		Derivation of model with particles	
000	0000		

A continuum model of colloid-stabilized systems

Sebastian Aland¹ Axel Voigt¹ John Lowengrub²

 $^{1}\mathrm{Technical}$ University Dresden, Germany $^{2}\mathrm{University}$ of California Irvine, USA

June 11-15 2012, Free Boundary Problems, Chiemsee

A continuum model of colloid-stabilized systems

Sebastian Aland, TU Dresden, Germany

- - E - F

	Background	Derivation of model with particles		
000	0000	000000000	0000000000	
Bijels				

- Two immiscible fluids, separated by jammed colloidal particles
- Similar to Pickering emulsions
- Unusual material properties, interesting applications
- Challenging for simulations (and experiments)
- Our approach: Couple NS + CH + PFC

Bijels	Background	Derivation of model with particles	Results	
000	0000	0000000000	0000000000	
Rijels				

- Two immiscible fluids, separated by jammed colloidal particles
- Similar to Pickering emulsions
- Unusual material properties, interesting applications
- Challenging for simulations (and experiments)
- Our approach: Couple NS + CH + PFC

Bijels 000	Background 0000	Derivation of model with particles 0000000000	Results 0000000000	
Bijels				

- Two immiscible fluids, separated by jammed colloidal particles
- Similar to Pickering emulsions
- Unusual material properties, interesting applications
- Challenging for simulations (and experiments)
- Our approach: Couple NS + CH + PFC

Bijels	Background	Derivation of model with particles	Results	
000	0000	0000000000	0000000000	
Bijels				

• Two immiscible fluids, separated by jammed colloidal particles

- Similar to Pickering emulsions
- Unusual material properties, interesting applications
- Challenging for simulations (and experiments)
- Our approach: Couple NS + CH + PFC

Bijels 000	Background 0000	Derivation of model with particles 0000000000	Results 0000000000	
Bijels				

- Two immiscible fluids, separated by jammed colloidal particles
- Similar to Pickering emulsions
- Unusual material properties, interesting applications
- Challenging for simulations (and experiments)
- Our approach: Couple NS + CH + PFC

		Derivation of model with particles		
000	0000	000000000	0000000000	
Outline				

1 Bijels

Background

- Multiphase fluid model
- Bulk-Surface coupling
- 3 Derivation of model with particles
 - Sharp interface model
 - Diffuse interface model
 - Numerical treatment

Results

э

• = •

Bijels	Background	Derivation of model with particles	Results	
●00	0000	0000000000	0000000000	
How to	create a Bij	el?		

- Take two immiscible fluids initially in one phase
- Add colloidal particles
- Induce spinodal decomposition by deep quenching
- A huge interfacial area is created and coarsens fast due to surface tension
- Colloids attach to the interface
- Colloids jam and thus stabilize the structure
- Applications: new and better gels, fuel cells, microreactors, ...

Bijels ⊙●O	Background 0000	Derivation of model with particles	Results 0000000000	
Bijels -	State of the	e art		

• Initially proposed by computer simulations (Lattice Boltzmann, Dissipative Particle Dynamics)

Stratford et al., Science, 2005

• Experimentally confirmed

Herzig et al., Nature Materials, 2007

• Systems stable for very long times (e.g., months).

Bijels	Background	Derivation of model with particles		Summary
000	0000	000000000	000000000	
Bijels -	- Challenge	S		

Open questions

- Material properties
- Long-time stability

Challenges for Computer Simulations

- various spatial scales (domain size vs. intercolloidal forces)
- various time scales (arrest of the structure vs. colloidal motion)
- still a gap between experiments and simulations
- Lattice-Boltzmann/Diffusive Particle Dynamics simulations not suitable for long-time simulations

Our Approach

Couple Navier-Stokes Cahn-Hilliard equation with a Phase-Field-Crystal on the interface

Bijels	Background	Derivation of model with particles		Summary
000	0000	000000000	000000000	
Bijels -	- Challenge	es		

Open questions

- Material properties
- Long-time stability

Challenges for Computer Simulations

- various spatial scales (domain size vs. intercolloidal forces)
- various time scales (arrest of the structure vs. colloidal motion)
- still a gap between experiments and simulations
- Lattice-Boltzmann/Diffusive Particle Dynamics simulations not suitable for long-time simulations

Our Approach

Couple Navier-Stokes Cahn-Hilliard equation with a Phase-Field-Crystal on the interface

イロト イポト イヨト イヨ

Bijels	Background	Derivation of model with particles	Results	Summary
000	0000	000000000	000000000	
Bijels -	Challenge	2S		

Open questions

- Material properties
- Long-time stability

Challenges for Computer Simulations

- various spatial scales (domain size vs. intercolloidal forces)
- various time scales (arrest of the structure vs. colloidal motion)
- still a gap between experiments and simulations
- Lattice-Boltzmann/Diffusive Particle Dynamics simulations not suitable for long-time simulations

Our Approach

Couple Navier-Stokes Cahn-Hilliard equation with a Phase-Field-Crystal on the interface

イロト イポト イヨト イヨト

	Background	Derivation of model with particles	
000	0000	000000000	0000000000
	0 • 1	1 1 7	

