := -\operatorname{div} \bar{\mathbf{h}} + \bar{\sigma}, \quad \mathbf{w} := -\pi \,\partial_t \rho + \boldsymbol{\xi} \cdot \nabla(\partial_t \rho)$$

and the microentropy imbalance

$$\partial_t \eta \ge -\operatorname{div} \mathbf{h} + \sigma, \quad \mathbf{h} := \mu \bar{\mathbf{h}}, \quad \sigma := \mu \, \bar{\sigma}.$$

 salient new feature of this approach → the microentropy inflow (h, σ) is deemed proportional to the microenergy inflow (h, σ) through the chemical potential μ → a positive field.

イロト 不得 トイヨト イヨト 二日

Consistently, the free energy

is defined to be

$$\psi := \varepsilon - \mu^{-1} \eta$$

with the chemical potential playing the same role as *coldness* in the deduction of the heat equation.

• Just as absolute temperature can be seen as a macroscopic measure of microscopic *agitation*, its inverse - the coldness - measures microscopic *quiet*;

・ 同 ト ・ 三 ト ・ 三 ト

Consistently, the free energy

is defined to be

$$\psi := \varepsilon - \mu^{-1} \eta$$

with the chemical potential playing the same role as *coldness* in the deduction of the heat equation.

- Just as absolute temperature can be seen as a macroscopic measure of microscopic *agitation*, its inverse the coldness measures microscopic *quiet*;
- likewise, the chemical potential can be seen as a macroscopic measure of microscopic *organization*.
- Combination of previous positions gives

 $\partial_t \psi \leq -\eta \partial_t (\mu^{-1}) + \mu^{-1} \bar{\mathbf{h}} \cdot \nabla \mu - \pi \, \partial_t \rho + \boldsymbol{\xi} \cdot \nabla (\partial_t \rho),$

an inequality that replaces the F&G one in restricting à la Coleman & Noll the possible constitutive choices.

Pierluigi Colli (Università di Pavia) pierluigi.colli@unipv.it

A nonstandard phase field system of viscous Cahn-Hilliard type

What we get

- take all of the constitutive mappings delivering π, ξ, η , and $\bar{\mathbf{h}}$ depending on the list $\rho, \nabla \rho, \mu, \nabla \mu$;
- choose $\psi = \widehat{\psi}(\rho, \nabla \rho, \mu) = -\mu g(\rho) + f(\rho) + \frac{1}{2} |\nabla \rho|^2$ with g nonnegative function on the domain of F

What we get

- take all of the constitutive mappings delivering π, ξ, η , and $\bar{\mathbf{h}}$ depending on the list $\rho, \nabla \rho, \mu, \nabla \mu$;
- choose $\psi = \widehat{\psi}(\rho, \nabla \rho, \mu) = -\mu g(\rho) + f(\rho) + \frac{1}{2} |\nabla \rho|^2$ with g nonnegative function on the domain of F
- compatibility yields

$$\widehat{\pi}(\rho, \nabla \rho, \partial_t \rho, \mu) = \mu g'(\rho) - f'(\rho),$$
$$\widehat{\xi}(\rho, \nabla \rho, \partial_t \rho, \mu) = \nabla \rho, \qquad \widehat{\eta}(\rho, \nabla \rho, \partial_t \rho, \mu) = -\mu^2 g(\rho),$$

together with

$$\widehat{\overline{\mathbf{h}}}(\rho,\nabla\rho,\mu,\nabla\mu) = -\widehat{\mathbf{H}}(\rho,\nabla\rho,\mu,\nabla\mu)\nabla\mu, \quad \widehat{\mathbf{H}} = \kappa \mathbf{1}.$$

• constant and isotropic mobility $\kappa > 0$; assume that the external distance microforce γ and the source $\overline{\sigma}$ are null.

・同・ ・ヨ・ ・ヨ・ ・ヨ

microforce balance $div(\nabla \rho) + \mu - f'(\rho) = 0$ energy balance $2\rho \partial_t \mu + \mu \partial_t \rho - \kappa \Delta \mu = 0$ complemented with the homogeneous Neumann BC $\partial_n \rho = \partial_n \mu = 0$ on the body's boundary and with the IC $\rho|_{t=0} = \rho_0$ bounded away from 0 and 1, $\mu|_{t=0} = \mu_0 \ge 0$. First eq. = same 'static' relation between μ and ρ as before. Instead, second eq. is rather different for a number of reasons:

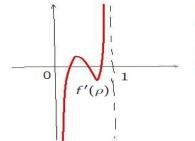
- ▶ is nonlinear (whereas $\partial_t \rho \kappa \Delta \mu = 0$ is a linear equation);
- \blacktriangleright the time derivatives of ρ and μ are both present;
- nonconstant factors in front of both $\partial_t \mu$ and $\partial_t \rho$.

