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Joint work with

• Gianni Gilardi (Pavia)

• Paolo Podio-Guidugli (Roma 2)

• Jürgen Sprekels (WIAS Berlin)

The Cahn-Hilliard system ∂tρ− κ∆µ = 0 , µ = −∆ρ+ f ′(ρ)

• aims to describe diffusion-driven phase-segregation processes
in a two-phase material body;

• ρ, with ρ(x , t) ∈ [0, 1], is an order-parameter field interpreted
as the scaled volumetric density of one of the two phases;
κ > 0 is a mobility coefficient;

• µ is the chemical potential; f denotes a double-well potential
with f ′ confined in (0, 1) and singular at endpoints.
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The Cahn-Hilliard equation

∂tρ = κ∆(−∆ρ+ f ′(ρ)) ↓ generalization by Fried and Gurtin

I balance of contact and distance microforces

div ξ+ π + γ = 0

where ξ denotes the microscopic stress vector and the distance
microforce is split in an internal part π and an external part γ;

I balance law for the order parameter

∂tρ = − div h + σ

where the pair (h, σ) is the inflow of ρ;

I dissipation inequality that accomodates diffusion

∂tψ + (π − µ)∂tρ− ξ · ∇(∂tρ) + h · ∇µ ≤ 0

for the free energy density ψ.

Pierluigi Colli (Università di Pavia) pierluigi.colli@unipv.it A nonstandard phase field system of viscous Cahn-Hilliard type



Set of constitutive prescriptions is acceptable

ψ = ψ̂(ρ,∇ρ), π̂(ρ,∇ρ, µ) = µ− ∂ρψ̂(ρ,∇ρ),

ξ̂(ρ,∇ρ) = ∂∇ρψ̂(ρ,∇ρ),

together with h = −M∇µ, where M = M̂(ρ,∇ρ, µ,∇µ); the
tensor-valued mobility mapping M must satisfy the inequality

∇µ · M̂(ρ,∇ρ, µ,∇µ)∇µ ≥ 0 . Then

∂tρ = div
(

M∇
(
∂ρψ̂(ρ,∇ρ)− div

(
∂∇ρψ̂(ρ,∇ρ)

)
− γ
))

+ σ

the Cahn-Hilliard equation is arrived at by taking

ψ̂(ρ,∇ρ) = f (ρ) +
1

2
|∇ρ|2, M = κ1

both the microforce γ and the source σ identically null.
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Podio-Guidugli proposed a modified version

• of Fried & Gurtin’s derivation, where the order-parameter
balance and dissipation inequality are both dropped and
replaced by the microenergy balance

∂tε = e + w , e := − div h̄ + σ̄, w := −π ∂tρ+ ξ · ∇(∂tρ)

and the microentropy imbalance

∂tη ≥ − div h + σ, h := µh̄, σ := µ σ̄.

• salient new feature of this approach → the microentropy
inflow (h, σ) is deemed proportional to the microenergy inflow
(h̄, σ̄) through the chemical potential µ → a positive field.
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Consistently, the free energy

is defined to be

ψ := ε− µ−1η

with the chemical potential playing the same role as coldness in
the deduction of the heat equation.

• Just as absolute temperature can be seen as a macroscopic
measure of microscopic agitation, its inverse - the coldness -
measures microscopic quiet;

• likewise, the chemical potential can be seen as a macroscopic
measure of microscopic organization.

• Combination of previous positions gives

∂tψ ≤ −η∂t(µ−1) + µ−1h̄ · ∇µ− π ∂tρ+ ξ · ∇(∂tρ),

an inequality that replaces the F&G one in restricting à la
Coleman & Noll the possible constitutive choices.
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What we get

• take all of the constitutive mappings delivering π, ξ, η, and h̄
depending on the list ρ,∇ρ, µ,∇µ;

• choose ψ = ψ̂(ρ,∇ρ, µ) = −µ g(ρ) + f (ρ) + 1
2 |∇ρ|

2 with g

nonnegative function on the domain of F

• compatibility yields

π̂(ρ,∇ρ, ∂tρ, µ) = µ g ′(ρ)− f ′(ρ),

ξ̂(ρ,∇ρ, ∂tρ, µ) = ∇ρ, η̂(ρ,∇ρ, ∂tρ, µ) = −µ2 g(ρ),

together with

ĥ(ρ,∇ρ, µ,∇µ) = −Ĥ(ρ,∇ρ, µ,∇µ)∇µ, Ĥ = κ1.