Multiphase fluid model I

 ∇

Classical Model

$$\rho(\chi) \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \boldsymbol{\nabla}) \mathbf{u} \right) = -\nabla p + \boldsymbol{\nabla} \cdot \left(\eta(\chi) \left(\boldsymbol{\nabla} \boldsymbol{u} + \boldsymbol{\nabla} \boldsymbol{u}^T \right) \right) - \sigma \kappa \boldsymbol{n} \delta_{\Gamma}, \quad (1)$$

$$\dot{\mathbf{U}} \cdot \mathbf{u} = 0, \tag{2}$$

$$\frac{\partial \chi}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \chi = 0, \qquad (3)$$

where where χ identifies one of the domains, κ is the total curvature, n is the normal vector, δ_{Γ} is the surface delta function and σ is the surface tension. Can be derived variationally from

$$E = E_{kin} + E_s, \quad E_{kin} = \int_{\Omega} |\boldsymbol{u}|^2 / 2 \, dx, \quad E_s = \int_{\Gamma} \sigma \, ds$$

$$\dot{E} = -2 \int \eta \nabla \boldsymbol{u} : \nabla \boldsymbol{u} \, dx$$

A continuum model of colloid-stabilized systems

Sebastian Aland, TU Dresden, Germany

イロト イヨト イヨト イヨト

000	0000	000000000	000000000	
Multiph	and fuid	model II. Newier	Stolvog Cohn Hil	liand

Multiphase fluid model II: Navier-Stokes-Cahn-Hilliard

Introduce phase field ψ , interface thickness ϵ

Constant density. Model H (Hohenberg & Halperin, 1977)

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nabla \cdot \left(\eta(\psi) \left(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T \right) \right) + \frac{\delta E_s}{\delta \psi} \nabla \psi, \qquad (4)$$

$$\nabla \cdot \mathbf{u} = 0, \tag{5}$$

$$\partial_t \psi + \boldsymbol{u} \cdot \nabla \psi = \nabla \cdot (B(\psi) \nabla \mu),$$
 (6)

$$\iota = \frac{\delta E_s}{\delta \psi} = \frac{\sigma}{\epsilon} B'(\psi) - \sigma \epsilon \Delta \psi, \tag{7}$$

where

$$E_s = \sigma \int_{\Omega} \frac{1}{\epsilon} B(\psi) + \frac{\epsilon}{2} |\nabla \psi|^2 \, dx, \quad B(\psi) = 18\psi^2 (1-\psi)^2,$$

Can be derived variationally from $E = E_{kin} + E_s$.

Extensions for variable density: Lowengrub & Truskinovsky (1998), Boyer (2002), Ding et al. (2007), Abels et al. (2010)

Benchmarked in: Aland, Voigt; Int. J. Num. Meth. Fluids; (2011)

Sebastian Aland, TU Dresden, Germany

・ロト ・ 同ト ・ ヨト ・ ヨト

	~	<u> </u>	.		_	- · · ·	_		
000		0000	00	00000000			0000000	000	
		Background	Dei						Summary

Bulk-Surface coupling in complex, evolving domains

Classical formulation

f concentration on surface, ${\cal F}$ concentration in bulk.

$$\frac{\partial f}{\partial t} + \boldsymbol{\nabla}_{\Gamma} \cdot (\boldsymbol{u} f) = \boldsymbol{\nabla}_{\Gamma} \cdot \left(\boldsymbol{D}_{f} \boldsymbol{\nabla}_{\Gamma} f \right) + j, \qquad \text{ in } \Gamma(t)$$

$$\frac{\partial F}{\partial t} + \nabla \cdot (\boldsymbol{u}F) = D_F \boldsymbol{\nabla}^2 F \qquad \text{in } \Omega(\mathbf{t})$$

$$D_F \nabla F \cdot \mathbf{n} = -j$$
 on $\Gamma(\mathbf{t})$

 $D_F \boldsymbol{\nabla} F \cdot \mathbf{n} = - \; j$ j(F,f) accounts for adsorption/desorption, e.g.

$$j(F, f) = r_a F(f_{\infty} - f) - r_d f$$
 on $\Gamma(t)$

Diffuse domain approach

$$\begin{split} & \frac{\partial}{\partial t} \left(\delta f \right) + \nabla \cdot \left(\delta f u \right) = \nabla \cdot \left(D_f \delta \nabla f \right) + \delta j & \text{ in } \tilde{\Omega} \\ & \frac{\partial}{\partial t} \left(\chi F \right) + \nabla \cdot \left(\chi F u \right) = \nabla \cdot \left(\chi \nabla F \right) - \delta j & \text{ in } \tilde{\Omega}. \end{split}$$

with surface delta function δ , e.g. $\delta \approx |\nabla \psi|$ and characteristic function of soluble bulk phase, e.g. $\chi \approx \psi$.

igle standard tools can be used to solve the equations in domains and on surfaces

• convergence in ϵ

Rätz, Voigt; Comm. Math. Sci. (2006) Teigen, Peng, Lowengrub, Voigt; J. Comput. Phys. (2012)

Sebastian Aland, TU Dresden, Germany

	~	<u> </u>	.		_	- · · ·	_		
000		0000	00	00000000			0000000	000	
		Background	Dei						Summary