Sources of difficulties

the microforce balance is the energy balance reads

$$\boxed{-\Delta \rho + f'(\rho) = g'(\rho)\mu}$$
$$2g(\rho)\mu_t + \mu g'(\rho)\rho_t - \kappa \Delta \mu = 0$$

- solution to the initial/boundary-value problem?
- is the density parameter ρ between 0 and 1?
- the chemical potential μ non-negative?



 $\kappa > 0$ mobility coefficient, ($\kappa = 1$ in the sequel) and f = double well potential f' singular at 0 and 1

A nonstandard phase field system of viscous Cahn-Hilliard type

Problem statement

Let T > 0, $\Omega \subset \mathbb{R}^3$ be bounded, open, with sufficiently smooth boundary Γ ; $Q := \Omega \times (0, T)$, $\Sigma := \Gamma \times (0, T)$. We consider:

$$2g(\rho) \mu_t + \mu g'(\rho) \rho_t - \Delta \mu = 0 \quad \text{in } Q \tag{1}$$

$$-\Delta \rho + f'(\rho) = \mu g'(\rho), \quad \text{in } Q \tag{2}$$

$$\frac{\partial \mu}{\partial n} = \frac{\partial \rho}{\partial n} = 0 \quad \text{on } \Sigma$$
(3)

$$\mu(0) = \mu_0 \ge 0, \quad \rho(0) = \rho_0 \in (0, 1) \quad \text{in } \Omega$$
 (4)

Here:

- ▶ ρ (order parameter, $\in [0,1]$) volumetric density of one of the phases
- μ chemical potential

Regularizing?

Let T > 0, $\Omega \subset \mathbb{R}^3$ be bounded, open, with sufficiently smooth boundary Γ ; $Q := \Omega \times (0, T)$, $\Sigma := \Gamma \times (0, T)$. We consider:

$$(\varepsilon + 2 g(\rho))\mu_t + \mu g'(\rho) \rho_t - \Delta \mu = 0 \quad \text{in } Q$$

$$\frac{\delta \rho_t - \Delta \rho + f'(\rho) = g'(\mu) \quad \text{in } Q$$

$$\frac{\partial \mu}{\partial n} = \frac{\partial \rho}{\partial n} = 0 \quad \text{on } \Sigma$$

$$\mu(0) = \mu_0 \ge 0, \quad \rho(0) = \rho_0 \in (0, 1) \quad \text{in } \Omega$$

Here:

▶ $\varepsilon > 0$, $\delta > 0$ − regularization parameters

Why a fixed $\delta > 0$? Case $\mathbf{g}(\rho) = \rho$:

take $\rho_0=1/2$, μ_0 constant, and look for a space-independent solution. Then equations reduce to

$$\frac{d}{dt}\left((\varepsilon+2\rho)^{1/2}\,\mu\right)=0\,,\qquad f'(\rho)=\mu.$$

Hence,

$$\mu = z_0 (\varepsilon + 2\rho)^{-1/2}$$
 and $f'(\rho) = z_0 (\varepsilon + 2\rho)^{-1/2}$.

Pierluigi Colli (Università di Pavia) pierluigi.colli@unipv.it A nonstandard phase field system of viscous Cahn-Hilliard type

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Why a fixed $\delta > 0$? Case $\mathbf{g}(\rho) = \rho$:

take $\rho_0 = 1/2$, μ_0 constant, and look for a space-independent solution. Then equations reduce to

$$\frac{d}{dt}\left((\varepsilon+2\rho)^{1/2}\,\mu\right)=0\,,\qquad f'(\rho)=\mu.$$

Hence,

$$\mu = z_0 (\varepsilon + 2\rho)^{-1/2}$$
 and $f'(\rho) = z_0 (\varepsilon + 2\rho)^{-1/2}$.

Now, choose the potential f such that

$$f'(r) = z_0 \, (\varepsilon + 2 \, r)^{-1/2}$$
 for $r \in I := [1/3, 2/3],$

and pick any smooth/irregular $\rho: [0, T] \rightarrow I$ with $\rho(0) = 1/2$.

- We then get infinitely many smooth/irregular solutions !!!
- ► No uniqueness and no control on time regularity !!!

Assumptions

We introduce the spaces $H = L^2(\Omega)$, $V = H^1(\Omega)$, $W = \left\{ w \in H^2(\Omega); \frac{\partial w}{\partial n} = 0 \text{ on } \Gamma \right\}.$

and postulate that

(A1)
$$f = f_1 + f_2$$
; $f_1 \in C^1(0, 1)$ is convex;
 $\lim_{r \searrow 0} f'_1(r) = -\infty$ and $\lim_{r \nearrow 1} f'_1(r) = +\infty$;
 $g, f_2 \in C^2([0, 1]);$ $g(r) \ge 0$ for all $r \in [0, 1]$;
(A2) $\mu_0 \in V$; $\mu_0 \ge 0$ a.e. in Ω ;
 $\rho_0 \in W$; $0 < \rho_0 < 1$ in Ω ; $f'(\rho_0) \in H$
($\implies \rho_0 \in C^0(\overline{\Omega}), f(\rho_0) \in H$).

