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Plan of the talk

motivations

the ill-posed parabolic problem.

the viscous regularization.

the semidiscrete regularization.

passing to the limit for a class of initial data precisely leading to
formation of microstructures.

a notion of solution of a new equation.
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MOTIVATIONS

• Anisotropic mean curvature flow, i.e. (formal) gradient flow of

∂E →
∫

∂E
γ(ν)

when the anisotropy γ (Frank diagram = {γ = 1}) is nonconvex.
Numerical observations [M. Paolini et al.] show quick formation of
microstructures (instabilities) in the local unstable region of ∂E , i.e.,
regions of ∂E where ν (normalized) belongs to the concave part of the
Frank diagram, and not in the whole region where ν belongs to
{γ = 1} 6= {γ∗∗ = 1}.
• The evolution is not, in general, the evolution obtained by convexifying
γ.

• Ill-posed PDEs: forward-backward parabolic equations. Regularizations
may lead (in the limit) to a free boundary problem.
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THE PROBLEM

1 p+
concave part of W
p

2W(p) = (1 p )2

1

The formal gradient flow of F (u) =

∫
T

W (ux) dx
ut = (W ′(ux))x in T× [0,T ]

u(0) = u. on T× {0}

ill-posed. Typical source of instabilities when

ux(x) ∈ (p−, p+) := {W ′′ < 0} concave part of W

Problem: can we define a reasonable notion of solution in these cases?
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Define the local unstable region of u,

LUS(u) :=
{

x ∈ T : ux(x) ∈ {W ′′ < 0}
}

Our problem is: can we flow u with LUS(u) 6= ∅, initial data precisely
leading to microstructures?

)

slope p slope p +

slope 1 slope 1
u
_

slopes of microstructure = 1, 1 = LUS( u
_

Natural idea: regularize the equation. Different regularizations could lead
to different solutions.

Giovanni Bellettini (Roma) Forward-backward parabolic equations ... FBP2012 6 / 20



[Plotnikov], [Barenblatt et al.], [Evans & Portilheiro], [Smarrazzo & Tesei]

ut = ε2utxx + (W ′(ux))x

or, with v = ux , vt = ε2vtxx + (W ′(v))xx .

[Slemrod], [De Giorgi], [B., Fusco & Guglielmi]: viscous regularization

ut = −ε2uxxxx + (W ′(ux))x , u(0) = uε

_

slope p slope p +

slope 1 slope 1
u

Artificially imposing a microstructure in a region ⊃ LUS(u) seems to
change the solution.
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Pass to the Cahn-Hilliard equation with v := ux ,

vt = −
(
ε2vxx + W ′(v)

)
xx

, v(0) = v ε

Theorem (BBMN)

∃ limε→0 vε = v solution of the convexified problem

vt = (W ∗∗′(v))xx

if we energetically prepare v.

Set

Fε(v) :=

∫
T

[
ε(vx)

2 +
1

ε
W (v)

]
Energetically preparing v means

Fε(v ε) → F ∗∗(v) :=

∫
T

W ∗∗(v).

Roughly, this means to superimpose the microstructure on the whole
region between slopes −1 and 1.
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_

slope p slope p +

slope 1 slope 1
u

Proof: we follow an idea of [Sandier & Serfaty] based on coerciveness and
Γ-liminf property of the functionals∫

T

[(
W ′(v)− ε2vxx

)
x

]2

• Ttheorem [BBCN] does not solve our original problem. What happens if
we superimpose the microstructure in an intermediate region containing
LUS(u)?
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Semidiscrete discretization:


duh

dt
= D+

h W ′(D−
h uh) in T× [0,+∞)

uh(0) = uh on T× {0}

h > 0 grid size, D±
h difference quotients, uh discrete initial data converging

to u as h → 0+.

