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The problem we want to deal with is the evo-
lution of domains according to some Kinds
of gradient flows which take into account
functionals occurring in spectral optimiza-
tion problems.

For a detailed survey on shape optimization
problems of spectral type we refer to:

. Buttazzo REMC (2011)

. Bucur, G. Buttazzo Birkhauser (2005)
Henrot Birkhauser (2006)
Henrot, M. Pierre Springer (2005)
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Shape optimization problems are generally
written as

min {F(Q) : Q€ Al

where A is a suitable family of admissible
domains and F' is a suitable cost function
defined on A.

In particular we consider problems arising in
spectral optimization: the admissible class
A is made of domains of R? and the cost
functional F' is of one of the following types.

4



Integral functionals. Denoting by uqo the so-
lution (extended by zero outside of Q2) of

—Au= fin Q, u e H3(Q)
consider, for a suitable integrand j

F(Q) = /Rdj(a:, uQ(:c)) dzx.

Spectral functionals. Denoting by A(£2) the
spectrum of the Dirichlet Laplacian in €2,
consider, for a suitable function .

min {CID()\(Q)) : Q EA}.
For instance, for a fixed integer k,
min {Ak(Q) . Q€ A}.



The existence of minimizers for this kind of
problems, as well as the related necessary
conditions of optimality, have been studied a
lot, see References above. Several problems
still remain open, even for the existence of
optimal shapes.

Here are some numerical computations (made
by E. Oudet) for the optimal domains of A,
with prescribed measure.



No Optimal union of discs Computed shapes

3 Q 46.125 O 46.125
4 O Q 64.293 O Q 64.293
5 O QQ 82.462 @ 78.47
6 O Q 92.250 Q 88.96
7 O QQ 110.42 Q Q 107.47
8 Q 127.88 O 119.9
9 OO0 18837 @ 133.52
10 Q 154.62 @ 143.45



the best domain for A3 in R3



We want to study the shape evolution (%),
starting from a given domain £2p according
to a suitable definition of gradient flow.

The theory of minimizing movements was
conceived by De Giorgi to provide a formula-
tion of gradient flow evolutions for very gen-
eral functionals defined on metric spaces.

Recent developments have been made by Am-
brosio, Gigli, Savaré (Birkhauser 2005) and
can be adapted to our purposes as soon as
the class of admissible domains can be en-
dowed by a suitable dissipation distance.
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The difficulty consists in the fact that a too
“strong” distance does not have enough com-
pactness and domains may evolve into re-
laxed shapes, while a “weak’ distance makes
difficult the proof of continuity (or lower semi-
continuity) properties, which are crucial in
the existence proofs.

Several distances on the class of domains can
be considered (Hausdorff, Lebesgue, ...) but
an appropriate choice has to take into ac-
count the functional under consideration.
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Let (X,d) be a metric space, ug € X an ini-
tial condition, and F' : X —]—o00,+o0] a func-
tional. For every time step € > 0 the implicit
Euler scheme of initial condition ug consists
in constructing a function wu:(t) = w([t/e])
([-] =integer part), by w(0) = ug and

d? (v, w(n))
2¢ '

Definition We say that v : [0,T] — X is
a generalized minimizing movement for F
with initial condition ug, and we write u €
GMM(F,d,up), if for a subsequence ¢, — 0

ue, (t) — u(t) vt € [0,T].

w(n + 1) € argmin {F(v) +

11



Many applications of the minimizing move-
ments theory have been done for quasi-static
evolutions (in fracture mechanics and for evo-
lutions in presence of friction terms) and in
Hilbertian settings, where the evolution takes
the form, when F' is smooth,

v =—-VF(u), u(0)=ug.
In general we have:

Theorem If F is d-l.s.c. with sublevels d-
compact in X, then for every initial condi-
tion ug € domF there exists a GM M (F, d, ug)
evolution u(t). Moreover v € AC%(0,T; X),
i.e. [v/| € L?(0,T; X).
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The natural framework for our shape prob-
lems is the one of quasi-open domains, i.e.
domains = {u > 0} with v € H}(R%). For
simplicity we work in a given bounded set D
by considering the class

A(D) = {2 quasi-open, 2 C D}.
An interesting distance on A(D) is given by
d’Y(Qla QQ) — ||w§21 o wQQHLQ
being wo the solution of
~Au=1in Q, u e H3 ().