• constant and isotropic mobility κ > 0; assume that the
external distance microforce γ and the source σ are null.
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Nonlinear evolution system in the case g(ρ) = ρ

microforce balance div(∇ρ) + µ− f ′(ρ) = 0

energy balance 2ρ ∂tµ+ µ∂tρ− κ∆µ = 0

complemented with the homogeneous Neumann BC

∂nρ = ∂nµ = 0 on the body’s boundary and with the IC

ρ|t=0 = ρ0 bounded away from 0 and 1, µ|t=0 = µ0 ≥ 0 .

First eq. = same ‘static’ relation between µ and ρ as before.
Instead, second eq. is rather different for a number of reasons:

I is nonlinear (whereas ∂tρ− κ∆µ = 0 is a linear equation);

I the time derivatives of ρ and µ are both present;

I nonconstant factors in front of both ∂tµ and ∂tρ.
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Sources of difficulties

the microforce balance is −∆ρ+ f ′(ρ) = g ′(ρ)µ

the energy balance reads 2g(ρ)µt + µg ′(ρ)ρt − κ∆µ = 0

• solution to the initial/boundary-value problem?

• is the density parameter ρ between 0 and 1?

• the chemical potential µ non-negative?
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Problem statement

Let T > 0 , Ω ⊂ IR3 be bounded, open, with sufficiently
smooth boundary Γ; Q := Ω× (0,T ) , Σ := Γ× (0,T ).

We consider:

2 g(ρ) µt + µ g ′(ρ) ρt −∆µ = 0 in Q (1)

−∆ρ+ f ′(ρ) = µ g ′(ρ), in Q (2)

∂µ

∂n
=
∂ρ

∂n
= 0 on Σ (3)

µ(0) = µ0 ≥ 0 , ρ(0) = ρ0 ∈ (0, 1) in Ω (4)

Here:

I ρ (order parameter, ∈ [0, 1]) – volumetric density of one
of the phases

I µ – chemical potential
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Regularizing?

Let T > 0 , Ω ⊂ IR3 be bounded, open, with sufficiently
smooth boundary Γ; Q := Ω× (0,T ) , Σ := Γ× (0,T ).

We consider:

(ε+ 2 g(ρ))µt + µ g ′(ρ) ρt −∆µ = 0 in Q

δ ρt −∆ρ+ f ′(ρ) = g ′(µ) in Q

∂µ

∂n
=
∂ρ

∂n
= 0 on Σ

µ(0) = µ0 ≥ 0 , ρ(0) = ρ0 ∈ (0, 1) in Ω

Here:

I ε > 0 , δ > 0 – regularization parameters
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Why a fixed δ > 0 ? Case g(ρ) = ρ :

take ρ0 = 1/2, µ0 constant, and look for a space-independent
solution. Then equations reduce to

d

dt

(
(ε+ 2ρ)1/2 µ

)
= 0 , f ′(ρ) = µ.

Hence,

µ = z0 (ε+ 2ρ)−1/2 and f ′(ρ) = z0 (ε+ 2ρ)−1/2.

Now, choose the potential f such that

f ′(r) = z0 (ε+ 2 r)−1/2 for r ∈ I := [1/3, 2/3],

and pick any smooth/irregular ρ : [0,T ]→ I with ρ(0) = 1/2.

I We then get infinitely many smooth/irregular solutions !!!

