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The problem we want to deal with is the evo-

lution of domains according to some kinds

of gradient flows which take into account

functionals occurring in spectral optimiza-

tion problems.

For a detailed survey on shape optimization

problems of spectral type we refer to:

G. Buttazzo REMC (2011)

D. Bucur, G. Buttazzo Birkhäuser (2005)

A. Henrot Birkhäuser (2006)

A. Henrot, M. Pierre Springer (2005)
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The study of shape optimization problems encompasses a wide spectrum of
academic research with numerous applications to the real world. In this
work these problems are treated from both the classical and modern
perspectives and target a broad audience of graduate students in pure and
applied mathematics, as well as engineers requiring a solid mathematical
basis for the solution of practical problems.

Key topics and features:

• Presents foundational introduction to shape optimization theory

• Studies certain classical problems: the isoperimetric problem and the  
Newton problem involving the best aerodynamical shape, and              
optimization problems over classes of convex domains

• Treats optimal control problems under a general scheme, giving a     
topological framework, a survey of γ-convergence, and problems          
governed by ODE

• Examines shape optimization problems with Dirichlet and Neumann 
conditions on the free boundary, along with the existence of classical 
solutions

• Studies optimization problems for obstacles and eigenvalues of elliptic 
operators

• Poses several open problems for further research

• Substantial bibliography and index

Driven by good examples and illustrations and requiring only a standard
knowledge in the calculus of variations, differential equations, and
functional analysis, the book can serve as a text for a graduate course in
computational methods of optimal design and optimization, as well as an
excellent reference for applied mathematicians addressing functional shape
optimization problems.

Dorin Bucur and Giuseppe Buttazzo
Variational Methods in Shape Optimization Problems
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Shape optimization problems are generally

written as

min
{
F (Ω) : Ω ∈ A

}
where A is a suitable family of admissible

domains and F is a suitable cost function

defined on A.

In particular we consider problems arising in

spectral optimization: the admissible class

A is made of domains of Rd and the cost

functional F is of one of the following types.
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Integral functionals. Denoting by uΩ the so-
lution (extended by zero outside of Ω) of

−∆u = f in Ω, u ∈ H1
0(Ω)

consider, for a suitable integrand j

F (Ω) =
∫
Rd
j
(
x, uΩ(x)

)
dx.

Spectral functionals. Denoting by λ(Ω) the
spectrum of the Dirichlet Laplacian in Ω,
consider, for a suitable function Φ.

min
{

Φ
(
λ(Ω)

)
: Ω ∈ A

}
.

For instance, for a fixed integer k,

min
{
λk(Ω) : Ω ∈ A

}
.
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The existence of minimizers for this kind of

problems, as well as the related necessary

conditions of optimality, have been studied a

lot, see References above. Several problems

still remain open, even for the existence of

optimal shapes.

Here are some numerical computations (made

by E. Oudet) for the optimal domains of λk,

with prescribed measure.
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No Optimal union of discs Computed shapes

10

46.125 46.125

9

64.293 64.293

8

78.4782.462

7

88.9692.2506

107.47110.42

5

119.9127.88

4

133.52138.37

3

143.45154.62
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Spectral optimization with ShapeBox : the (new) pinched ball conjecture
in collaboration G. Vial

THE SHAPEBOX PROJECT

ShapeBox is a new web interface which allows you to investigate 2D optimization problems related to shape functionals (3D will be available in the next release). Your query is
submitted online, launching the computation dynamically on our server. Once the job is done, you receive an email with a link to the result webpage. Due to the problems which
have motivated its development, ShapeBox is first dedicated to spectral optimization. The objective function may be any algebraic quantity depending on Laplace-Dirichlet,
Laplace-Neumman or Laplace-Beltrami eigenfunctions and other geometrical quantities.

Such optimization problems raise serious numerical difficulties. First the number of connected components of an optimal shape and their topologies are not prescribed.
Additionally, even the simplest functionals have a large number of local minima. Last but not least, it is well known that in the case of multiple eigenvalues cost functionnals are
not differentiable anymore. ShapeBox is designed to tackle those difficulties with the most recent techniques and also to develop new ones! In further developments, we plan to
study optimization problems related to the solution of linear PDE's like elasticity, Stokes equation, Maxwell equations, etc.

Up to now, ShapeBox does not aim at solving real-life problems but gives the opportunity to test model optimization objective functions, under several constraint sets. In a first
step, the resolution relies on a stochastic algorithm which gives a reasonable but not sharp approximation of (one of) the optimal shape(s). Next, this rough approximation is
improved using a new local optimization method which will be described in a forthcoming paper.

