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1. Introduction
The Gibbs-Thomson relation on the evolving surface of a crystal reads,

βV = σ+ κγ on Γ(t). (1)

We want:
1) to study evolution of closed planar curves driven by this eq.
2) to look at (1) from the view point of parabolic problems.

History:
J.Taylor, Angenent – Gurtin
Andreu, Bellettini, Caselles, Fukui, M.-H.Giga, Y.Giga, Mazon, Novaga,
Paolini, PR
more recently: Mucha-PR, Bonforte-Figalli
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2. The equation in a local coordinate system

Here, we shall construct variational solutions to a ‘geometric’ evolution
problem. On the way we will keep track of its parabolic nature, which we
hope to exploit eventually. We will not consider the problem in its full gen-
erality but rather what is feasible.
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2.1. Ingredients of (1)
a) Γ(t) ⊂ IR2 – a closed curve, (here: a bent rectangle), n its outer normal.
b) Formally, the weighted mean curvature is κγ = −divS

(

∇ζγ(ζ)|ζ=n(x)

)

.
If γ(ζ) = |ζ|, then κγ is the Euclidean mean curvature. Here,

γ(p1, p2) = |p1|γΛ + |p2|γR, (2)

c) β = β(n) – a kinetic coefficient.
d) σ – the driving (supersaturation, temperature, pressure, ...). It satisfies:

σ(x1, x2) = σ(±x1,±x2) (3)

and the Berg’s effect, i.e.

xi
∂σ

∂xi
(x1, x2) > 0 xi 6= 0, i = 1,2. (4)
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The surface energy
∫

Γ
γ(n) dH1 under the volume constraint is minimized

by a scaled Wulff shape, Wγ, i.e. a ball in the space dual to (IR2, γ).
For γ given by (2) the Wulff shape is a rectangle. Our curves are special
perturbations of Wγ, bent rectangles,
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We will consider evolution of regular bent rectangles. Each side of a bent
rectangle is a graph of a Lipschitz function such that it has three facets.
For us regularity means that

dΛ(t, ·) ∈ C2([l0(t), l1(t)]) (resp. dR(t, ·) ∈ C2([r0(t), r1(t)])).
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2.2 The weighted mean curvature κγ

The main difficulty is how to interpret

σ − divS
(

∇ζγ(ζ)|ζ=n(x)

)

. (5)

[After jumping forward to the local coordinates (5) becomes

σ −Wp(dx)x.] (6)

γ (resp. W ) is convex, hence a.e. differentiable, but not at the normal
vectors to the facets.
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Ways to interpret (5):
1) γ is convex, so ∂γ is always well-defined, but we need to find a selection
ξ of ∂γ. Hence, (5) becomes

σ −
∂ξ

∂x

We will use that (5) is the E-L of functionals

EΛ(ξ) =
∫

SΛ
|σ − divSξ|

2H1, ER(ξ) =
∫

SR
|σ − divSξ|

2H1. (7)

2) the method of viscosity solutions, developed by M.-H.Giga and Y.Giga
for graphs, also requires solving an obstacle problem to give meaning to
(6): σ −Wp(dx)x = dΛ

dx , where Λ is a minimizer of a variational problem.
3) as the divergence of a special composition of multivalued functions, de-
veloped by P.B.Mucha and PR, (PBM gave a talk on this on Monday).
We follow 1). After constructing solutions we will discuss 2).
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Variational solutions

A family of couples (Γ(t), ξ(t))t≥0 will be called a variational solution iff
Γ(t) is a bent rectangle and ξ(t) is a solution to

min{EΛ(ξ) : divSξ ∈ L2, ξ(x) ∈ ∂γ(n(x))},

min{ER(ξ) : divSξ ∈ L2, ξ(x) ∈ ∂γ(n(x))}

and eq. (1) is satisfied in the L2 sense.

An advantage of variational solutions is that they are ‘explicit’ compared
to viscosity solutions. However, 3) also yields explicit solutions. Presently,
methods 2) and 3) cannot be applied to construct evolution of closed curves
while 1) works.
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2.3 Equation (1) in a local coordinate system

If we adopt notation as in Fig. 1 then, equation (1) takes the following form

β(dΛx)d
Λ
t =

∂ξΛ

∂x
for s ∈ (−L1, L1)

β(dRx )d
R
t =

∂ξR

∂x
for s ∈ (−R1, R1), (8)

where ξΛ, ξR are minimizers of EΛ, ER.
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Proposition 2.1 Taking into account the form of the minimizers (8) be-
comes

Ṙ0/m(0) =
∫ l0

0
− σ(t, R0, s) ds+

γR
l0

on [0, l0]

dΛt = σ(t, dΛ, s)m(dΛx) for s ∈ (l0, l1)

Ṙ1/m(0) =
∫ L1

l1
− σ(t, R1, s) ds+

2γR
L1 − l1

on [l1, L1]

L̇0/m(0) =
∫ r0

0
− σ(t, s, L0) ds+

γΛ
r0

on [0, r0] (9)

dRt = σ(t, s, dR)m(dRx ) for s ∈ (r0, r1)

L̇1/m(0) =
∫ R1

r1
− σ(t, s, L1) ds+

2γΛ
R1 − r1

on [r1, R1].