Let Ro be the resolvent operator of —A in
H3(£2), so that wo = Rq(1).
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properties of v-convergence

o Qy —y Q iff Rg, — Ro in the £L(L2(D))
operator norm. Then many integral func-
tionals are ~v-continuous or ~-l.s.cC.

e [ he ~-convergence is very strong; for in-
stance the spectrum A(£2) is y-continuous.

e The ~-convergence is metrizable on A(D)
but it is not compact; its compactification
coincides with the class of capacitary mea-
sures

Mo(D) = {u(B) = 0 whenever cap(B) = 0}.
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The sets €2, in the Cioranescu-Murat exam-
ple; their v-limit is the Lebesgue measure.

15



By considering the resolvent operators R, (f)
of the PDE
—Au+ pu = f, uGH&(D)ﬂLi

the space Mg(D) can be endowed by the
~v-convergence:

dv(/ila.UQ) — ||Ru1(1) — R,ug(l)HLQ-

e Mp(D) is a compact metric space;

e smooth domains of A(D) are ~-dense;

e measures a(x) dx, a smooth, are y-dense;
e the spectrum of —A + u is y-continuous.
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Theorem Let F' : Mg(D) —] —o00, 4] be v-
l.s.c. and ug € domF. Then there exists pu €
GMM(F,~,uo) and pu € AC2(0,T; Mg(D)).

There is a natural one-to-one map between
Mqp(D) and the convex set

K={we H}D) : w>0, 1+Aw >0} C L?(D),
given by

1 4+ Aw

p— wy = Ru(1l) with inverse w — py =
w

Moreover, the metric structure on Mg(D)
and K is the same, since

d*y(/ilaliz) — ||wu1 - wM2||L2(D)-
17



Therefore, every functional F : Mg(D) —
] — o0, +0o0] can be identified with a functional
J : L2(D) —] — 0o, +00] with domJ C K

F(p) = J(wy) or equivalently J(w) = F(pw)-

The variational flow for F' in Mg(D) can be
then obtained through the gradient flow of
J in L?(D), generated by the implicit Euler
scheme

1
w?+1 € argmin {J(w) + Q_/D lw — w?|2d:c}.
£
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Question: if we consider the GM M associ-
ated to the energy functional J(w) = — [pw(z) dx
and start from a domain £2g, will the flow
remain in the family of domains or do the
evolution occur in the space of measures?

In general a relaxation phenomenon occurs,

at least at the discrete level. This kind of
phenomenon was numerically observed also

in the framework of quasi-static debonding
membranes [Bucur-Buttazzo-Lux, ARMA 2008],
where the evolution takes place in the family

of relaxed domains (mushy regions).
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If we want to "force” the evolution to take

place in the family of domains, either we

have to add geometrical constraints on the

space of shapes (as convexity, equi-Lipschitz

property, uniform exterior cone condition, ...)
or we have to modify the dissipation dis-

tance.

Another natural distance is given by the Lebesgue
measure of the symmetric difference

dehar(§21,$22) = [21A825].
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Since two quasi-open sets may differ for a
negligible set (think for instance in R? to a
disk and a disk minus a segment), this is not
a proper metric in A(D), so that one should
consider equivalence classes in the family of
shapes.

Theorem Let F : A(D) —] — oo,+00] be
~v-1.s.c and monotone decreasing for set in-
clusion. Then, for every 20 € domF there
exists a GMM (F,d_.,,,, 20) evolution Q(t).