ShapeBox is totally free. The procedure being automatic, no mathematical study is carried out and the results are given without any warranty. You can find additional information
on the F.A.Q. page of ShapeBox or on the Solver page dedicated to the definition of your spectral problem (and its constraints). We give below a first flavor of what ShapeBox can
produce.

MOVE YOUR MOUSE ON THE PICTURES TO ANIMATE (BE PATIENT...)

An optimal pinched ball minimizing !3 made of 105 tetrahedrons ? See below for more details.

Pinched ball download: 10^4  tetrahedrons Pinched ball download: 5x10^4  tetrahedrons Pinched ball download: 10^5  tetrahedrons

THE NEW PINCHED BALL CONJECTURE

The simplest shape optimization problem related to spectral quantities is perhaps the minimization of one eigenvalue under measure constraint. Namely :

where  is a fixed integer,  a given non negative constant,  stands for the kth eigenvalue of the Laplace operator with Dirichlet conditions and 

subset of . In 1923, G. Faber and E. Krahn solved that problem for any  when  (see for instance [G. Faber, Beweis, dass unter allen homogenen Membranen von

gleicher Flache a und gleicher Spannung die kreisformige den tiefsten Grundton gibt , Sitz. Ber. o Bayer. Akad. Wiss. (1923), 169-172]). As a matter of fact, by symmetrization
techniques which are quite standard today, it is straightforward to prove that any ball of volume  minimizes  among sets of same volume. This is equivalent to the so

called Faber-Krahn inequality:

where  and  is the first positive zero of the Bessel function .

MOVE YOUR MOUSE ON THE PICTURES OF THE SECOND ROW TO ANIMATE (BE PATIENT...)

English version 

ACCUEIL

TRAVAUX RÉCENTS

PUBLICATIONS

GALERIE

Optimisation spectrale
avec ShapeBox :
conjecture de la boule
pincée

Problème de
partitionnement spectral

Transport branché

Régularisation de
contours discrets, énergie
de Willmore

Découpage optimal

La conjecture de Kelvin

Transport avec effet de
congestion

Minimisation sous
contraintes de volume

Ensembles de largeur
constante

Corps convexes

Un problème de transport

Valeur propres du
Laplacien

Les arbres de Steiner

Simulation localisée d'un
faisceau de particules

CV, RAPPORT ACTIVITÉS

HABILITATION À DIRIGER DES

RECHERCHES

RESUME DE THÈSE

UNE TOOLBOX POUR LA

GÉOMETRIE CONVEXE

 

the best domain for λ3 in R3
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We want to study the shape evolution Ω(t),
starting from a given domain Ω0 according
to a suitable definition of gradient flow.

The theory of minimizing movements was
conceived by De Giorgi to provide a formula-
tion of gradient flow evolutions for very gen-
eral functionals defined on metric spaces.

Recent developments have been made by Am-
brosio, Gigli, Savaré (Birkhäuser 2005) and
can be adapted to our purposes as soon as
the class of admissible domains can be en-
dowed by a suitable dissipation distance.
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The difficulty consists in the fact that a too

“strong” distance does not have enough com-

pactness and domains may evolve into re-

laxed shapes, while a “weak” distance makes

difficult the proof of continuity (or lower semi-

continuity) properties, which are crucial in

the existence proofs.

Several distances on the class of domains can

be considered (Hausdorff, Lebesgue, . . . ) but

an appropriate choice has to take into ac-

count the functional under consideration.
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Let (X, d) be a metric space, u0 ∈ X an ini-
tial condition, and F : X →]−∞,+∞] a func-
tional. For every time step ε > 0 the implicit
Euler scheme of initial condition u0 consists
in constructing a function uε(t) = w([t/ε])
([·] =integer part), by w(0) = u0 and

w(n+ 1) ∈ argmin

{
F (v) +

d2(v, w(n))

2ε

}
.

Definition We say that u : [0, T ] → X is
a generalized minimizing movement for F
with initial condition u0, and we write u ∈
GMM(F, d, u0), if for a subsequence εn → 0

uεn(t)→ u(t) ∀t ∈ [0, T ].
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Many applications of the minimizing move-
ments theory have been done for quasi-static
evolutions (in fracture mechanics and for evo-
lutions in presence of friction terms) and in
Hilbertian settings, where the evolution takes
the form, when F is smooth,

u′ = −∇F (u), u(0) = u0.