Bulk-Surface coupling in complex, evolving domains

Classical formulation

f concentration on surface, ${\cal F}$ concentration in bulk.

$$\frac{\partial f}{\partial t} + \boldsymbol{\nabla}_{\Gamma} \cdot (\boldsymbol{u} f) = \boldsymbol{\nabla}_{\Gamma} \cdot \left(\boldsymbol{D}_{f} \boldsymbol{\nabla}_{\Gamma} f \right) + j, \qquad \text{ in } \Gamma(t)$$

$$\frac{\partial F}{\partial t} + \nabla \cdot (\boldsymbol{u}F) = D_F \boldsymbol{\nabla}^2 F \qquad \text{in } \Omega(\mathbf{t})$$

$$D_F \nabla F \cdot \mathbf{n} = -j$$
 on $\Gamma(\mathbf{t})$

 $D_F \boldsymbol{\nabla} F \cdot \mathbf{n} = - \; j$ j(F,f) accounts for adsorption/desorption, e.g.

$$j(F, f) = r_a F(f_{\infty} - f) - r_d f$$
 on $\Gamma(t)$

Diffuse domain approach

$$\begin{split} & \frac{\partial}{\partial t} \left(\delta f \right) + \nabla \cdot \left(\delta f \boldsymbol{u} \right) = \nabla \cdot \left(D_f \delta \nabla f \right) + \delta j & \text{ in } \boldsymbol{\Omega} \\ & \frac{\partial}{\partial t} \left(\chi F \right) + \nabla \cdot \left(\chi F \boldsymbol{u} \right) = \nabla \cdot \left(\chi \nabla F \right) - \delta j & \text{ in } \boldsymbol{\Omega}. \end{split}$$

with surface delta function δ , e.g. $\delta \approx |\nabla \psi|$ and characteristic function of soluble bulk phase, e.g. $\chi \approx \psi$.

standard tools can be used to solve the equations in domains and on surfaces

Convergence in ε

Rätz, Voigt; Comm. Math. Sci. (2006) Teigen, Peng, Lowengrub, Voigt; J. Comput. Phys. (2010)

Diffuse interface model for soluble surfactants (nondimensional)

Teigen et al., J. Comp. Phys. (2011)

$$\sigma(f) = \sigma_0 + RTf^{\infty} \ln\left(1 - \frac{f}{f^{\infty}}\right)$$

(surfactant dependent surface tension)

(8)

Bijels 000	Background 0000	Derivation of model with particles $\bullet 00000000000000000000000000000000000$	Results 0000000000	
Phase	Field Crys	tal (PFC) model		
Elder	r et al., Phys. Rev	v. Lett. (2002).		
	Consider noise.	averaged particle density M		•

- Dynamics of ρ described by Dynamic Density Functional Theory (DDFT)
- Local approximation yields Phase Field Crystal (PFC) model

. . . .

 $\underset{\rho}{\mathsf{PFC}} \bigwedge \bigwedge \bigwedge$

Nondimensional Free Energy (Swift-Hohenberg, 1977)

$$E_{pfc} = \int_{\Omega} \frac{1}{4} \rho^4 + \frac{1+r}{2} \rho^2 - |\nabla \rho|^2 + \frac{1}{2} \left(\nabla^2 \rho\right)^2 d\mathbf{x}$$
(9)

- Models particles at atomic spatial scales but on diffusive time scales.
- Energy is minimized by periodic functions that describe the crystal lattice.

particle number density ρ on a torus

ρ

Sebastian Aland, TU Dresden, Germany

- Dynamics of ρ described by Dynamic Density Functional Theory (DDFT)
- Local approximation yields Phase Field Crystal (PFC) model

$\Pr_{O} \land \land \land \land \land \land$

Nondimensional Free Energy (Swift-Hohenberg, 1977)

$$E_{pfc} = \int_{\Omega} \frac{1}{4} \rho^4 + \frac{1+r}{2} \rho^2 - |\nabla \rho|^2 + \frac{1}{2} \left(\nabla^2 \rho\right)^2 \, d\mathbf{x} \tag{9}$$

- Models particles at atomic spatial scales but on diffusive time scales.
- Energy is minimized by periodic functions that describe the crystal lattice.

particle number density ρ on a torus

• Local approximation yields Phase Field Crystal (PFC) model

Nondimensional Free Energy (Swift-Hohenberg, 1977)

$$E_{pfc} = \int_{\Omega} \frac{1}{4} \rho^4 + \frac{1+r}{2} \rho^2 - |\nabla \rho|^2 + \frac{1}{2} \left(\nabla^2 \rho\right)^2 \, d\mathbf{x} \tag{9}$$

- Models particles at atomic spatial scales but on diffusive time scales.
- Energy is minimized by periodic

particle number density ρ on a torus

• Local approximation yields Phase Field Crystal (PFC) model

Nondimensional Free Energy (Swift-Hohenberg, 1977)

$$E_{pfc} = \int_{\Omega} \frac{1}{4} \rho^4 + \frac{1+r}{2} \rho^2 - |\nabla \rho|^2 + \frac{1}{2} \left(\nabla^2 \rho\right)^2 \, d\mathbf{x} \tag{9}$$

- Models particles at atomic spatial scales but on diffusive time scales.
- Energy is minimized by periodic functions that describe the crystal lattice.

particle number density ρ on a torus

Bijels 000	Background 0000	Derivation of model with particles $0 \bullet 00000000$	Results 0000000000	
Phase F	ield Crystal	l II		

Energy minimized by periodic structure: $\rho = A \cos(\frac{2\pi}{a_{eq}}x) + B$.