I No uniqueness and no control on time regularity !!!
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Assumptions

We introduce the spaces H = L2(Ω) , V = H1(Ω) ,

W =

{
w ∈ H2(Ω) ;

∂w

∂n
= 0 on Γ

}
.

and postulate that

(A1) f = f1 + f2,; f1 ∈ C 1(0, 1) is convex;

lim
r↘0

f ′1(r) = −∞ and lim
r↗1

f ′1(r) = +∞;

g , f2 ∈ C 2([0, 1]); g(r) ≥ 0 for all r ∈ [0, 1];

(A2) µ0 ∈ V ; µ0 ≥ 0 a. e. in Ω;

ρ0 ∈W ; 0 < ρ0 < 1 in Ω; f ′(ρ0) ∈ H

(=⇒ ρ0 ∈ C 0(Ω) , f (ρ0) ∈ H ).
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Existence and uniqueness

THEOREM 1: Let (A1), (A2) be satisfied. Then (1)–(4) has
a solution (µ, ρ) with:

µ ∈ H1(0,T ; H) ∩ L2(0,T ; W ) ;

ρ ∈W 1,∞(0,T ; H) ∩ H1(0,T ; V ) ∩ L∞(0,T ; W ) ;

µ ≥ 0 a. e. in Q ; 0 < ρ < 1 a. e. in Q ;

f ′(ρ) ∈ L∞(0,T ; H) .

THEOREM 2: Let, in addition,

(A3) µ0 ∈ L∞(Ω) ; inf
x∈Ω

ρ0(x) > 0 ; sup
x∈Ω

ρ0(x) < 1 .

Then the solution from Theorem 1 is unique, and we have:

µ ∈ L∞(Q) ; inf
Q
ρ > 0 ; sup

Q
ρ < 1 .
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Large time behavior

THEOREM 3: Under the assumptions of Theorem 2, the
ω-limit

ω(µ, ρ) = {(µω, ρω) : (µ(tn), ρ(tn)) → (µω, ρω)

weakly in H × V for a sequence tn ↗ +∞}

is nonempty, as well as compact and connected in the topology of
H ×V .

Moreover, every element (µω, ρω) ∈ ω(µ, ρ) is a ”‘steady
state”’, i. e., µω is a nonnegative constant, and ρω satisfies

ρω ∈W , 0 < ρω < 1 , f ′(ρω) ∈ H ,
and

−∆ρω + f ′(ρω) = µωg ′(ρω) a. e. in Ω .
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Outline of the existence proof

General line of argumentation:

1. Approximation: Introduce a delay in (2):

δ ρt − ∆ρ + f ′(ρ) = (Tτ µ ) g ′(ρ),

where, for τ ∈ (0,T ),

(Tτ µ)(t) =

{
µ(t − τ) , t ≥ τ
µ0 , 0 ≤ t < τ

For every τ > 0, one obtains a unique solution (µτ , ρτ ) to (1),
(2)τ , (3), (4) with the regularity as in Theorem 1.

2. A priori estimates: See below.

3. Passage to the limit as τ ↘ 0: by different compactness
results and monotonicity arguments (for f ′1(ρ))
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A priori estimates (τ omitted)

I Test (1) by µ and use the identity

(ε µt + 2 g(ρ)µt + µ g ′(ρ) ρt)µ =
((ε

2
+ g(ρ)

)
µ2
)
t

=⇒∫
Ω

(ε
2
µ2 + g(ρ) µ2

)
(t) dx +

t∫
0

∫
Ω

|∇µ|2 dx ds = C0 .

I Remark: Testing by −µ− = max{−µ, 0} leads to
µ− = 0, hence µ ≥ 0.

I Testing of (2) by ρt and by −∆ρ yields:

‖ρ‖H1(0,T ;H)∩L2(0,T ;W ) + ‖f ′1(ρ)‖L2(Q) ≤ C .
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A priori estimates II

I Differentiate (2) with respect to t and test by ρt =⇒

δ

2

∫
Ω

|ρt(t)|2 dx +

t∫
0

∫
Ω

|∇ρt |2 dx ds

≤
t∫

0

∫
Ω

C (1 + |Tτµ|)|ρt |2 dx ds +

t∫
0

∫
Ω

∂t(Tτµ) g ′(ρ) ρt dx ds .

I Now, substitute µt = (ε+ 2g(ρ))−1(∆µ− µ g ′(ρ) ρt),
integrate by parts, and estimate the resulting terms with the
help of Hölder, Gronwall, ... obtaining

‖ρt‖L∞(0,T ;H) + ‖ρ‖H1(0,T ;V ) ≤ C .
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A priori estimates III

I Test (2) by −∆ρ and by f ′1(ρ) =⇒

‖ρ‖L∞(0,T ;W ) + ‖f ′1(ρ)‖L∞(0,T ;H) ≤ C .