In general we have:

Theorem If F is d-l.s.c. with sublevels d-
compact in X, then for every initial condi-
tion u0 ∈ dom F there exists a GMM(F, d, u0)
evolution u(t). Moreover u ∈ AC2(0, T ;X),
i.e. |u′| ∈ L2(0, T ;X).
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The natural framework for our shape prob-
lems is the one of quasi-open domains, i.e.
domains Ω = {u > 0} with u ∈ H1(Rd). For
simplicity we work in a given bounded set D
by considering the class

A(D) = {Ω quasi-open, Ω ⊂ D}.
An interesting distance on A(D) is given by

dγ(Ω1,Ω2) = ‖wΩ1
− wΩ2

‖L2

being wΩ the solution of

−∆u = 1 in Ω, u ∈ H1
0(Ω).

Let RΩ be the resolvent operator of −∆ in
H1

0(Ω), so that wΩ = RΩ(1).
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properties of γ-convergence

• Ωn →γ Ω iff RΩn → RΩ in the L
(
L2(D)

)
operator norm. Then many integral func-
tionals are γ-continuous or γ-l.s.c.

• The γ-convergence is very strong; for in-
stance the spectrum λ(Ω) is γ-continuous.

• The γ-convergence is metrizable on A(D)
but it is not compact; its compactification
coincides with the class of capacitary mea-
sures

M0(D) = {µ(B) = 0 whenever cap(B) = 0}.
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The sets Ωn in the Cioranescu-Murat exam-
ple; their γ-limit is the Lebesgue measure.
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By considering the resolvent operators Rµ(f)

of the PDE

−∆u+ µu = f, u ∈ H1
0(D) ∩ L2

µ

the space M0(D) can be endowed by the

γ-convergence:

dγ(µ1, µ2) = ‖Rµ1(1)−Rµ2(1)‖L2.

• M0(D) is a compact metric space;

• smooth domains of A(D) are γ-dense;

• measures a(x) dx, a smooth, are γ-dense;

• the spectrum of −∆ + µ is γ-continuous.
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Theorem Let F :M0(D)→]−∞,+∞] be γ-
l.s.c. and µ0 ∈ dom F. Then there exists µ ∈
GMM(F, γ, µ0) and µ ∈ AC2(0, T ;M0(D)).

There is a natural one-to-one map between
M0(D) and the convex set

K = {w ∈ H1
0(D) : w ≥ 0, 1+∆w ≥ 0} ⊂ L2(D),

given by

µ 7→ wµ = Rµ(1) with inverse w 7→ µw =
1 + ∆w

w
.

Moreover, the metric structure on M0(D)
and K is the same, since

dγ(µ1, µ2) = ‖wµ1 − wµ2‖L2(D).
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Therefore, every functional F : M0(D) →
]−∞,+∞] can be identified with a functional

J : L2(D)→]−∞,+∞] with dom J ⊂ K

F (µ) = J(wµ) or equivalently J(w) = F (µw).

The variational flow for F in M0(D) can be

then obtained through the gradient flow of

J in L2(D), generated by the implicit Euler

scheme

wn+1
ε ∈ argmin

{
J(w) +

1

2ε

∫
D
|w − wnε |2 dx

}
.

18



Question: if we consider the GMM associ-

ated to the energy functional J(w) = −
∫
Dw(x) dx

and start from a domain Ω0, will the flow

remain in the family of domains or do the

evolution occur in the space of measures?

In general a relaxation phenomenon occurs,

at least at the discrete level. This kind of

phenomenon was numerically observed also

in the framework of quasi-static debonding

membranes [Bucur-Buttazzo-Lux, ARMA 2008],

where the evolution takes place in the family

of relaxed domains (mushy regions).
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If we want to “force” the evolution to take

place in the family of domains, either we

have to add geometrical constraints on the

space of shapes (as convexity, equi-Lipschitz

property, uniform exterior cone condition, . . . )

or we have to modify the dissipation dis-

tance.

Another natural distance is given by the Lebesgue

measure of the symmetric difference

dchar(Ω1,Ω2) = |Ω14Ω2|.
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Since two quasi-open sets may differ for a

negligible set (think for instance in R2 to a

disk and a disk minus a segment), this is not

a proper metric in A(D), so that one should

consider equivalence classes in the family of

shapes.

Theorem Let F : A(D) →] − ∞,+∞] be

γ-l.s.c and monotone decreasing for set in-

clusion. Then, for every Ω0 ∈ dom F there

exists a GMM(F, dchar,Ω0) evolution Ω(t).