(4月) (日) (日) 日

Existence and uniqueness

THEOREM 1: Let **(A1)**, **(A2)** be satisfied. Then (1)–(4) has a solution (μ, ρ) with:

 $\mu \in H^{1}(0, T; H) \cap L^{2}(0, T; W);$ $\rho \in W^{1,\infty}(0, T; H) \cap H^{1}(0, T; V) \cap L^{\infty}(0, T; W);$ $\mu \geq 0 \quad \text{a.e. in } Q; \quad 0 < \rho < 1 \quad \text{a.e. in } Q;$ $f'(\rho) \in L^{\infty}(0, T; H).$

- 4 同 1 4 目 1 4 目 1 9 9 9 9 9

THEOREM 1: Let **(A1)**, **(A2)** be satisfied. Then (1)–(4) has a solution (μ, ρ) with:

$$\begin{split} \mu &\in H^{1}(0, T; H) \cap L^{2}(0, T; W); \\ \rho &\in W^{1,\infty}(0, T; H) \cap H^{1}(0, T; V) \cap L^{\infty}(0, T; W); \\ \mu &\geq 0 \quad \text{a.e. in } Q; \quad 0 < \rho < 1 \quad \text{a.e. in } Q; \\ f'(\rho) &\in L^{\infty}(0, T; H). \end{split}$$

THEOREM 2: Let, in addition, (A3) $\mu_0 \in L^{\infty}(\Omega)$; $\inf_{x \in \Omega} \rho_0(x) > 0$; $\sup_{x \in \Omega} \rho_0(x) < 1$. Then the solution from **Theorem 1** is unique, and we have:

$$\mu \in L^\infty(Q)$$
; $\inf_Q \rho > 0$; $\sup_Q \rho < 1$.

THEOREM 3: Under the assumptions of **Theorem 2**, the ω -limit

$$\begin{split} \omega(\mu,\rho) &= \{(\mu_{\omega},\rho_{\omega}) : (\mu(t_n),\rho(t_n)) \to (\mu_{\omega},\rho_{\omega}) \\ &\text{weakly in } H \times V \text{ for a sequence } t_n \nearrow +\infty \} \end{split}$$

is nonempty, as well as compact and connected in the topology of $H \times V$.

イロト 不得 とくほ とくほ とうほう

THEOREM 3: Under the assumptions of **Theorem 2**, the ω -limit

$$\begin{split} \omega(\mu,\rho) &= \{(\mu_{\omega},\rho_{\omega}) : (\mu(t_n),\rho(t_n)) \to (\mu_{\omega},\rho_{\omega}) \\ & \text{weakly in } H \times V \text{ for a sequence } t_n \nearrow +\infty \} \end{split}$$

is nonempty, as well as compact and connected in the topology of $H \times V$. Moreover, every element $(\mu_{\omega}, \rho_{\omega}) \in \omega(\mu, \rho)$ is a "**steady state**"', i.e., μ_{ω} is a nonnegative constant, and ρ_{ω} satisfies

$$\rho_{\omega} \in W, \quad 0 < \rho_{\omega} < 1, \quad f'(\rho_{\omega}) \in H,$$

and

$$-\Delta
ho_\omega + f'(
ho_\omega) \,=\, \mu_\omega g'(
ho_\omega)$$
 a.e. in Ω .

- 4 同 2 4 日 2 4 日 2 - 日

General line of argumentation:

Pierluigi Colli (Università di Pavia) pierluigi.colli@unipv.it A nonstandard phase field system of viscous Cahn-Hilliard type

▲□ ▶ ▲ □ ▶ ▲ □ ▶

General line of argumentation:

1. Approximation: Introduce a delay in (2):

$$\delta \rho_t - \Delta \rho + f'(\rho) = (\mathcal{T}_\tau \mu) g'(\rho),$$

where, for $\tau \in (0, T)$,

$$(\mathcal{T}_{ au}\,\mu)(t) = \left\{egin{array}{cc} \mu(t- au) &, & t\geq au\ \mu_0 &, & 0\leq t< au \end{array}
ight.$$

For every $\tau > 0$, one obtains a unique solution $(\mu^{\tau}, \rho^{\tau})$ to (1), (2)_{τ}, (3), (4) with the regularity as in **Theorem 1**.