• a compactness property cannot be obtained for D−
h uh: uh have

oscillations which are typically of order h in LUS(uh).
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Theorem (Geldhauser & Novaga (2011))

• ∃ limh→0+ uh Lipschitz function u, when the gradients of u and uh lie in
{W ′′ ≥ 0}, with possible jumps from one connected component to
another (LUS(u) is pointwise) with continuity of W ′(ux).
• Preserving of the M+ Lipschitz constant: the condition

|ux(x)| ≤ M+ is preserved

• Avoidance preserving property of LUS:

LUS(u) = ∅ ⇒ LUS(u(t)) = ∅

p p+

W�’

M M+ M=
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Theorem [NG] does not solve our problem. We need to remove the
assumption that the gradient of u belongs to {W ′′ ≥ 0}.

pointwise

u

LUS ( )u
_

_

an interval

slope p slope p +

slope 1 slope 1
u
_

LUS(
_

)u
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From now on we suppose

|ux(x)| ≤ M+, x ∈ T

p p+

W�’

M M+ M=

p+p M+

W

allowed region for gradient of u
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We will pass to the limit and characterize the limit equation. Approximate
u with any uh so that

LUS(uh) = ∅

This approximation can be made in several different ways. The limit
solution could depend on the approximation we choose: this will be the
case.
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How to find conditions on u so that uh have LUS(uh) = ∅?
Endow u with an auxiliary function

% ∈ L∞(T; [0, 1])

percentage of mesh intervals where uh is decreasing in a
neighborhood of the point x ∈ T.

the (discrete) gradients of uh must be a combination of allowed
gradients; this is dictated by %.

use the avoidance preserving properties of LUS to ensure that
LUS(uh(t)) = ∅.
find a new scale, larger than h, so that the gradients of uh(t),
averaged at this scale, converge. The scale is dictated by %.

pass to the limit. The new scale is source of a new limit equation, of
the form

ut =
(
W ′(q(ux , %))

)
x
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Aim: for fixed p ∈ [M−,M+] and σ ∈ [0, 1], define q(p, σ) appearing in
the new equation (p = ux(x , t), σ = %(x)).

+q p p+

W�’

T(q)M M

First define the map T

T : [M−,M+] \ (p−, p+) → [M−,M+] \ (p−, p+)

given q, T(q) is such that

W ′(q) = W ′(T(q))
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Given p ∈ [−M−,M+] and σ ∈ [0, 1] solve in q the problem:

q ∈ [M−,M+] \ (p−, p+)

σq + (1− σ)T(q) = p

Define q = q(p, σ) as the smallest between q and T(q), which is negative.

Definition

Given u, a percentage % of negative slopes is any function in L∞(T; [0, 1])
such that

q(ux(x), %(x)) < 0

%(x)q(ux(x), %(x)) + (1− %(x))T(q(ux(x), %(x))) = ux(x)
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• A percentage % of negative slopes always exists.
• Not uniquely determined. Since limit solution u depends on %, u not
uniquely determined. Also when LUS(u) = ∅.
• LUS(u) = ∅

% ≡ 0 or % ≡ 1

• LUS(u) pointwise
%(x) ∈ {0, 1}

• u with alternate regions where ux is in {x < 0 : W ′′(x) > 0}, in
{W ′′ < 0} and in {x > 0 : W ′′(x) > 0}

%(x) ∈
{

0,
1

2
, 1

}
1/2 in LUS(u).
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Construction of uh from %. Assume

%(x) = σ =
m

n
∈ [0, 1], x ∈ I

We partition I into subintervals of length nh: in [knh, (k + 1)nh], the
averaged slope of u is given by

(D−
nh uh)i :=

uh
i − uh

i−n

nh

We impose:

uh has the same averaged slope of u in [knh, (k + 1)nh];

LUS(uh) = ∅;
uh is decreasing with slope qk on m mesh subintervals of
[knh, (k + 1)nh], and increasing with slope T(qk) on the remaining
n −m mesh subintervals, where

qk := q (pk , σ) < 0, pk := (D−
nh u)(k+1)n
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Theorem (BGN)

Let u and % be given. Let uh be as above. Then the averaged discrete
gradients of uh are compact, and uh → u, where u solves distributionallyut =

(
W ′(q(ux , %))

)
x

u(0) = u
(1)

• This result covers the case of a specific choice of %, and gives a notion of
solution to the original ill-posed problem, for a large class of initial data u.

• No uniqueness for solutions obtained as limits of the semidiscrete
scheme approximating u with uh so that LUS(uh) = ∅.
• There seems not to be a choice of σ reproducing the solution
numerically observed with the viscous regularization of fourth order.
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