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Bijels
Bicontinuous interfacially jammed emulsion gels

Two immiscible fluids, separated
by jammed colloidal particles

Similar to Pickering emulsions

Unusual material properties,
interesting applications

Challenging for simulations (and
experiments)

Our approach:
Couple NS + CH + PFC
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How to create a Bijel?

Take two immiscible fluids initially in one phase

Add colloidal particles

Induce spinodal decomposition by deep quenching

A huge interfacial area is created and coarsens fast due to surface tension

Colloids attach to the interface

Colloids jam and thus stabilize the structure

Applications: new and better gels, fuel cells, microreactors, ...
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Bijels - State of the art

Initially proposed by computer simulations (Lattice Boltzmann, Dissipative
Particle Dynamics)

Stratford et al., Science, 2005

Experimentally confirmed

Herzig et al., Nature Materials, 2007

Systems stable for very long times (e.g., months).
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Bijels - Challenges

Open questions

Material properties

Long-time stability

Challenges for Computer Simulations

various spatial scales (domain size vs. intercolloidal forces)

various time scales (arrest of the structure vs. colloidal motion)

still a gap between experiments and simulations

Lattice-Boltzmann/Diffusive Particle Dynamics simulations not suitable for
long-time simulations

Our Approach

Couple Navier-Stokes Cahn-Hilliard equation with a Phase-Field-Crystal on the
interface
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Multiphase fluid model I

Classical Model

ρ(χ)

(
∂u

∂t
+ (u·∇)u

)
= −∇p+∇·

(
η(χ)

(
∇u +∇uT

))
− σκnδΓ, (1)

∇·u = 0, (2)

∂χ

∂t
+ u ·∇χ = 0, (3)

where where χ identifies one of the domains, κ is the total curvature, n is the
normal vector, δΓ is the surface delta function and σ is the surface tension.
Can be derived variationally from

E = Ekin + Es, Ekin =

∫
Ω
|u|2/2 dx, Es =

∫
Γ
σ ds

Ė = −2

∫
η∇u : ∇u dx
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Multiphase fluid model II: Navier-Stokes-Cahn-Hilliard

Introduce phase field ψ, interface thickness ε

Constant density. Model H (Hohenberg & Halperin, 1977)

∂tu + (u · ∇)u = −∇p+∇ ·
(
η(ψ)

(
∇u +∇uT

))
+
δEs

δψ
∇ψ, (4)

∇ · u = 0, (5)

∂tψ + u · ∇ψ = ∇ · (B(ψ)∇µ), (6)

µ =
δEs

δψ
=
σ

ε
B′(ψ)− σε∆ψ, (7)

where

Es = σ

∫
Ω

1

ε
B(ψ) +

ε

2
|∇ψ|2 dx, B(ψ) = 18ψ2(1− ψ)2,

Can be derived variationally from E = Ekin + Es.

Extensions for variable density: Lowengrub & Truskinovsky (1998), Boyer (2002),
Ding et al. (2007), Abels et al. (2010)

Benchmarked in: Aland, Voigt; Int. J. Num. Meth. Fluids; (2011)
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Bulk-Surface coupling in complex, evolving domains

Classical formulation

f concentration on surface, F concentration in bulk.

∂f

∂t
+ ∇Γ · (uf) =∇Γ ·

(
Df∇Γf

)
+ j, in Γ(t)

∂F

∂t
+∇ · (uF ) =DF∇2

F in Ω(t)

DF∇F · n = − j on Γ(t)

j(F, f) accounts for adsorption/desorption, e.g.

j(F, f) =raF (f∞ − f) − rdf on Γ(t)

Diffuse domain approach

∂

∂t
(δf) +∇ · (δfu) = ∇ ·

(
Dfδ∇f

)
+ δj in Ω̄

∂

∂t
(χF ) +∇ · (χFu) = ∇ · (χ∇F ) − δj in Ω̄.

with surface delta function δ, e.g. δ ≈ |∇ψ|
and characteristic function of soluble bulk phase, e.g. χ ≈ ψ.

standard tools can be used to solve the equations in domains and on surfaces

convergence in ε

Rätz, Voigt; Comm. Math. Sci. (2006)
Teigen, Peng, Lowengrub, Voigt; J. Comput. Phys. (2010)
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Application to soluble surfactant

Diffuse interface model for soluble surfactants (nondimensional)

Teigen et al., J. Comp. Phys. (2011)

σ(f) = σ0 +RTf∞ ln

(
1−

f

f∞

)
(surfactant dependent surface tension)

(8)
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Phase Field Crystal (PFC) model

Elder et al., Phys. Rev. Lett. (2002).