General line of argumentation:

1. Approximation: Introduce a delay in (2):

$$\delta \rho_t - \Delta \rho + f'(\rho) = (\mathcal{T}_\tau \mu) g'(\rho),$$

where, for $\tau \in (0, T)$,

$$(\mathcal{T}_{ au}\,\mu)(t) = \left\{egin{array}{cc} \mu(t- au) &, & t\geq au\ \mu_0 &, & 0\leq t< au \end{array}
ight.$$

For every $\tau > 0$, one obtains a unique solution $(\mu^{\tau}, \rho^{\tau})$ to (1), (2)_{τ}, (3), (4) with the regularity as in **Theorem 1**. **2. A priori estimates:** See below.

General line of argumentation:

1. Approximation: Introduce a delay in (2):

$$\delta \rho_t - \Delta \rho + f'(\rho) = (\mathcal{T}_\tau \mu) g'(\rho),$$

where, for $au \in (0, T)$,

$$(\mathcal{T}_{ au}\,\mu)(t) = \left\{egin{array}{cc} \mu(t- au) &, & t\geq au\ \mu_0 &, & 0\leq t< au \end{array}
ight.$$

For every $\tau > 0$, one obtains a unique solution $(\mu^{\tau}, \rho^{\tau})$ to (1), (2)_{τ}, (3), (4) with the regularity as in **Theorem 1**. **2. A priori estimates:** See below.

3. Passage to the limit as $\tau \searrow 0$: by different compactness results and monotonicity arguments (for $f'_1(\rho)$)

A priori estimates (au omitted)

• Test (1) by μ and use the identity

 $(\varepsilon \,\mu_t + 2 \,g(\rho) \,\mu_t + \mu \,g'(\rho) \,\rho_t) \,\mu = \left(\left(\frac{\varepsilon}{2} + g(\rho) \right) \mu^2 \right)_t$ $\implies \int_{\Omega} \left(\frac{\varepsilon}{2} \,\mu^2 + g(\rho) \,\mu^2 \right)(t) \,dx + \int_{0}^t \int_{\Omega} |\nabla \mu|^2 \,dx \,ds = C_0.$

Pierluigi Colli (Università di Pavia) pierluigi.colli@unipv.it A nonstandard phase field system of viscous Cahn-Hilliard type

A priori estimates (au omitted)

• Test (1) by μ and use the identity

 $(\varepsilon \mu_t + 2g(\rho)\mu_t + \mu g'(\rho)\rho_t)\mu = \left(\left(\frac{\varepsilon}{2} + g(\rho)\right)\mu^2\right)_t$ $\implies \int_{\Omega} \left(\frac{\varepsilon}{2}\mu^2 + g(\rho)\mu^2\right)(t)dx + \int_{0}^t \int_{\Omega} |\nabla \mu|^2 dx ds = C_0.$

▶ Remark: Testing by $-\mu^- = \max\{-\mu, 0\}$ leads to $\mu^- = 0$, hence $\mu \ge 0$.

A priori estimates (au omitted)

 \blacktriangleright Test (1) by μ and use the identity

 $\left(\varepsilon\,\mu_t\,+\,2\,g(\rho)\,\mu_t\,+\,\mu\,g'(\rho)\,\rho_t\right)\mu\,=\,\left(\left(\frac{\varepsilon}{2}\,+\,g(\rho)\right)\mu^2\right)_t$

$$\int_{\Omega} \left(\frac{\varepsilon}{2} \mu^2 + g(\rho) \mu^2 \right) (t) dx + \int_{0}^{t} \int_{\Omega} |\nabla \mu|^2 dx ds = C_0.$$

- ▶ Remark: Testing by $-\mu^- = \max\{-\mu, 0\}$ leads to $\mu^- = 0$, hence $\mu \ge 0$.
- Testing of (2) by ρ_t and by $-\Delta \rho$ yields:

 $\|\rho\|_{H^1(0,T;H)\cap L^2(0,T;W)} + \|f_1'(\rho)\|_{L^2(Q)} \leq C.$

A nonstandard phase field system of viscous Cahn-Hilliard type

▲母 ◆ ● ◆ ● ◆ ● ◆ ○ ◆ ○ ◆ ○ ◆

A priori estimates II

• Differentiate (2) with respect to t and test by $\rho_t \implies$

$$\begin{split} &\frac{\delta}{2} \int\limits_{\Omega} |\rho_t(t)|^2 \, dx \, + \, \int\limits_{0}^t \int\limits_{\Omega} |\nabla \rho_t|^2 \, dx \, ds \\ &\leq \int\limits_{0}^t \int\limits_{\Omega} C(1+|\mathcal{T}_\tau \mu|) |\rho_t|^2 \, dx \, ds \, + \, \int\limits_{0}^t \int\limits_{\Omega} \partial_t(\mathcal{T}_\tau \mu) \, g'(\rho) \, \rho_t \, dx \, ds \, . \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