Elasticity

Let a be the lattice spacing, then

$$E_{pfc}(a) = E(a_{eq}) + \frac{1}{2} \frac{\partial E}{\partial a} (a_{eq})(a - a_{eq})^2 + \dots$$
(10)

This gives Hooke's law. Costs energy to change the wavelength. Model naturally captures elastic stress .

Dynamic model

Conserved Swift-Hohenberg equation.

$$\dot{\rho} = \nabla \cdot \left(M_{\rho} \nabla \frac{\delta E_{pfc}}{\delta \rho} \right), \tag{11}$$

 M_{ρ} is a mobility.

Bijels 000	Background 0000	Derivation of model with particles $0 = 000000000000000000000000000000000$	Results 0000000000	
Phase F	ield Crystal	II		

Energy minimized by periodic structure: $\rho = A \cos(\frac{2\pi}{a_{eq}}x) + B$.

Elasticity

Let a be the lattice spacing, then

$$E_{pfc}(a) = E(a_{eq}) + \frac{1}{2} \frac{\partial E}{\partial a} (a_{eq})(a - a_{eq})^2 + \dots$$
(10)

This gives Hooke's law. Costs energy to change the wavelength. Model naturally captures elastic stress .

Dynamic model

Conserved Swift-Hohenberg equation.

$$\dot{\rho} = \boldsymbol{\nabla} \cdot \left(M_{\rho} \nabla \frac{\delta E_{pfc}}{\delta \rho} \right), \tag{11}$$

 M_{ρ} is a mobility.

イロト イヨト イヨト イヨト

		Derivation of model with particles	
		00000000	
Free En	ergy Model	(sharp)	

Total free energy (nondimensional)

5,

Nondimensionalized by domain size, Capillary relaxation time

$$E = E_{pfc} + E_s + E_{kin},$$

$$E_{pfc} = El^{-1} \int_{\Gamma} \frac{1}{4} \rho^4 + \frac{1+r}{2} \rho^2 - |\nabla_{\Gamma}\rho|^2 + \frac{1}{2} (\Delta_{\Gamma}\rho)^2 dx,$$

$$E_s = \int_{\Gamma} 1 dx,$$

$$E_{kin} = \int_{\Omega} \frac{1}{2} |\mathbf{u}|^2 dx \quad \text{(constant density)}$$

 El^{-1} is the relative strength of the elastic to surface energy

Aland, Lowengrub, Voigt; Phys. Fluids (2011)

イロト イヨト イヨト イヨト

			ckgı		De	rivation of	model wit	th particles		
000		oc	000		00	00000000000			000000000	
* *						c	C	11 • 1		

Variational derivation of surface colloid model

Energy variation (sharp)

Equivalent to varying Γ and ρ simultaneously.

$$\begin{split} \dot{E} &= \int_{\Omega} \mathbf{u} \dot{\mathbf{u}} \quad dx + \int_{\Gamma} \mathbf{u} \cdot \frac{\delta E}{\delta \Gamma} + \dot{\rho} \frac{\delta E}{\delta \rho} - \mathbf{u} \cdot \nabla_{\Gamma} \rho \frac{\delta E}{\delta \rho} dx \quad \text{ where} \\ \frac{\delta E}{\delta \rho} &:= El^{-1} \left(\rho^3 + (1+r)\rho + 2\Delta_{\Gamma} \rho + \Delta_{\Gamma}^2 \rho \right) \\ \frac{\delta E}{\delta \Gamma} &:= -\kappa \mathbf{n} \left[1 + El^{-1} \left(\frac{1}{4} \rho^4 + \frac{1+r}{2} \rho^2 - \frac{1}{2} (\Delta_{\Gamma} \rho)^2 - |\nabla_{\Gamma} \rho|^2 - \nabla_{\Gamma} \rho \cdot \nabla_{\Gamma} \Delta_{\Gamma} \rho \right) \right] \\ &- 2El^{-1} (\nabla_{\Gamma} \rho, (Hess\Phi) \nabla_{\Gamma} \rho)_{\Gamma} - 2El^{-1} ((Hess\Phi) \nabla_{\Gamma} \Delta_{\Gamma} \rho, \nabla_{\Gamma} \rho)_{\Gamma} \end{split}$$

Aland, Rätz, Röger, Voigt; SIAM MMS, 2012

Balance laws

We assume the following equations hold

$$\dot{\mathbf{u}} = -\mathbf{u} \cdot \nabla \mathbf{u} - \nabla p + Re^{-1} \Delta \mathbf{u} + \delta \mathbf{F}_{el}, \quad \nabla \cdot \mathbf{u} = 0,$$
(NS)
$$\dot{\rho} = -\nabla_{\Gamma} \cdot (\rho \mathbf{u}) - \nabla_{\Gamma} \cdot \mathbf{J}_{\rho}$$
(SPFC)

where Re is a Reynolds number (defined in the usual way), and ${\bf F}_{el}$ and ${\cal J}_{\rho}$ are to be determined.