Consider noise averaged particle density
ρ

Dynamics of ρ described by Dynamic
Density Functional Theory (DDFT)

Local approximation yields Phase Field
Crystal (PFC) model

MD

PFC
ρ

Nondimensional Free Energy (Swift-Hohenberg, 1977)

Epfc =

∫
Ω

1

4
ρ4 +

1 + r

2
ρ2 − |∇ρ|2 +

1

2

(
∇2ρ

)2
dx (9)

Models particles at atomic spatial scales
but on diffusive time scales.

Energy is minimized by periodic
functions that describe the crystal
lattice. particle number

density ρ on a torus
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Phase Field Crystal II

Energy mimimized by periodic structure: ρ = A cos( 2π
aeq

x) +B.

Elasticity

Let a be the lattice spacing, then

Epfc(a) = E(aeq) +
1

2

∂E

∂a
(aeq)(a− aeq)2 + . . . (10)

This gives Hooke’s law. Costs energy to change the wavelength.
Model naturally captures elastic stress .

Dynamic model

Conserved Swift-Hohenberg equation.

ρ̇ =∇·
(
Mρ∇

δEpfc

δρ

)
, (11)

Mρ is a mobility.
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Free Energy Model (sharp)

Total free energy (nondimensional)

Nondimensionalized by domain size, Capillary relaxation time

E = Epfc + Es + Ekin,

Epfc = El−1

∫
Γ

1

4
ρ4 +

1 + r

2
ρ2 − |∇Γρ|2 +

1

2
(∆Γρ)2 dx,

Es =

∫
Γ

1 dx,

Ekin =

∫
Ω

1

2
|u|2dx (constant density)

El−1 is the relative strength of the elastic to surface energy

Aland, Lowengrub, Voigt; Phys. Fluids (2011)
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Variational derivation of surface colloid model

Energy variation (sharp)

Equivalent to varying Γ and ρ simultaneously.

Ė =

∫
Ω
uu̇ dx+

∫
Γ
u ·

δE

δΓ
+ ρ̇

δE

δρ
− u · ∇Γρ

δE

δρ
dx where

δE

δρ
:=El−1

(
ρ3 + (1 + r)ρ+ 2∆Γρ+ ∆2

Γρ
)

δE

δΓ
:=− κn

[
1 + El−1

(
1

4
ρ4 +

1 + r

2
ρ2 −

1

2
(∆Γρ)2 − |∇Γρ|2 −∇Γρ · ∇Γ∆Γρ

)]
− 2El−1(∇Γρ, (HessΦ)∇Γρ)Γ − 2El−1((HessΦ)∇Γ∆Γρ,∇Γρ)Γ

Aland, Rätz, Röger, Voigt; SIAM MMS, 2012

Balance laws

We assume the following equations hold

u̇ = −u · ∇u−∇p+Re−1∆u + δFel, ∇ · u = 0, (NS)

ρ̇ = −∇Γ · (ρu)−∇Γ · Jρ (SPFC)

where Re is a Reynolds number (defined in the usual way), and Fel and Jρ are to
be determined.
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Energy variation (sharp)

Using the balance laws in Ė gives

Ė =

∫
Ω
−

1

Re
∇u : ∇u dx+

∫
Γ
u ·
(
Fel −

(
−
δE

δΓ
− ρ

δE

δρ
κn− ρ∇Γ

δE

δρ

))
dx

+

∫
Γ
Jρ · ∇Γ

δE

δρ
dx.