A priori estimates II

• Differentiate (2) with respect to t and test by $\rho_t \implies$

$$\begin{split} &\frac{\delta}{2} \int\limits_{\Omega} |\rho_t(t)|^2 \, dx + \int\limits_{0}^t \int\limits_{\Omega} |\nabla \rho_t|^2 \, dx \, ds \\ &\leq \int\limits_{0}^t \int\limits_{\Omega} C(1+|\mathcal{T}_\tau \mu|) |\rho_t|^2 \, dx \, ds + \int\limits_{0}^t \int\limits_{\Omega} \partial_t (\mathcal{T}_\tau \mu) \, g'(\rho) \, \rho_t \, dx \, ds \, . \end{split}$$

Now, substitute μ_t = (ε + 2g(ρ))⁻¹(Δμ − μg'(ρ) ρ_t), integrate by parts, and estimate the resulting terms with the help of Hölder, Gronwall, ... obtaining

$$\|\rho_t\|_{L^{\infty}(0,T;H)} + \|\rho\|_{H^1(0,T;V)} \leq C.$$

A priori estimates III

• Test (2) by $-\Delta \rho$ and by $f_1'(\rho) \implies$

 $\|\rho\|_{L^{\infty}(0,T;W)} + \|f'_{1}(\rho)\|_{L^{\infty}(0,T;H)} \leq C.$

Pierluigi Colli (Università di Pavia) pierluigi.colli@unipv.it A nonstandard phase field system of viscous Cahn-Hilliard type

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ つへで

A priori estimates III

• Test (2) by $-\Delta \rho$ and by $f_1'(\rho) \implies$

 $\|\rho\|_{L^{\infty}(0,T;W)} + \|f'_{1}(\rho)\|_{L^{\infty}(0,T;H)} \leq C.$

• Add μ on both sides of (1) and test by $\mu_t \implies$

$$\frac{\varepsilon}{2} \int_{0}^{t} \int_{\Omega} \mu_{t}^{2} dx ds + \frac{1}{2} \|\mu(t)\|_{V}^{2} \leq \dots + \underbrace{C \int_{0}^{t} \int_{\Omega} |\mu| |\rho_{t}| |\mu_{t}| dx ds}_{=: I}.$$

We have

$$I \leq \frac{\varepsilon}{4} \int_{0}^{t} \int_{\Omega} \mu_t^2 \, dx \, ds + \frac{C}{\varepsilon} \int_{0}^{t} \|\rho_t(s)\|_V^2 \|\mu(s)\|_V^2 \, ds$$

GRONWALL

 $\|\mu\|_{H^1(0,T;H)\cap L^{\infty}(0,T;V)\cap L^2(0,T;W)} \leq C$

Pierluigi Colli (Università di Pavia) pierluigi.colli@unipv.it

A nonstandard phase field system of viscous Cahn-Hilliard type

Passage to the limit as $au\searrow \mathbf{0}$

For a subsequence $\tau_n \searrow 0$, we have:

 $\mu_{\tau_n} \rightharpoonup^* \mu$ in $H^1(0, T; H) \cap L^\infty(0, T; V) \cap L^2(0, T; W)$

 $\rho_{\tau_n} \rightharpoonup^* \rho \quad \text{ in } \quad W^{1,\infty}(0,T;H) \cap H^1(0,T;V) \cap L^{\infty}(0,T;W)$

This implies strong convergences for μ_{τ_n} and ρ_{τ_n} ,

Passage to the limit as $au\searrow \mathbf{0}$

For a subsequence $\tau_n \searrow 0$, we have:

 $\mu_{\tau_n} \rightarrow^* \mu$ in $H^1(0, T; H) \cap L^{\infty}(0, T; V) \cap L^2(0, T; W)$ $\rho_{\tau_n} \rightharpoonup^* \rho$ in $W^{1,\infty}(0,T;H) \cap H^1(0,T;V) \cap L^{\infty}(0,T;W)$ This implies strong convergences for μ_{τ_n} and ρ_{τ_n} , and $f'_1(\rho_{\tau_n}) \to f'_1(\rho)$ weakly* in $L^{\infty}(0, T; H)$ (monotonicity!) $g(\rho_{\tau_n}) \partial_t \mu_{\tau_n} \to g(\rho) \mu_t$ weakly in $L^2(0, T; L^{3/2}(\Omega))$ $\mu_{\tau_n} g'(\rho_{\tau_n}) \partial_t \rho_{\tau_n} \to \mu g'(\rho) \rho_t$ weakly in $L^1(0, T; H)$ \implies (μ, ρ) is a solution, since the conditions $\mu > 0$ and $0 < \rho < 1$ follow from pointwise a.e. convergence.

 \implies Theorem 1 is proved!