			ckgr		D	erivation of	model wit	th particles		Summary
000		00	00		00	000000000000000000000000000000000000000			00000000	00
* *			-			C	C	11 • 1	1 1	

Variational derivation of surface colloid model

Energy variation (sharp)

Equivalent to varying Γ and ρ simultaneously.

$$\begin{split} \dot{E} &= \int_{\Omega} \mathbf{u} \dot{\mathbf{u}} \quad dx + \int_{\Gamma} \mathbf{u} \cdot \frac{\delta E}{\delta \Gamma} + \dot{\rho} \frac{\delta E}{\delta \rho} - \mathbf{u} \cdot \nabla_{\Gamma} \rho \frac{\delta E}{\delta \rho} dx \quad \text{ where} \\ \frac{\delta E}{\delta \rho} &:= El^{-1} \left(\rho^3 + (1+r)\rho + 2\Delta_{\Gamma} \rho + \Delta_{\Gamma}^2 \rho \right) \\ \frac{\delta E}{\delta \Gamma} &:= -\kappa \mathbf{n} \left[1 + El^{-1} \left(\frac{1}{4} \rho^4 + \frac{1+r}{2} \rho^2 - \frac{1}{2} (\Delta_{\Gamma} \rho)^2 - |\nabla_{\Gamma} \rho|^2 - \nabla_{\Gamma} \rho \cdot \nabla_{\Gamma} \Delta_{\Gamma} \rho \right) \right] \\ &- 2El^{-1} (\nabla_{\Gamma} \rho, (Hess\Phi) \nabla_{\Gamma} \rho)_{\Gamma} - 2El^{-1} ((Hess\Phi) \nabla_{\Gamma} \Delta_{\Gamma} \rho, \nabla_{\Gamma} \rho)_{\Gamma} \end{split}$$

Aland, Rätz, Röger, Voigt; SIAM MMS, 2012

Balance laws

We assume the following equations hold

$$\dot{\mathbf{u}} = -\mathbf{u} \cdot \nabla \mathbf{u} - \nabla p + Re^{-1} \Delta \mathbf{u} + \delta \mathbf{F}_{el}, \quad \nabla \cdot \mathbf{u} = 0,$$
(NS)
$$\dot{\rho} = -\nabla_{\Gamma} \cdot (\rho \mathbf{u}) - \nabla_{\Gamma} \cdot \mathbf{J}_{\rho}$$
(SPFC)

where Re is a Reynolds number (defined in the usual way), and \mathbf{F}_{el} and J_{ρ} are to be determined.

	Background	Derivation of model with particles	
		00000000	
Energy	variation	(sharp)	

Using the balance laws in \dot{E} gives

$$\begin{split} \dot{E} &= \int_{\Omega} -\frac{1}{Re} \nabla \mathbf{u} : \nabla \mathbf{u} \ dx + \int_{\Gamma} \mathbf{u} \cdot \left(\mathbf{F}_{el} - \left(-\frac{\delta E}{\delta \Gamma} - \rho \frac{\delta E}{\delta \rho} \kappa \mathbf{n} - \rho \nabla_{\Gamma} \frac{\delta E}{\delta \rho} \right) \right) dx \\ &+ \int_{\Gamma} J_{\rho} \cdot \nabla_{\Gamma} \frac{\delta E}{\delta \rho} dx. \end{split}$$

æ

・ロト ・回ト ・ヨト ・ヨト

	Background	Derivation of model with particles	
		00000000	
Energy	variation	(sharp)	

Using the balance laws in \dot{E} gives

$$\begin{split} \dot{E} &= \int_{\Omega} -\frac{1}{Re} \nabla \mathbf{u} : \nabla \mathbf{u} \ dx + \int_{\Gamma} \mathbf{u} \cdot \left(\mathbf{F}_{el} - \underbrace{\left(-\frac{\delta E}{\delta \Gamma} - \rho \frac{\delta E}{\delta \rho} \kappa \mathbf{n} - \rho \nabla_{\Gamma} \frac{\delta E}{\delta \rho} \right)}_{=:\mathbf{F}_{el}} \right) dx \\ &+ \int_{\Gamma} J_{\rho} \cdot \nabla_{\Gamma} \frac{\delta E}{\delta \rho} dx. \end{split}$$

æ

イロト イヨト イヨト イヨト

		Derivation of model with particles		
000	0000	00000000	000000000	
Energy	variation	(sharp)		

Using the balance laws in \dot{E} gives

 $\approx -J_{\rho}$

$$\begin{split} \dot{E} &= \int_{\Omega} -\frac{1}{Re} \nabla \mathbf{u} : \nabla \mathbf{u} \ dx + \int_{\Gamma} \mathbf{u} \cdot \left(\mathbf{F}_{el} - \underbrace{\left(-\frac{\delta E}{\delta \Gamma} - \rho \frac{\delta E}{\delta \rho} \kappa \mathbf{n} - \rho \nabla_{\Gamma} \frac{\delta E}{\delta \rho} \right)}_{=:\mathbf{F}_{el}} \right) dx \\ &+ \int_{\Gamma} J_{\rho} \cdot \nabla_{\Gamma} \frac{\delta E}{\delta \rho} dx. \end{split}$$