Indeed, taking Jρ = −Pe−1
ρ ∇Γ

δE
δρ

, ⇒ decreasing energy for the system

u̇ + u · ∇u +∇p+
1

Re
∆u = −δ

(
δE

δΓ
+ ρ

δE

δρ
κn + ρ∇Γ

δE

δρ

)
(NS)

∇ · u = 0

ρ̇+∇Γ · (ρu) = Pe−1
ρ ∆Γ

δE

δρ
(PFC)

Peρ is a (surface) Peclet number.
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Free Energy Model (diffuse)

Introduce the approximation to the surface delta function

e :=

(
ε

2
|∇ψ|2 +

1

ε
B(ψ)

)
≈ δ

with the double well potential B(ψ) = 18ψ2(1− ψ)2

Diffuse interface version of the energy

Epfc = El−1

∫
Ω
e

(
1

4
ρ4 +

1 + r

2
ρ2 − |∇ρ|2 +

1

2
ν2

)
dx,

Es =

∫
Ω
e dx,

Ekin =

∫
Ω

1

2
|u|2dx (constant density)

where ν is the diffuse interface Laplace-Beltrami:

ν :=
1

e
∇ · (e∇ρ)

Aland, Lowengrub, Voigt; Phys. Fluids (2011)
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Energy variation (diffuse)

Balance laws

Assuming conservation of mass and momentum:

u̇ + u · ∇u +∇p+
1

Re
∆u = ∇ ·Tel (NS)

∇ · u = 0

ψ̇ + u · ∇ψ = 0 (Adv)

(eρ)̇ +∇ · (eρu) = ∇ · Jρ (PFC)

we get Ė ≤ 0 for

Tel =El−1e (2∇ρ⊗∇ρ+∇ν ⊗∇ρ+∇ρ⊗∇ν)− ε∇ψ ⊗∇ψ
δE

δe

Jρ =Pe−1
ρ e∇

δE

δρ

with

δE

δρ
:=El−1

(
ρ3 + (1 + r)ρ+ 2ν +

1

e
∇ · (e∇ν)

)
δE

δe
:=1 + El−1

(
1

4
ρ4 +

1 + r

2
ρ2 −

1

2
ν2 − |∇ρ|2 −∇ν · ∇ρ

)
−
δE

δρ
ρ
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δE

δρ

with

δE

δρ
:=El−1

(
ρ3 + (1 + r)ρ+ 2ν +

1

e
∇ · (e∇ν)

)
δE

δe
:=1 + El−1

(
1

4
ρ4 +

1 + r

2
ρ2 −

1

2
ν2 − |∇ρ|2 −∇ν · ∇ρ

)
−
δE

δρ
ρ
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Governing Equations

Putting everything together yields the Navier-Stokes-Phase-Field-Crystal system:

1. PFC on diffuse interface

∂t(eρ) +∇ · (euρ) = Pe−1
ρ ∇ · (e∇ω)

eω = eρ(ρ2 + 1 + r) + 2eν +∇ · (e∇ν)

eν = ∇ · (e∇ρ)

2. Navier Stokes Equation with elastic force

∂tu + (u · ∇)u +∇p−Re−1∆u = ∇ ·Tel
∇ · u = 0

3. Advection Equation

∂tψ +∇ · (uψ) = 0

+ appropriate boundary conditions.
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Governing Equations

Putting everything together yields the Navier-Stokes-Phase-Field-Crystal system:

1. PFC on diffuse interface

∂t(eρ) +∇ · (euρ) = Pe−1
ρ ∇ · (e∇ω)

eω = eρ(ρ2 + 1 + r) + 2eν +∇ · (e∇ν)

eν = ∇ · (e∇ρ)

2. Navier Stokes Equation with elastic force

∂tu + (u · ∇)u +∇p−Re−1∆u = ∇ ·Tel
∇ · u = 0

3. Cahn Hilliard Equation

∂tψ +∇ · (uψ) = Pe−1
ψ ∇ · (B∇µ),

µ = ε−1B′(ψ)− ε∆ψ,

+ appropriate boundary conditions.
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Numerical treatment

C++ FEM library AMDiS

adaptive mesh

polynomial degree 1

projection scheme for NS

solver: UMFPACK / PETSc

semi-implicit time discretization

linearization by first order
Taylor expansion
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Stabilization of an Ellipse

Without colloids, ellipse retracts
to a circle due to surface tension.