Here, m(dx) = 1/β(dx).
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System (9) is not closed until we specify evolution of r0(·), r1(·), l0(·),
l1(·), these are genuine free boundaries. Once we know the position of
the interface this system can be viewed as a system of Hamilton-Jacobi
equations.

At the interface ri, (resp. li), i = 0,1, the matching condition

Li(t) = dR(t, ri), (resp. Ri(t) = dΛ(t, li)) (10)

is equivalent to continuity of dR (resp. dΛ).
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General observation for r0
- characteristics of the HJ eq. turn left, ẋ(t, ζ) = −σ(t, x, dR)m′(dRx ) < 0;
- r0 it is defined as a boundary of the coincidence set.

ρr 00

Functional ER is minimized over a closed convex set, with the constraint
ξ(x) ∈ ∂γ(n(x)). In general, we have a nontrivial coincidence set on S±

R ,

{x : ξ(x) = (±γΛ, γR)} = [−ρ0, r0] ∪ [r0, ρ0].

- in a generic case ṙ0 < 0 or ṙ0 > 0.
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Specific observation for r0 (resp. r1):
- if ṙ0 > 0 (resp. ṙ1 < 0), then (10) defines a ‘shock wave’

nonlocal ODE

x

Hamilton−Jacobi  eq.

classical

00r

0r

- if ṙ0 < 0, (resp. ṙ1 > 0) and if dx(·, r0) = 0 (resp. dx(·, r1) = 0),
then, ξ the solution to the obstacle problem (7) meets ∂γ(n) tangentially
(Kinderlehrer, Stampacchia),

∂ξ

∂x1
(r0) = 0 (resp.

∂ξ

∂x1
(r1) = 0). (11)

We call (11) the tangency condition (TC).
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One can show that (11) is equivalent to

σ(t, r0, L0) =
∫ r0

0
−σ(t, s, L0) ds+

γΛ
r0
,

(resp. σ(t, r1, L1) =
∫ R1

r1
−σ(t, s, L1) ds−

2γΛ
R1 − r1

). (12)

The HJ with boundary data on r0 can be solved iff r0 is faster than the
characteristics, i.e.

ṙ0(t) < ẋ(t, r0(t)).

nonlocal ODE

x00r

0r
classical Hamilton−Jacobi  eq.
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The specific analysis of r1 is slightly different.
If ṙ1 > 0 (i.e. r1 is a tangency curve), the problem

dt = σ(t, x, d)m(dx), d(t, r1(t)) = L1(t)

can always be solved,

x

r1

r
10

nonlocal ODE

classical Hamilton−Jacobi  eq.
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If ṙ1 < 0 (i.e. it is a matching curve), we could have two possibilities,
shock wave rarefaction region

rr

x(., ζ)

1
1

10x(.,r   ) 

The shock wave case occurs, iff

m(p0)

p0
σ(t, x, d0)−m(0)

(

∫R1
r1

σ(t, s, d0) ds− 2γΛ
)

p0(R1 − r1)
< −mp(p0)σ(t, x, d0).

(13)

We do not know how to handle the rarefaction region, yet.
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3. Construction of the interfaces
Proposition 3.1
(a) ṙ0 < 0 (resp. ṙ1 > 0) iff r0 (resp. r1) is a tangency curve, i.e. (12)
holds for all t ≥ 0. Tangency curves are uniquely constructed by the
Implicit Function Theorem.
(b) If ṙ0 > 0 (resp. ṙ1 < 0), then (12) does not hold and the curve is
defined solely by the matching condition, eq. (10), i.e.

L0(t) = dR(t, r0), (resp. L1(t) = dR(t, r1))

equivalent to continuity of dR.

If d+x (0, r0(0)) > 0 (resp. +
x (0, r1(0)) > 0), then the interfacial curve is

unique.
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We can handle the whole system,
Theorem 3.2 Let us suppose that Γ(0) is such that dΛ0 ∈ C2([l0, l1]),
dR0 ∈ C2([r0, r1]), σ satisfies (3), (4). The red provisions hold.
We assume that one of the following conditions occurs at each interfacial
point ri, li, i = 0,1.
(a) the TC holds at r0 (resp. l0) and ṙ0 < 0 (resp. l̇0 < 0), i.e. the facet
shrinks
or (b) ṙ0 > 0 (resp. l̇0 > 0 ) and dRx (r0(0)) > 0 (resp. dΛx(l0(0)) > 0),
i.e. the facet shrinks. (Similar conditions at r1 and l1).
Then, there exists a variational solution to (1).