æ

・ロト ・回ト ・ヨト ・ヨト

	Background	Derivation of model with particles		
000	0000	00000000	000000000	
Energy	variation	(sharp)		

 \mathbf{r}

Using the balance laws in \dot{E} gives

$$\begin{split} \dot{E} &= \int_{\Omega} -\frac{1}{Re} \nabla \mathbf{u} : \nabla \mathbf{u} \ dx + \int_{\Gamma} \mathbf{u} \cdot \left(\mathbf{F}_{el} - \underbrace{\left(-\frac{\delta E}{\delta \Gamma} - \rho \frac{\delta E}{\delta \rho} \kappa \mathbf{n} - \rho \nabla_{\Gamma} \frac{\delta E}{\delta \rho} \right)}_{=:\mathbf{F}_{el}} \right) dx \\ &+ \int_{\Gamma} J_{\rho} \cdot \underbrace{\nabla_{\Gamma} \frac{\delta E}{\delta \rho}}_{\approx -J_{\rho}} dx. \end{split}$$

Indeed, taking $\mathbf{J}_{\rho} = -Pe_{\rho}^{-1}\nabla_{\Gamma}\frac{\delta E}{\delta\rho}$, \Rightarrow decreasing energy for the system

$$\dot{\mathbf{u}} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p + \frac{1}{Re} \Delta \mathbf{u} = -\delta \left(\frac{\delta E}{\delta \Gamma} + \rho \frac{\delta E}{\delta \rho} \kappa \mathbf{n} + \rho \nabla_{\Gamma} \frac{\delta E}{\delta \rho} \right)$$
(NS)
$$\nabla \cdot \mathbf{u} = 0$$

$$\dot{\rho} + \nabla_{\Gamma} \cdot (\rho \mathbf{u}) = P e_{\rho}^{-1} \Delta_{\Gamma} \frac{\delta E}{\delta \rho}$$
(PFC)

 Pe_{ρ} is a (surface) Peclet number.

• E •

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

	Background	Derivation of model with particles	
000	0000	000000000	000000000
		/ >	

Free Energy Model (diffuse)

Introduce the approximation to the surface delta function

$$e:=\left(\frac{\epsilon}{2}|\nabla\psi|^2+\frac{1}{\epsilon}B(\psi)\right)\approx\delta$$

with the double well potential $B(\psi)=18\psi^2(1-\psi)^2$

Diffuse interface version of the energy

$$E_{pfc} = El^{-1} \int_{\Omega} e\left(\frac{1}{4}\rho^4 + \frac{1+r}{2}\rho^2 - |\nabla\rho|^2 + \frac{1}{2}\nu^2\right) dx$$
$$E_s = \int_{\Omega} e^{-dx},$$
$$E_{kin} = \int_{\Omega} \frac{1}{2} |\mathbf{u}|^2 dx \quad \text{(constant density)}$$

where ν is the diffuse interface Laplace-Beltrami:

$$\nu := \frac{1}{e} \nabla \cdot (e \nabla \rho)$$

Aland, Lowengrub, Voigt; Phys. Fluids (2011)

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

3

	Background	Derivation of model with particles		
000	0000	0000000000	000000000	
Energy	variation ((diffuse)		

Balance laws

Assuming conservation of mass and momentum:

$$\dot{\mathbf{u}} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p + \frac{1}{Re} \Delta \mathbf{u} = \nabla \cdot \mathbf{T}_{el}$$
(NS)
$$\nabla \cdot \mathbf{u} = 0$$

$$\dot{\psi} + \mathbf{u} \cdot \nabla \psi = 0 \tag{Adv}$$

$$(e\rho) + \nabla \cdot (e\rho \mathbf{u}) = \nabla \cdot \mathbf{J}_{\rho}$$
 (PFC)

we get $\dot{E} \leq 0$ for

$$\begin{split} \mathbf{T}_{el} = & El^{-1}e\left(2\nabla\rho\otimes\nabla\rho + \nabla\nu\otimes\nabla\rho + \nabla\rho\otimes\nabla\nu\right) - \epsilon\nabla\psi\otimes\nabla\psi\frac{\partial E}{\delta e} \\ \mathbf{J}_{\rho} = & Pe_{\rho}^{-1}e\nabla\frac{\delta E}{\delta\rho} \end{split}$$

with

$$\begin{split} &\frac{\delta E}{\delta\rho} := El^{-1} \left(\rho^3 + (1+r)\rho + 2\nu + \frac{1}{e} \nabla \cdot (e \nabla \nu) \right) \\ &\frac{\delta E}{\delta e} := 1 + El^{-1} \left(\frac{1}{4} \rho^4 + \frac{1+r}{2} \rho^2 - \frac{1}{2} \nu^2 - |\nabla \rho|^2 - \nabla \nu \cdot \nabla \rho \right) - \frac{\delta E}{\delta\rho} \rho \end{split}$$