With colloids initially
equilibrated on the interface, the
ellipse is stabilized due to colloid
interactions.
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Stabilization of an ellipsoid

Left: No colloids, Right: Colloids

Colloids prevent retraction. Jam the interface.

Surface defects form and result in interfacial buckling. Not seen in 2D.

Particles with 5 neighbors minimize energy by buckling.
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Attachment of Colloids

Assume one of the bulk phases contains colloidal particles in a disordered
state (nearly uniform density).

Introduce the bulk colloid density c.

The bulk density equation is given by:

∂t(ψc) = Pe−1
c ∇ · (ψ∇c)−∇ · (ψuc)−h Bi|∇ψ|

(
c(ρ∞ − ρ)− k−1ρ

)
with Pec, h, Bi, k, ρ∞, the bulk Peclet number, penetration depth, Biot number
(relative adsorption rate), relative desorption rate, and saturation density
respectively.

The evolution of ρ now becomes:

∂t(eρ) = Pe−1
ρ ∇ · (e∇ω)−∇ · (euρ)+Bi e

(
c(ρ∞ − ρ)− k−1ρ

)
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Stabilization of an Ellipse - with attaching colloids

Source of colloids at bottom of fluid domain.

Colloids attach at
bottom and move
upwards

Retraction stops first at
bottom

Asymmetric drop shape
results since retraction
occurs longer at top of
drop
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Spinodal Decomposition

Start the system without colloidal particles and allow spinodal decomposition to
occur for a short time.
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Stabilization of Bicontinuous Structure

Add colloids, allow equilibration on interface.
Left: Colloids, Right: No colloids
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Stabilization of Bicontinuous Structure - jamming

Initially not enough colloids on the interface to crystallize. Interface contraction
leads to jamming.
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Stabilization of 3D bicontinuous structure

Figure: Left: No colloids, Right: Colloids

Colloids prevent retraction. Jam the interface.

Surface defects form and result in interfacial buckling.
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Yield stress I

Solid ball moving through a multiphase fluid using diffuse domain approach.

u̇ball = −G +

∫
∂Ωball

τ · n ds

with the total stress tensor

τ = −pI +
1

Re
(∇u +∇uT ) + Tel

and gravitational force G.

Right: No colloids present.
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Yield stress II
moderate colloid interaction (El = 0.01)

ball penetrates the interface

elastic forces hold the ball at the
interface

strong colloid interaction (El = 0.002)

interface behaves like a solid

ball is ”lying” on the interface
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Yield stress II
moderate colloid interaction (El = 0.01)

ball penetrates the interface

elastic forces hold the ball at the
interface

strong colloid interaction (El = 0.002)

interface behaves like a solid

ball is ”lying” on the interface
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Summary

Summary

model works phenomenologically

elasticity from SPFC can be used to stabilize binary fluid mixture

To Do

more colloids

long time simulations

microreactor

material properties

connect simulations to real world

Thank you!

A continuum model of colloid-stabilized systems Sebastian Aland, TU Dresden, Germany



Bijels Background Derivation of model with particles Results Summary

Summary

Summary

model works phenomenologically

elasticity from SPFC can be used to stabilize binary fluid mixture

To Do

more colloids

long time simulations

microreactor

material properties

connect simulations to real world

Thank you!

A continuum model of colloid-stabilized systems Sebastian Aland, TU Dresden, Germany



Bijels Background Derivation of model with particles Results Summary

Summary

Summary

model works phenomenologically

elasticity from SPFC can be used to stabilize binary fluid mixture

To Do

more colloids

long time simulations

microreactor

material properties

connect simulations to real world

Thank you!

A continuum model of colloid-stabilized systems Sebastian Aland, TU Dresden, Germany


	Bijels
	Background
	Multiphase fluid model
	Bulk-Surface coupling

	Derivation of model with particles
	Sharp interface model
	Diffuse interface model
	Numerical treatment

	Results
	Summary