I Add µ on both sides of (1) and test by µt =⇒

ε

2

t∫
0

∫
Ω

µ2
t dx ds +

1

2
‖µ(t)‖2

V ≤ ... + C

t∫
0

∫
Ω

|µ| |ρt | |µt | dx ds

︸ ︷︷ ︸
.

=: I
We have

I ≤ ε
4

t∫
0

∫
Ω

µ2
t dx ds + C

ε

t∫
0

‖ρt(s)‖2
V ‖µ(s)‖2

V ds

GRONWALL

=⇒
‖µ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ C
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|µ| |ρt | |µt | dx ds

︸ ︷︷ ︸
.

=: I
We have

I ≤ ε
4

t∫
0

∫
Ω

µ2
t dx ds + C

ε

t∫
0

‖ρt(s)‖2
V ‖µ(s)‖2

V ds

GRONWALL

=⇒
‖µ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ C
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Passage to the limit as τ ↘ 0

For a subsequence τn ↘ 0, we have:

µτn ⇀
∗ µ in H1(0,T ; H) ∩ L∞(0,T ; V ) ∩ L2(0,T ; W )

ρτn ⇀
∗ ρ in W 1,∞(0,T ; H) ∩ H1(0,T ; V ) ∩ L∞(0,T ; W )

This implies strong convergences for µτn and ρτn ,

and

f ′1(ρτn)→ f ′1(ρ) weakly* in L∞(0,T ; H) (monotonicity !)

g(ρτn) ∂tµτn → g(ρ)µt weakly in L2(0,T ; L3/2(Ω))

µτn g ′(ρτn) ∂tρτn → µ g ′(ρ) ρt weakly in L1(0,T ; H)

=⇒ (µ, ρ) is a solution, since the conditions µ ≥ 0 and
0 < ρ < 1 follow from pointwise a. e. convergence.

=⇒ Theorem 1 is proved!
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Boundedness of µ and of f ′(ρ)

1. Now assume that µ0 ∈ L∞(Ω). We make use of the following
result:

If Sj+1 ≤ C 2j Sp
j with p > 1 and S0 � 1, then Sj → 0 .

In a very technical proof it is shown that the property holds with
the choices

Sj := ‖χ{µ>kj}‖L2(0,T ;L4(Ω)) , p :=
8

7
,

for a suitably chosen sequence {kj} ↗ k∞ < +∞.

=⇒ ‖µ‖L∞(Q) ≤ C .

2. As now µ ∈ L∞(Q), testing (2) by standard test functions
leads to

0 < ρ∗ ≤ ρ ≤ ρ∗ < 1 in Q ,

for suitable ρ∗, ρ
∗. Here, (A1) is used.
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Asymptotic behavior as ε ↘ 0 Case g(ρ) = ρ

We rewrite the system in the form:

(ε+ 2 ρε)µεt + µε ρεt − ∆µε = 0

δ ρεt − ∆ρε + f ′(ρε) = µε

with initial and boundary conditions.

Problem: For ε↘ 0, we do not have any estimate for µεt .

Idea: Write first eq. in the form (little miracle)
(ε µε + 2µε ρε)t − ∆µε = µε ρεt

with the aim to obtain in the limit:
(2µρ)t − ∆µ = µρt .

Result:

I Last eq. is meaningful: it turns out that ρt and (µρ)t

exist, while µt may not exist
(=⇒ (µρ)t cannot be evaluated using the product rule!)
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Convergence

THEOREM 4: Let (A1), (A2) be satisfied. Then there exist a
sequence εn ↘ 0 and functions (µ, ρ) such that

µεn → µ weakly* in L∞(0,T ; H) ∩ L2(0,T ; V )

ρεn → ρ weakly* in H1(0,T ; H) ∩ L∞(0,T ; V ) ∩ L2(0,T ; W )

µ ≥ 0 and 0 < ρ < 1 a. e. in Q

µρ ∈W 1,5/4(0,T ; V ∗) and f ′(ρ) ∈ L2(Q)

Moreover, we have for all v ∈ V and a.e. in (0,T )

2〈(µρ)t , v〉V ∗,V +

∫
Ω

∇µ(t) · ∇v dx =

∫
Ω

µ(t) ρt(t) v dx ,

and δρt − ∆ρ + f ′(ρ) = µ a. e. in Q,

(µρ)(0) = µ0 ρ0 , ρ(0) = ρ0 , a. e. in Ω.
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Convergence II

Problem: Find a priori estimates independent of ε !
Results:

I It can be shown that ρε ≥ ρ∗ > 0 in Q ∀ ε > 0.
I By this, we check that

‖µε‖L∞(0,T ;H) + ‖µε‖L2(0,T ;V ) ≤ C .