	Background	Derivation of model with particles		
000	0000	0000000000	000000000	
Energy	variation	(diffuse)		

Balance laws

Assuming conservation of mass and momentum:

$$\dot{\mathbf{u}} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p + \frac{1}{Re} \Delta \mathbf{u} = \nabla \cdot \mathbf{T}_{el}$$
(NS)
$$\nabla \cdot \mathbf{u} = 0$$

$$\dot{\psi} + \mathbf{u} \cdot \nabla \psi = 0 \tag{Adv}$$

$$(e\rho) + \nabla \cdot (e\rho \mathbf{u}) = \nabla \cdot \mathbf{J}_{\rho}$$
 (PFC)

we get $\dot{E} \leq 0$ for

$$\begin{split} \mathbf{T}_{el} = & El^{-1}e\left(2\nabla\rho\otimes\nabla\rho + \nabla\nu\otimes\nabla\rho + \nabla\rho\otimes\nabla\nu\right) - \epsilon\nabla\psi\otimes\nabla\psi\frac{\delta E}{\delta e} \\ \mathbf{J}_{\rho} = & Pe_{\rho}^{-1}e\nabla\frac{\delta E}{\delta\rho} \end{split}$$

with

$$\begin{split} &\frac{\delta E}{\delta\rho} := El^{-1} \left(\rho^3 + (1+r)\rho + 2\nu + \frac{1}{e} \nabla \cdot (e \nabla \nu) \right) \\ &\frac{\delta E}{\delta e} := 1 + El^{-1} \left(\frac{1}{4} \rho^4 + \frac{1+r}{2} \rho^2 - \frac{1}{2} \nu^2 - |\nabla \rho|^2 - \nabla \nu \cdot \nabla \rho \right) - \frac{\delta E}{\delta\rho} \rho \end{split}$$

A continuum model of colloid-stabilized systems

		Derivation of model with particles	
000	0000	0000000000	000000000
a	• • • •		

Governing Equations

Putting everything together yields the Navier-Stokes-Phase-Field-Crystal system:

1. PFC on diffuse interface

$$\partial_t(e\rho) + \nabla \cdot (e\mathbf{u}\rho) = Pe_{\rho}^{-1}\nabla \cdot (e\nabla\omega)$$
$$e\omega = e\rho(\rho^2 + 1 + r) + 2e\nu + \nabla \cdot (e\nabla\nu)$$
$$e\nu = \nabla \cdot (e\nabla\rho)$$

2. Navier Stokes Equation with elastic force

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p - Re^{-1} \Delta \mathbf{u} = \nabla \cdot \mathbf{T}_{ei}$$
$$\nabla \cdot \mathbf{u} = 0$$

3. Advection Equation

$$\partial_t \psi + \nabla \cdot (\mathbf{u}\psi) = 0$$

+ appropriate boundary conditions.

Sebastian Aland, TU Dresden, Germany

Background	Derivation of model with particles	
	000000000	

Governing Equations

Putting everything together yields the Navier-Stokes-Phase-Field-Crystal system:

1. PFC on diffuse interface

$$\partial_t(e\rho) + \nabla \cdot (e\mathbf{u}\rho) = Pe_{\rho}^{-1}\nabla \cdot (e\nabla\omega)$$
$$e\omega = e\rho(\rho^2 + 1 + r) + 2e\nu + \nabla \cdot (e\nabla\nu)$$
$$e\nu = \nabla \cdot (e\nabla\rho)$$

2. Navier Stokes Equation with elastic force

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p - Re^{-1} \Delta \mathbf{u} = \nabla \cdot \mathbf{T}_{el}$$
$$\nabla \cdot \mathbf{u} = 0$$

3. Cahn Hilliard Equation

$$\begin{array}{lll} \partial_t \psi + \nabla \cdot (\mathbf{u}\psi) &=& Pe_{\psi}^{-1} \nabla \cdot (B \nabla \mu), \\ \\ \mu &=& \epsilon^{-1} B'(\psi) - \epsilon \Delta \psi, \end{array}$$

+ appropriate boundary conditions.

A continuum model of colloid-stabilized systems

Sebastian Aland, TU Dresden, Germany

A (10) < A (10) < A (10) </p>

Derivation of model with particles 0000000000

Numerical treatment

- C++ FEM library AMDiS
- adaptive mesh
- polynomial degree 1
- projection scheme for NS
- solver: UMFPACK / PETSc
- semi-implicit time discretization ۲
- linearization by first order Taylor expansion

		Derivation of model with particles	Results	
000	0000	000000000	000000000	
Stabiliz	ation of an	Ellipse		

• Without colloids, ellipse retracts to a circle due to surface tension.

• With colloids initially equilibrated on the interface, the ellipse is stabilized due to colloid interactions.

イロト イヨト イヨト イヨト

Bijels	Background	Derivation of model with particles	Results	
000	0000	0000000000	000000000	
Stabiliz	ation of an	ellipsoid		

Left: No colloids, Right: Colloids

- 170

- Colloids prevent retraction. Jam the interface.
- Surface defects form and result in interfacial buckling. Not seen in 2D.
- Particles with 5 neighbors minimize energy by buckling.