Moreover, Q2(t) is increasing in the sense of
set inclusion.
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Evolution of a ball Let 29 = B(0, Rp) and
take F(2) = A\1(£2). We may prove that for
every t the set Q(¢) is still a ball centered at
the origin, of radius R(t), with

4(d+ 1)X1(B(0, 1>)t 1/(2d+2)
d2w§ )

For instance in the two-dimensional case,

starting from the unit ball Rg = 1, we have

R(t) = (14 1.76 1)1/,
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2 4 6 8 10

Evolution of the radius of a ball for the func-
tional A\ (€2) starting from Rg = 1.
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Some properties of the flow:

e The map t— F(L2(¢t)) may be discontin-
uous.

e Topological genus is not preserved.

e Balls evolve into balls (no symmetry break-
ing) but convexity is not preserved (convex-
ity breaking).
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Some open questions:

o If Q2 is convex, under which conditions
on 2o and m the minimizers of

min{Al(Q) . Qo C &, |Q|=m}

are still convex? According to the argument
above, if €29 is a square and m is slightly
larger than |2g|, then the optimal domains
should not be convex.

e Is it true that the evolution associated to
A1 converges (after rescaling) as t —+ oo to

a ball?
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e More generally, is it true that the evolu-
tion associated to A\, converges (after rescal-
ing) as t — +oo to the minimizer of \.?

e Does the convergence above (if any) oc-
cur in a finite time?

e Is it true that for a spectral shape func-
tional like A\, (€2) every stationary shape is a

minimizer?
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e Prove or disprove that the metric deriva-
tive of A1 computed at a bounded smooth
set €2 is given by

0,
BV |(Q)—max' u |2
Precisely, prove that
A1(€2) — A\1(2 Ouq |2
lim sup 1(€2) 1( ”)<maxﬂ .

12,\2|—0, QCQ, 12, \ Q2 = 9Q | oOn
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Variations on the theme

e Constraint on the measure. An alterna-
tive evolution is to work in the class {|Q2| =
m}. The incremental problem is then

: 1
Q?"’l € argming e A(p),|Q|=m {F(Q)—|—2—€|QQAQ|2}

The existence of a flow (t) is not clear.
Nevertheless, one can construct discrete so-
lutions of the incremental scheme.

An alternative way is to replace the mea-
sure constraint by adding a penalization term
in the functional, i.e. to replace F(£2) by
F(2) + |<2].
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e Perimeter penalization. One can alterna-
tively introduce a penalization on the perime-
ter. In this case, the incremental step reads

: 1
Q?"’l € argming e 4(p) {F(Q)+PD(Q)—|—2—€|Q?AQ|2}

where Pp(£2) denoted the perimeter of Q
into D.

The topology given by d.;,, turns out to be
compact on the sublevels of F' + Pp.
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e Hausdorff complementary distance. If we
consider the Hausdorff complementary dis-
tance

dre(21,822) = m;% |d(xz, D\Q21)—d(x, D\S22)],
o

and F'is increasing for the set inclusion, then,
there exists a flow of the form

Q(t) = D\ (25 + By)),

with f is continuous and increasing.
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e Hausdorff distance. Similarly, for the Haus-
dorff distance

drg(F1, Fo) = max|d(x, F1) — d(z, F2)]
xeD

and functionals F' decreasing for the set in-
clusion, the existence of a flow of the form

Q(t) = Int(o + Byepy)

can be obtained, with f continuous and in-
creasing.
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e Flows of convex shapes. We may restrict
the evolution to convex domains:

K(D)={K CD : K open and convex}.

T here are various distances on K, all topo-
logically equivalent:

-  the Hausdorff distance;

- do(Kq, K2) = [[bgy — b, ll2(py. Where by
IS the oriented distance function;

- the L! distance of the characteristic func-
tions dchar(KlaKQ) — |K1AK2|-
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Let FF : K(D) — R be a ~-lower semicon-
tinuous shape functional which satisfies the
coercivity assumption:

F(Kp) —» +oc whenever |Ky| — 0.

Notice that all previous topologies are com-
pact on sublevels of F'. Therefore we have:

Theorem For each of the distances dg, d.;qr, d2,
and for every initial convex set Kg € D(F),
there exists an evolution flow K(t) starting
from Kj.
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