Idea: we are basically done once we constructed the interfacial curves. In
the cases specified above we can solve the HJ and the system. Finding the
Cahn-Hoffman vector ξ is easy, a formula pops up from the minimization
process.
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4. Uniqueness
Theorem 4.1 If (Γi(t), ξi(t)), i = 1,2, are two regular variational so-
lutions to (1) with the i.c. Γ0, whose all interfacial curves are tangency
curves, then (Γ1(t), ξ1(t)) = (Γ2(t), ξ2(t)) for all t ≥ 0.
Idea of the proof. If we have two regular variational solutions d1, d2, then
in a local coordinate system we can consider their difference p = d2− d1.
This is a solution to the following problem,

pt = Apx+Bp−

(

∂ξ2

∂x
−
∂ξ1

∂x

)

,

where

A = σ2
m(d2x)−m(d1x)

d2x − d1x
, B = m(d1x)

σ2 − σ1

d2 − d1
.

Since the last term has a sign due to monotonicity of ξ and regularity of
solutions imply boundedness of Ax we may apply Gronwall inequality to
deduce that p ≡ 0.
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5. Observations:
– We constructed variational solutions only for regular bent rectangles, but
not for all configurations, see the red text provisions.
– The angle at the corner is artificially set to be right;
– We did not fully exploit the parabolic nature of eq. (8), i.e.

dt =
1

β(dx)

∂ξ

∂x
x ∈ (−L,L),

where ξ ∈ ∂γ(n). More precisely, we have on each side of Γ(t)

dt = a(dx)
(

(W ′(dx))x+ σ(t, x, d)
)

,

where W is merely convex, e.g. W (p) = |p|.

Having more tasks in sight we need a better suited tool. We have seen that
hand constructing variational has some limitations.
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6. Viscosity solutions for graphs (Giga-Giga)
Let us consider evolution of a graph of u on IR by

dt = a(dx)
(

(W ′(dx))x+ σ(t, x)
)

in IR
d(0, x) = d0(x).

(14)

This eq. resembles eq. (1) in the local coordinates.

In order to define viscosity solutions we have to determine (W ′(φx))x +

σ(t, x) for a ‘smooth’ test function φ. Here, we consider W (p) = |p|.
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Definition 6.1 Admissible test functions are φ(x, t) = f(x)+ g(t), where
f, g ∈ C2 and if f ′(x0) = 0, then f ′ |I = 0, where I is an open interval,
x0 ∈ I.

Suppose φ = f + g is admissible, I = (a, b) is a connected component
of f ′ = 0. We set

(W ′(dx))x+ σ(t, x) = Λσχlχr(x, I) :=
dξ

dx

where ξ is a unique solution to

min{
∫

I
|
dξ

dx
|2 : ξ ∈ KZ

χlχr
}

and Z(x) =
∫ x
0 σ(s, t) ds.
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Here χl, χr = ±1 and KZ
χlχr

consists of such H1(I) functions ω, that

Z(x)− γΛ ≤ ω(x) ≤ Z(x) + γΛ x ∈ I

and

ω(a) = Z(a)− χlγΛ, ω(b) = Z(b) + χrγΛ.

Definition 6.2 A continuous real-valued function u on QT := (0, T ) ×
(a, b) is a (viscosity) subsolution of (14) in QT if for each (t̂, x̂) ∈ QT

ψt(t̂, x̂) + a(ψx(t̂, x̂))Λ
Z(t̂,·)(ψ(t̂)) (x̂) ≤ 0, (15)

here ψ(t̂) := ψ(t̂, ·) and ψ is an admissible test function fulfilling

max
Q

(u− ψ) = (u− ψ) (t̂, x̂). (16)

A continuous (viscosity) supersolution is defined by replacing max by min
in (16) and the inequality (15) by the opposite one. If u is both a sub- and
supersolution, u is called a viscosity solution
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Theorem 6.1. (Comparison Principle, Giga-Giga-PR)
Let u and v be respectively continuous sub- and supersolutions of (14) in
QT , where (a, b) is a bounded open interval. If u ≤ v on the parabolic
boundary ∂pQT (= [0, T )×{a, b}∪{0}× [a, b]) of QT , then u ≤ v in QT .

Theorem 6.2 There exists a variational solution of (14).

Theorem 6.3 Variational solutions of (14) are viscosity solutions, hence
they are unique.

Question: Can we apply the viscosity theory to bent rectangles?
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