Bijels 000	Background 0000	Derivation of model with particles 0000000000	$\begin{array}{c} \textbf{Results} \\ \texttt{OO} \bullet \texttt{OO} \texttt{OO} \texttt{OO} \texttt{OO} \texttt{OO} \texttt{O} \texttt{O}$	
Attachr	ment of Coll	loids		

- Assume one of the bulk phases contains colloidal particles in a disordered state (nearly uniform density).
- Introduce the bulk colloid density c.

The bulk density equation is given by:

$$\partial_t(\psi c) = P e_c^{-1} \nabla \cdot (\psi \nabla c) - \nabla \cdot (\psi \mathbf{u} c) - h Bi |\nabla \psi| \left(c(\rho_{\infty} - \rho) - k^{-1} \rho \right)$$

with Pe_c , h, Bi, k, ρ_{∞} , the bulk Peclet number, penetration depth, Biot number (relative adsorption rate), relative desorption rate, and saturation density respectively.

The evolution of ρ now becomes:

$$\partial_t(e\rho) = Pe_{\rho}^{-1}\nabla \cdot (e\nabla\omega) - \nabla \cdot (e\mathbf{u}\rho) + Bi \ e\left(c(\rho_{\infty}-\rho)-k^{-1}\rho\right)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Source of colloids at bottom of fluid domain.

- Colloids attach at bottom and move upwards
- Retraction stops first at bottom
- Asymmetric drop shape results since retraction occurs longer at top of drop

< A > < B > <

		Derivation of model with particles	Results				
000	0000	000000000	0000000000				
Spinoda	Spinodal Decomposition						

Start the system without colloidal particles and allow spinodal decomposition to occur for a short time.

э

イロト イヨト イヨト イヨト

Bijels	Background	Derivation of model with particles	Results	
000	0000	0000000000	○○○○○●○○○○	
Stabiliza	ation of Bic	ontinuous Structure		

Add colloids, allow equilibration on interface. Left: Colloids, Right: No colloids

臣

イロン イヨン イヨン イヨン

000	0000	000000000		000000000	
Stabiliz	ation of Bi	continuous	Structure -	jamming	

Initially not enough colloids on the interface to crystallize. Interface contraction leads to jamming.

臣

(日) (四) (王) (王) (王)

Stabili	ration of ?	D bicontinuous structu	120	
Bijels 000	Background 0000	Derivation of model with particles	Results	

Figure: Left: No colloids, Right: Colloids

- Colloids prevent retraction. Jam the interface.
- Surface defects form and result in interfacial buckling.

イロト イヨト イヨト イヨト

Bijels	Background	Derivation of model with particles	Results	
000	0000	0000000000	00000000●0	
Yield st	ress I			

Solid ball moving through a multiphase fluid using diffuse domain approach.

$$\dot{\mathbf{u}}_{ball} = -\mathbf{G} + \int_{\partial \Omega_{ball}} \boldsymbol{\tau} \cdot \mathbf{n} \ ds$$

with the total stress tensor

$$\tau = -pI + \frac{1}{Re} (\nabla \mathbf{u} + \nabla \mathbf{u}^T) + \mathbf{T}_{el}$$

and gravitational force **G**.

Right: No colloids present.

イロト イヨト イヨト イヨト

Bijels 000	Background 0000	Derivation of model with particles 0000000000	$\mathbf{Results}$	
Yield st	tress II			

moderate colloid interaction (El = 0.01)

strong colloid interaction (El = 0.002)

- ball penetrates the interface
- elastic forces hold the ball at the interface

A continuum model of colloid-stabilized systems

- interface behaves like a solid
- ball is "lying" on the interface

Sebastian Aland, TU Dresden, Germany

Bijels 000	Background 0000	Derivation of model with particles	$\begin{array}{c} \textbf{Results} \\ \texttt{000000000} \bullet \end{array}$	
Yield	stress II			

moderate colloid interaction (El = 0.01)

strong colloid interaction (El = 0.002)

- ball penetrates the interface
- elastic forces hold the ball at the interface

A continuum model of colloid-stabilized systems

- interface behaves like a solid
- ball is "lying" on the interface

Sebastian Aland, TU Dresden, Germany

Bijels	Background	Derivation of model with particles	Results	Summary
000	0000	0000000000	0000000000	
Summa	ıry			

Summary

- model works phenomenologically
- elasticity from SPFC can be used to stabilize binary fluid mixture

To Do

- more colloids
- long time simulations
- microreactor
- material properties
- connect simulations to real world

・ロト ・日ト・ ・日ト

Thank you!

Bijels	Background	Derivation of model with particles	Results	Summary
000	0000	0000000000	0000000000	
Summa	ıry			

Summary

- model works phenomenologically
- elasticity from SPFC can be used to stabilize binary fluid mixture

To Do

- more colloids
- long time simulations
- microreactor
- material properties
- connect simulations to real world

・ロト ・日ト ・ヨト

Thank you

Bijels	Background	Derivation of model with particles	Results	Summary
000	0000	0000000000	0000000000	
Summa	ıry			

Summary

- model works phenomenologically
- elasticity from SPFC can be used to stabilize binary fluid mixture

To Do

- more colloids
- long time simulations
- microreactor
- material properties
- connect simulations to real world

Thank you!