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Plan of the talk

motivations
the ill-posed parabolic problem.

the semidiscrete regularization.
passing to the limit for a class of initial data precisely leading to
formation of microstructures.

o

o

@ the viscous regularization.
°

°

a notion of solution of a new equation.
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MOTIVATIONS

e Anisotropic mean curvature flow, i.e. (formal) gradient flow of

0E — | ~(v)
OE

when the anisotropy v (Frank diagram = {~ = 1}) is nonconvex.
Numerical observations [M. Paolini et al.] show quick formation of
microstructures (instabilities) in the local unstable region of JE, i.e.,
regions of OE where v (normalized) belongs to the concave part of the
Frank diagram, and not in the whole region where v belongs to
{y=1#{" =1}

e The evolution is not, in general, the evolution obtained by convexifying
5.

e lll-posed PDEs: forward-backward parabolic equations. Regularizations
may lead (in the limit) to a free boundary problem.
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THE PROBLEM

W(p) = (1-p)’*

pt 1

-1

concave part of W

The formal gradient flow of F(u) = / W (uy) dx
T
ur = (W'(ux))x inT x [0, T]

u(0) = . on T x {0}

ill-posed. Typical source of instabilities when
Ux(x) € (p~, p") := {W" < 0} concave part of W

Problem: can we define a reasonable notion of solutionsin these cases?
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Define the local unstable region of v,
LUS(7) := {x e T: Tu(x) € {W" < 0}}

Our problem is: can we flow T with LUS(@) # 0, initial data precisely
leading to microstructures?

/ N\

slope p™ [ slope p™

slopes of microstructure = 1,-1 = LUS(u )

Natural idea: regularize the equation. Different regularizations could lead
to different solutions.
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@ [Plotnikov], [Barenblatt et al.], [Evans & Portilheiro], [Smarrazzo & Tesei]
ur = 62Utxx + (W/(Ux))x

or, With v = uy, vt = €2V + (W/(v))xx-

@ [Slemrod], [De Giorgi], [B., Fusco & Guglielmi]: viscous regularization

uy = _€2Uxxxx + (WI(UX))X7 U(O) = Ue

u

slope —1

P

slope p ™ slope p*

Artificially imposing a microstructure in a region D LUS(7) seems to
change the solution.
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Pass to the Cahn-Hilliard equation with v := u,,

Ve = — (€vax + W'(v)) .. v(0) = Ve

Theorem (BBMN)
dlime_q ve. = v solution of the convexified problem

ve = (W' (V)

if we energetically prepare v.

Set

Energetically preparing v means

Fo(Ve) = F™(v) := /T W**(v).

Roughly, this means to superimpose the microstructure on the whole
region between slopes —1 and 1.
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slope 1
—

p;

slope p~ slope p*

Proof: we follow an idea of [Sandier & Serfaty] based on coerciveness and
I-liminf property of the functionals

Llwwr-éw) |

e Ttheorem [BBCN] does not solve our original problem. What happens if
we superimpose the microstructure in an intermediate region containing
LUS(w)?
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@ Semidiscrete discretization:

du”

= D;f W'(D, u") in T x [0, +00)

uh(0) = @’ on T x {0}

h > 0 grid size, Dhi difference quotients, T" discrete initial data converging
towas h— 0F.

e a compactness property cannot be obtained for D, u™: uh have
oscillations which are typically of order h in LUS(u").
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Theorem (Geldhauser & Novaga (2011))

e Jlimy_ o+ u” Lipschitz function u, when the gradients of T and T" lie in
{W" > 0}, with possible jumps from one connected component to
another (LUS(T) is pointwise) with continuity of W'(uy).

e Preserving of the MT Lipschitz constant: the condition

[T (x)| < MT is preserved

e Avoidance preserving property of LUS:

LUS(@) =0 = LUS(u(t)) =0
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Theorem [NG] does not solve our problem. We need to remove the

assumption that the gradient of T belongs to {W" > 0}.

u

LUS(u) pointwise

slope 1

/ N

slope p™ [ slope p*

LUS(u) an interval
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From now on we suppose

G (x) <MY, xeT

o p* M

allowed region for gradient of
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We will pass to the limit and characterize the limit equation. Approximate
T with any @" so that
LUS(@™) =0

This approximation can be made in several different ways. The limit
solution could depend on the approximation we choose: this will be the
case.
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o How to find conditions on T so that 7" have LUS(@") = ()?
Endow © with an auxiliary function

0 € L*(T;[0,1])

percentage of mesh intervals where " is decreasing in a
neighborhood of the point x € T.

o the (discrete) gradients of " must be a combination of allowed
gradients; this is dictated by p.

@ use the avoidance preserving properties of LUS to ensure that
LUS(u"(t)) = 0.

o find a new scale, larger than h, so that the gradients of uh(t),
averaged at this scale, converge. The scale is dictated by 9.

@ pass to the limit. The new scale is source of a new limit equation, of
the form

ue = (W(a(ux2)))
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Aim: for fixed p € [M~,M*] and o € [0, 1], define g(p, o) appearing in
the new equation (p = ux(x, t), o = 9(x)).

M q p- pt T(@ M+

First define the map T
T:[M™, M\ (p~,p") = M~ ,M*]\ (p~, p")
given g, T(q) is such that
W'(q) = W'(T(q))
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Given p € [-M~,M*] and o € [0, 1] solve in g the problem:
g€ [M™, M\ (p™,p")
oq+(1—-0)T(q) =p
Define g = q(p, o) as the smallest between g and T(q), which is negative.
Definition
Given T, a percentage o of negative slopes is any function in L>°(T; [0, 1])

such that
q(dx(x), o(x)) <0

0(x)q(x(x), 2(x)) + (1 — 2(x))T(q(vx(x), 2(x))) = Ux(x)
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e A percentage p of negative slopes always exists.
e Not uniquely determined. Since limit solution v depends on g, u not
uniquely determined. Also when LUS(7) = 0.
e LUS() =0
0=0 or p=1
e LUS(7) pointwise
o(x) €{0,1}

e T with alternate regions where Ty is in {x < 0: W"(x) > 0}, in
{W" <0} and in {x >0: W’(x) >0}

a(x) € {0,;,1}

1/2 in LUS(7).
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Construction of T" from 3. Assume
@(x):az%é[o,l], xel

We partition / into subintervals of length nh: in [knh, (k + 1)nh], the
averaged slope of @ is given by

ult —ub

— hy . i i—
(Dnh u ),' :Tn

We impose:
o " has the same averaged slope of @ in [knh, (k + 1)nh];
e LUS(z") = 0;
e " is decreasing with slope G, on m mesh subintervals of

[knh, (k 4+ 1)nh], and increasing with slope T(q,) on the remaining
n — m mesh subintervals, where

qy = q(bkaa) <0, Pk = (Dn_h U)(k—i—l)n
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Theorem (BGN)

Let T and G be given. Let T" be as above. Then the averaged discrete
gradients of u" are compact, and u" — u, where u solves distributionally

ue = (W/(a(ux2)))

1
u(0)=1u )

v

e This result covers the case of a specific choice of g, and gives a notion of
solution to the original ill-posed problem, for a large class of initial data @.

e No uniqueness for solutions obtained as limits of the semidiscrete
scheme approximating @ with @" so that LUS(z") = 0.

e There seems not to be a choice of ¢ reproducing the solution
numerically observed with the viscous regularization of fourth order.
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