Boundedness of μ and of $f'(\rho)$

1. Now assume that $\mu_0 \in L^{\infty}(\Omega)$. We make use of the following result:

 $\text{If} \quad S_{j+1} \, \leq \, C \, 2^j \, S_j^p \quad \text{with} \quad p>1 \quad \text{and} \quad S_0 \ll 1, \quad \text{then} \quad S_j \to 0 \, .$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Boundedness of μ and of $f'(\rho)$

1. Now assume that $\mu_0 \in L^{\infty}(\Omega)$. We make use of the following result:

 $\text{If} \quad S_{j+1} \,\leq\, C\, 2^j\, S_j^p \quad \text{with} \quad p>1 \quad \text{and} \quad S_0 \ll 1, \quad \text{then} \quad S_j \to 0\,.$

In a very technical proof it is shown that the property holds with the choices $% \left({{{\mathbf{r}}_{i}}} \right)$

$$S_j := \|\chi_{\{\mu > k_j\}}\|_{L^2(0,T;L^4(\Omega))}, \quad p := rac{8}{7},$$

0

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

for a suitably chosen sequence $\{k_j\} \nearrow k_{\infty} < +\infty$.

 $\implies \|\mu\|_{L^{\infty}(Q)} \leq C.$

Boundedness of μ and of $f'(\rho)$

1. Now assume that $\mu_0 \in L^{\infty}(\Omega)$. We make use of the following result:

 $\text{If} \quad S_{j+1} \, \leq \, C \, 2^j \, S_j^p \quad \text{with} \quad p>1 \quad \text{and} \quad S_0 \ll 1, \quad \text{then} \quad S_j \to 0 \, .$

In a very technical proof it is shown that the property holds with the choices $% \left({{{\mathbf{r}}_{i}}} \right)$

$$S_j := \|\chi_{\{\mu > k_j\}}\|_{L^2(0,T;L^4(\Omega))}, \quad p := rac{8}{7},$$

for a suitably chosen sequence $\{k_j\} \nearrow k_{\infty} < +\infty$.

$$\implies \|\mu\|_{L^{\infty}(Q)} \leq C.$$

2. As now $\mu \in L^{\infty}(Q)$, testing (2) by standard test functions leads to

 $0 <
ho_* \, \leq \,
ho \, \leq \,
ho^* < 1 \quad {
m in} \, \, Q \, ,$

for suitable ρ_*, ρ^* . Here, **(A1)** is used.

Pierluigi Colli (Università di Pavia) pierluigi.colli@unipv.it

A nonstandard phase field system of viscous Cahn-Hilliard type

0

Asymptotic behavior as $\varepsilon \searrow \mathbf{0}$ |Case $\mathbf{g}(\rho) = \rho$

We rewrite the system in the form:

$$(\varepsilon + 2 \rho^{\varepsilon}) \mu_t^{\varepsilon} + \mu^{\varepsilon} \rho_t^{\varepsilon} - \Delta \mu^{\varepsilon} = 0$$

 $\delta \rho_t^{\varepsilon} - \Delta \rho^{\varepsilon} + f'(\rho^{\varepsilon}) = \mu^{\varepsilon}$

with initial and boundary conditions.

Asymptotic behavior as $\varepsilon \searrow \mathbf{0}$ |Case $\mathbf{g}(\rho) = \rho$

We rewrite the system in the form:

$$egin{aligned} &(arepsilon+2\,
ho^arepsilon)\,\mu_t^arepsilon+\mu^arepsilor\,
ho^arepsilon-\Delta\mu^arepsilon-\Delta\mu^arepsilon&=0\ &\delta\,
ho_t^arepsilon-\Delta
ho^arepsilon+f'(
ho^arepsilon)&=\mu^arepsilon \end{aligned}$$

with initial and boundary conditions.

Problem: For $\varepsilon \searrow 0$, we do not have any estimate for μ_t^{ε} .

We rewrite the system in the form:

 $(\varepsilon + 2\rho^{\varepsilon})\mu_t^{\varepsilon} + \mu^{\varepsilon}\rho_t^{\varepsilon} - \Delta\mu^{\varepsilon} = 0$ $\delta\rho_t^{\varepsilon} - \Delta\rho^{\varepsilon} + f'(\rho^{\varepsilon}) = \mu^{\varepsilon}$

with initial and boundary conditions.

Problem: For $\varepsilon \searrow 0$, we do not have any estimate for μ_t^{ε} .

Idea: Write first eq. in the form (little miracle) $(\varepsilon \mu^{\varepsilon} + 2 \mu^{\varepsilon} \rho^{\varepsilon})_t - \Delta \mu^{\varepsilon} = \mu^{\varepsilon} \rho^{\varepsilon}_t$

with the aim to obtain in the limit:

 $(2\,\mu\,\rho)_t\,-\,\Delta\mu\,=\,\mu\,\rho_t\,.$

We rewrite the system in the form:

 $(\varepsilon + 2\rho^{\varepsilon})\mu_t^{\varepsilon} + \mu^{\varepsilon}\rho_t^{\varepsilon} - \Delta\mu^{\varepsilon} = 0$ $\delta\rho_t^{\varepsilon} - \Delta\rho^{\varepsilon} + f'(\rho^{\varepsilon}) = \mu^{\varepsilon}$

with initial and boundary conditions.