Moreover, Ω(t) is increasing in the sense of

set inclusion.
21



Evolution of a ball Let Ω0 = B(0, R0) and

take F (Ω) = λ1(Ω). We may prove that for

every t the set Ω(t) is still a ball centered at

the origin, of radius R(t), with

R(t) =
(
R2d+2

0 +
4(d+ 1)λ1(B(0,1))

d2ω2
d

t

)1/(2d+2)

For instance in the two-dimensional case,

starting from the unit ball R0 = 1, we have

R(t) = (1 + 1.76 t)1/6.
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2 4 6 8 10

1.1

1.2

1.3

1.4

1.5

1.6

Evolution of the radius of a ball for the func-
tional λ1(Ω) starting from R0 = 1.
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Some properties of the flow:

• The map t 7→ F (Ω(t)) may be discontin-

uous.

• Topological genus is not preserved.

• Balls evolve into balls (no symmetry break-

ing) but convexity is not preserved (convex-

ity breaking).
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Some open questions:

• If Ω0 is convex, under which conditions
on Ω0 and m the minimizers of

min
{
λ1(Ω) : Ω0 ⊂ Ω, |Ω| = m

}
are still convex? According to the argument
above, if Ω0 is a square and m is slightly
larger than |Ω0|, then the optimal domains
should not be convex.

• Is it true that the evolution associated to
λ1 converges (after rescaling) as t→ +∞ to
a ball?
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• More generally, is it true that the evolu-

tion associated to λk converges (after rescal-

ing) as t→ +∞ to the minimizer of λk?

• Does the convergence above (if any) oc-

cur in a finite time?

• Is it true that for a spectral shape func-

tional like λk(Ω) every stationary shape is a

minimizer?
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• Prove or disprove that the metric deriva-

tive of λ1 computed at a bounded smooth

set Ω is given by

|λ′1|(Ω) = max
∂Ω

∣∣∣∣∂u1

∂n

∣∣∣∣2.
Precisely, prove that

lim sup
|Ωn\Ω|→0, Ω⊂Ωn

λ1(Ω)− λ1(Ωn)

|Ωn \Ω|
≤ max

∂Ω

∣∣∣∣∂u1

∂n

∣∣∣∣2.
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Variations on the theme

• Constraint on the measure. An alterna-
tive evolution is to work in the class {|Ω| =
m}. The incremental problem is then

Ωn+1
ε ∈ argminΩ∈A(D),|Ω|=m

{
F (Ω)+

1

2ε
|Ωn

ε4Ω|2
}

The existence of a flow Ω(t) is not clear.
Nevertheless, one can construct discrete so-
lutions of the incremental scheme.
An alternative way is to replace the mea-
sure constraint by adding a penalization term
in the functional, i.e. to replace F (Ω) by
F (Ω) + c|Ω|.
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• Perimeter penalization. One can alterna-

tively introduce a penalization on the perime-

ter. In this case, the incremental step reads

Ωn+1
ε ∈ argminΩ∈A(D)

{
F (Ω)+PD(Ω)+

1

2ε
|Ωn

ε4Ω|2
}

where PD(Ω) denoted the perimeter of Ω

into D.

The topology given by dchar turns out to be

compact on the sublevels of F + PD.
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• Hausdorff complementary distance. If we

consider the Hausdorff complementary dis-

tance

dHc(Ω1,Ω2) = max
x∈D

|d(x,D\Ω1)−d(x,D\Ω2)|,

and F is increasing for the set inclusion, then,

there exists a flow of the form

Ω(t) = D \ (Ωc
0 +Bf(t)),

with f is continuous and increasing.
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• Hausdorff distance. Similarly, for the Haus-

dorff distance

dH(F1, F2) = max
x∈D

|d(x, F1)− d(x, F2)|

and functionals F decreasing for the set in-

clusion, the existence of a flow of the form

Ω(t) = int(Ω0 +Bf(t))

can be obtained, with f continuous and in-

creasing.
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• Flows of convex shapes. We may restrict
the evolution to convex domains:

K(D) = {K ⊂ D : K open and convex}.
There are various distances on K, all topo-
logically equivalent:

- the Hausdorff distance;

- d2(K1,K2) = ‖bK1
− bK2

‖L2(D), where bK
is the oriented distance function;

- the L1 distance of the characteristic func-
tions dchar(K1,K2) = |K14K2|.
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Let F : K(D) → R be a γ-lower semicon-

tinuous shape functional which satisfies the

coercivity assumption:

F (Kn)→ +∞ whenever |Kn| → 0.

Notice that all previous topologies are com-

pact on sublevels of F . Therefore we have:

Theorem For each of the distances dH , dchar, d2,

and for every initial convex set K0 ∈ D(F ),

there exists an evolution flow K(t) starting

from K0.
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