I Testing (2) by ρεt implies, by virtue of the ”‘little miracle”’,

δ

t∫
0

∫
Ω

|ρεt |2 dx ds +

1

2
‖∇ρε(t)‖2

H +

∫
Ω

f (ρε(t)) dx

t

0

=

t∫
0

∫
Ω

µε ρεt dx ds =

∫
Ω

(ε µε(t) + 2µε(t) ρε(t)) dx − C

=⇒ ‖ρεt‖L2(Q) + ‖ρε‖L∞(0,T ;V ) ≤ C
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Convergence III

I Testing by f ′1(ρε) and by −∆ρε yields that

‖f ′1(ρε)‖L2(Q) + ‖ρε‖L2(0,T ;W ) ≤ C

Conclusions:

I There are (µ, ρ, ϕ) such that (at least for a subsequence
εn ↘ 0 ) we pass to the limit, f ′1(ρεn)→ ϕ weakly in
L2(Q) , µ ≥ 0 and ρ ≥ ρ∗ > 0 a. e. in Q .

I In view of the compact embedding V ⊂ Lp(Ω) for
1 ≤ p < 6, we also have

ρε → ρ strongly in C 0([0,T ]; Lp(Ω)) for p < 6 ,

and a monotonicity argument for f ′1 yields ϕ = f ′1(ρ) . In
summary,

δρt − ∆ρ + f ′1(ρ) = µ .
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Convergence IV

Next, we have for every v ∈ L5(0,T ; V ) :∣∣∣∣∣∣
T∫

0

∫
Ω

µρt v dx ds

∣∣∣∣∣∣ ≤ ‖µ‖L10/3(Q) ‖ρt‖L2(Q) ‖v‖L5(Q)

≤ C‖v‖L5(0,T ;V ) ,

owing to the continuity of the embedding
L∞(0,T ; H) ∩ L2(0,T ; V ) ⊂ L10/3(Q) .
=⇒ ‖uεt ‖L5/4(0,T ;V ∗) ≤ C , for uε := ε µε + 2µε ρε .
Now: Strong convergence of ρε (with p = 4 ) and µε → µ
weakly in L2(0,T ; L4(Ω)) imply that

µε ρε → µρ weakly in L2(0,T ; H)

=⇒ uε → 2µρ weakly in L2(0,T ; H) ∩W 1,5/4(0,T ; V ∗) .
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Convergence V

Thus uε → 2µρ weakly in C 0([0,T ]; V ∗) =⇒
uε(0) = ε µ0 + 2µ0 ρ0 → (2µρ)(0) weakly in V ∗ ,

so that (µρ)(0) = µ0 ρ0.

Besides, it can be shown that ‖uε‖L2(0,T ;W 1,3/2(Ω)) ≤ C
Aubin-Lions lemma =⇒

uε → 2µρ strongly in L2(0,T ; Lq(Ω)) for 1 ≤ q < 3 .

Lemma: It holds ‖µε − µ‖L2(Q) → 0.

Consequence: µε ρεt → µρt weakly in L1(Q).
=⇒ the limit procedure is complete!
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Remarks and possible extensions

1. Also for ε = 0 the ω−limit ω(µ, ρ) is nonempty and
consists of steady states.

2. More general forms of the potential f (ρ) can be treated (to
allow f ′1 be any maximal monotone graph).

3. Another ad hoc uniqueness proof is available. Optimal control
problems, for distributed and boundary controls, have been
investigated.

4. Mobility coefficient κ may be nonlinear function of µ and
possibly of ρ too. Instead, what about nonlocal models?

5. Numerical approximation? starting from time discretization ...

6. It should be possible to include the case of vectorial order
parameters.
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Many thanks

for your attention !
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