Problem: For $\varepsilon \searrow 0$, we do not have any estimate for μ_t^{ε} .

Idea: Write first eq. in the form (little miracle) $(\varepsilon \mu^{\varepsilon} + 2 \mu^{\varepsilon} \rho^{\varepsilon})_t - \Delta \mu^{\varepsilon} = \mu^{\varepsilon} \rho_t^{\varepsilon}$

with the aim to obtain in the limit:

$$(2\,\mu\,\rho)_t\,-\,\Delta\mu\,=\,\mu\,\rho_t\,.$$

Result:

Last eq. is meaningful: it turns out that ρ_t and (μρ)_t exist, while μ_t may not exist
 (⇒ (μρ)_t cannot be evaluated using the product rule!)

Convergence

THEOREM 4: Let (A1), (A2) be satisfied. Then there exist a sequence $\varepsilon_n \searrow 0$ and functions (μ, ρ) such that $\mu_{\varepsilon_n} \rightarrow \mu$ weakly* in $L^{\infty}(0, T; H) \cap L^2(0, T; V)$ $\rho_{\varepsilon_n} \to \rho$ weakly* in $H^1(0, T; H) \cap L^{\infty}(0, T; V) \cap L^2(0, T; W)$ $\mu \geq 0$ and $0 < \rho < 1$ a.e. in Q $\mu \rho \in W^{1,5/4}(0,T;V^*)$ and $f'(\rho) \in L^2(Q)$ Moreover, we have for all $v \in V$ and a.e. in (0, T) $2\langle (\mu \rho)_t, v \rangle_{V^*, V} + \int \nabla \mu(t) \cdot \nabla v \, dx = \int \mu(t) \, \rho_t(t) \, v \, dx \, ,$ and $\delta \rho_t - \Delta \rho + f'(\rho) = \mu$ a.e. in Q, $(\mu \rho)(0) = \mu_0 \rho_0, \quad \rho(0) = \rho_0, \quad \text{a.e. in } \Omega.$ ▲母 ◆ ● ◆ ● ◆ ● ◆ ○ ◆ ○ ◆ ○ ◆

Convergence II

Problem: Find a priori estimates independent of ε ! **Results:**

- ▶ It can be shown that $\rho^{\varepsilon} \ge \rho_* > 0$ in Q $\forall \varepsilon > 0$.
- By this, we check that

 $\|\mu^{\varepsilon}\|_{L^{\infty}(0,T;H)} + \|\mu^{\varepsilon}\|_{L^{2}(0,T;V)} \leq C.$

• Testing (2) by ρ_t^{ε} implies, by virtue of the "'little miracle"',

$$\delta \int_{0}^{t} \int_{\Omega} |\rho_{t}^{\varepsilon}|^{2} dx ds + \left[\frac{1}{2} \|\nabla \rho^{\varepsilon}(t)\|_{H}^{2} + \int_{\Omega} f(\rho^{\varepsilon}(t)) dx \right]_{0}^{t}$$

$$= \int_{0}^{L} \int_{\Omega} \mu^{\varepsilon} \rho_{t}^{\varepsilon} dx ds = \int_{\Omega} \left(\varepsilon \, \mu^{\varepsilon}(t) + 2 \, \mu^{\varepsilon}(t) \, \rho^{\varepsilon}(t) \right) \, dx \, - \, C$$

 $\Rightarrow \qquad \|\rho_t^{\varepsilon}\|_{L^2(Q)} + \|\rho^{\varepsilon}\|_{L^{\infty}(0,T;V)} \leq C$

A nonstandard phase field system of viscous Cahn-Hilliard type

Convergence III

► Testing by $f'_1(\rho^{\varepsilon})$ and by $-\Delta \rho^{\varepsilon}$ yields that $\|f'_1(\rho^{\varepsilon})\|_{L^2(Q)} + \|\rho^{\varepsilon}\|_{L^2(0,T;W)} \leq C$

Conclusions:

- There are (μ, ρ, φ) such that (at least for a subsequence ε_n \(\sum 0\)) we pass to the limit, f'₁(ρ_{ε_n}) → φ weakly in L²(Q), μ≥0 and ρ≥ ρ_{*} > 0 a.e. in Q.
 In view of the compact embedding V ⊂ L^p(Ω) for
- In view of the compact embedding $V \subset L^p(\Omega)$ f $1 \le p < 6$, we also have
 - $ho_{arepsilon} o
 ho$ strongly in $C^0([0, T]; L^p(\Omega))$ for p < 6,

and a monotonicity argument for f_1' yields $\varphi = f_1'(\rho)$. In summary,

$$\delta\rho_t - \Delta\rho + f_1'(\rho) = \mu.$$

Next, we have for every $v \in L^5(0, T; V)$:

$$\begin{aligned} \left| \int_{0}^{t} \int_{\Omega} \mu \rho_{t} v \, dx \, ds \right| &\leq \|\mu\|_{L^{10/3}(Q)} \|\rho_{t}\|_{L^{2}(Q)} \|v\|_{L^{5}(Q)} \\ &\leq C \|v\|_{L^{5}(0,T;V)}, \end{aligned}$$

owing to the continuity of the embedding
$$\begin{split} L^{\infty}(0, T; H) \cap L^{2}(0, T; V) \subset L^{10/3}(Q) \, . \\ \Longrightarrow \quad \|u_{t}^{\varepsilon}\|_{L^{5/4}(0, T; V^{*})} \leq C \, , \qquad \text{for} \quad u^{\varepsilon} := \varepsilon \, \mu^{\varepsilon} + 2 \, \mu^{\varepsilon} \, \rho^{\varepsilon} \, . \\ \textbf{Now:} \quad \text{Strong convergence of } \rho_{\varepsilon} \, (\text{with } p = 4 \,) \text{ and } \quad \mu_{\varepsilon} \to \mu \\ \text{weakly in} \quad L^{2}(0, T; L^{4}(\Omega)) \quad \text{imply that} \end{split}$$

 $\mu^{\varepsilon} \rho^{\varepsilon} \rightarrow \mu \rho \quad \text{weakly in} \quad L^2(0, T; H)$

 $\implies \quad u^{\varepsilon} \to 2\,\mu\,\rho \quad \text{weakly in} \quad L^2(0,\,T;\,H) \cap \, \mathcal{W}^{1,5/4}(0,\,T;\,V^*)\,.$

Convergence V

Thus $u^{\varepsilon} \to 2 \mu \rho$ weakly in $C^{0}([0, T]; V^{*}) \Longrightarrow$ $u^{\varepsilon}(0) = \varepsilon \mu_{0} + 2 \mu_{0} \rho_{0} \to (2 \mu \rho)(0)$ weakly in V^{*} , so that $(\mu \rho)(0) = \mu_{0} \rho_{0}$.

Besides, it can be shown that $\|u^{\varepsilon}\|_{L^{2}(0,T;W^{1,3/2}(\Omega))} \leq C$ Aubin-Lions lemma \implies

 $u_{\varepsilon} \to 2 \, \mu \, \rho$ strongly in $L^2(0, T; L^q(\Omega))$ for $1 \le q < 3$.

Lemma: It holds $\|\mu^{\varepsilon} - \mu\|_{L^2(Q)} \to 0.$

Consequence: $\mu^{\varepsilon} \rho_t^{\varepsilon} \to \mu \rho_t$ weakly in $L^1(Q)$. \implies the limit procedure is complete!

Remarks and possible extensions

- 1. Also for $\varepsilon = 0$ the ω -limit $\omega(\mu, \rho)$ is nonempty and consists of steady states.
- 2. More general forms of the potential $f(\rho)$ can be treated (to allow f'_1 be any maximal monotone graph).
- 3. Another ad hoc uniqueness proof is available. Optimal control problems, for distributed and boundary controls, have been investigated.
- 4. Mobility coefficient κ may be nonlinear function of μ and possibly of ρ too. Instead, what about nonlocal models?
- 5. Numerical approximation? starting from time discretization ...
- 6. It should be possible to include the case of vectorial order parameters.

References

- P. Colli, G. Gilardi, P. Podio-Guidugli, J. Sprekels: Well-posedness and longtime behavior for a nonstandard viscous Cahn-Hilliard system, SIAM J. Appl. Math. **71** (2011) 1849-1870.
- [2] ——: An asymptotic analysis for a nonstandard Cahn-Hilliard system with viscosity, to appear in Discrete Contin. Dyn. Syst. Ser. S.
- [3] —: Distributed optimal control of a nonstandard system of phase field equations, Contin. Mech. Thermodyn. doi:10.1007/s00161-011-0215-8
- [4] ——: Global existence and uniqueness for a singular/degenerate Cahn-Hilliard system with viscosity, preprint.
- [5] ——: Global existence for a strongly coupled Cahn-Hilliard system with viscosity, to appear in Boll. Unione Mat. Ital. (9)
- P. Colli, G. Gilardi, J. Sprekels: Analysis and optimal boundary control of a nonstandard system of phase field equations, to appear in Milan J. Math.

Pierluigi Colli (Università di Pavia) pierluigi.colli@unipv.it

A nonstandard phase field system of viscous Cahn-Hilliard type

Many thanks for your attention !

Pierluigi Colli (Università di Pavia) pierluigi.colli@unipv.it A nonstandard phase field system of viscous Cahn-Hilliard type

- (目) - (目) - (目)