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1. Introduction / 
Macroscopic PDE models for 
an evolving crystal surface 
including facets

1.1 Nearly flat crystal surface
(below roughening temperature)

1.2 A single crystal growth with facets
3



Singular diffusion equations
= Fast diffusion equations

( i ) (singular)
( ii ) (very singular)
If we write in the form of  ,
( i ) .
( ii ) .

If , then patterns instantaneously disappear.
e.g. equation for the inverse function of 

satisfying the heat eq
L. C. Evans (1996), Y. G. Chen – K. Sato – Y. Giga (1997)
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1. Macroscopic PDE models with facet
1.1 Nearly flat crystal surface

(phenomena below roughening temperature)

・ : height of a crystal
at and  

・ Free energy (often proposed)

: periodic cell
H. Spohn (1993), J. Phys. I. France
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(I) Evaporation model

or

one dimensional version

If , it is the total variation flow.
(Used for image denoising.)

facet

facet

,
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(II) Relaxation model
(motion by surface diffusion)

or

If , the system is a 4-th order total 
variation flow.

gradient flow of 

7



1.2 A single crystal growth 
(with facets)

・ Stefan problem with Gibbs – Thomson 
effect and kinetic supercooling

・ One phase

・ Quasi-static approximation

・ Both interfacial energy and kinetic 
coefficient is anisotropic (depending 
on orientation of crystal surface)
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: a bounded domain in occupied 
by a crystal at time 

: supersaturation at outside a 
crystal 

: surface energy density
: homogeneous 

extension of in 
: mobility

: kinetic coefficient

Unknowns

Given functions
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: crystal surface in 

: outer unit normal of 

: anisotropic 
mean curvature

: normal velocity in the 
direction of 

Notations and concepts
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 in 

 on  (Stefan condition) 

 on 
(curvature flow equation with driving force term) 
(cf. Y. G. Surface Evolution Equations, 2006)

unknown!
・ If , then interfacial energy is isotropic 

and is nothing but an usual ( times) 
mean curvature.

・ The mobility can be anisotropic.

Equations
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・ Wulff shape

is a substitute of ball for anisotropic case.
Indeed, formally

on  
(For smooth strictly convex energy, 

(Alexandrov type 
result))
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Equilibrium shape ( )



・ If is smooth and strictly convex in the
sense that Frank has
positive principle curvatures, this problem is
locally well-posed for a given initial data

and condition at space infinity or
boundary condition at a ball containing

. (e.g. C. M. Elliott – K. Deckelnick ’99
but two-phase) (one-phase, Hele – Shaw,
isotropic, 2-D P. Mucha, ’06)

・Recent simulation for snow crystal (with
singular ) : (J. Barrett – H. Garcke – R.
Nürnberg ’11). 13



Our situation

Frank is still convex but may have 
a corner (so that has a flat part.)

Typical example: If Frank is a 
polytope, is called crystalline. 
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Why we say very singular?

The main reason is that the
singularity is so strong in the
equation so that its evolution
speed is a nonlocal quantity. We
shall see this property by simple
examples. Note that the meaning
of a solution is either nontrivial
or unknown.
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2. Core examples
(curvature flow with driving force)

(a) 

More generally,

(b) 

: convex, may not C
non−divergence type

[Note: is given]
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Energy density has 
jump discontinuities so 
that diffusion is singular.

Feature

(a) is of the form
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Simple examples
(a) with : total variation flow

(b) with crystalline 
: crystalline curvature flow for a 
graph−like function

: piecewise linear, convex
(crystalline)

/ , 
S.B. Angenent – M. Gurtin ’89, J. Taylor ’91
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Fourth order examples

(c) 

4th order total variation flow

(d) 

relaxation dynamics
19



Further example (second order)
(Vertical Diffusion)

Burgers eq. 
on  

(graph of )
A solution of may overturn and cannot be 
viewed as the graph of an entropy solution.
Consider

　

Instead of , where . 20



Thm (M.-H. Giga – Y. G. ’03)

If is sufficiently large (with respect 
to jump size), then overturn is prevented 
and becomes the graph of an entropy 
solution at least for the Riemann problem.

cf. Y. G. ’02, Y.-H. R. Tsai – Y.G. – Osher ’02,
Y. Brenier: ’09 formulation by an obstacle 
functional
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Other examples
・ Kobayashi – Warren – Carter model for

averaged angle of multi-grain motion
(K. Shirakawa’s talk) (R. Kobayashi – J.
Warren – C. Carter ’00)

・ 1-harmonic map flow
: -valued

(Denoising chromaticity of images)
Y. G. – H. Kuroda ’04; Y. G. – Y. Kashima, N.
Yamazaki, ’04; … L. Giacomelli – S. Moll ’10
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Notion of Solutions 
(1) Subdifferential formulation (a) (not (b)), (c), (d)

 T. Fukui − Y. G.’96 ( a))
: general

(c), (d) Y. Kashima ’03, ’12

(2) Viscosity approach : (b)
M.-H. Giga − Y. G. ’98, ’99, ’01

: const, 
M.-H. Giga − Y. G. − P. Rybka ’11

: nonconstant : comparison principle

(3) Variational approach for distance functions
G. Bellettini et al. ’01～ 23



3. Speed of facets and finite 
time extinction

3.1 Characterization of the speed
3.2 Evaluating nonlocal quantity
3.3 Finite time extinction

24



Consider simplest eq
.

a b x

3.1 Characterization of the speed

Crystalline flow 
for admissible polygon.

What is the speed of the facet (flat part)?
Assume ‘facet stays as facet’
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Speed of Evolution
Thm (Kōmura, Brezis - Pazy)

: Hilbert space, : convex, lower semicontinuous, 
⇒ There exists a unique solution ∈ C 0,∞ , ∩ C , ,

solving 

.

Moreover, is right differentiable for all and

.

canonical restriction / minimal section:

Solution knows how to evolve! 26



3.2 Evaluating nonlocal quantity

What is the quantity
?

In general is not constant on 
the facet  so that facet may break.
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How to calculate the Speed 

Obstacle type condition at the place where 
the slope belongs to the jump of  .
Formally, . 28



Values of 
The case  

1
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Higher dimensional case ( )

Even if one considers a facet (with slope 
zero) of a concave function,
‘ ’ may not be a constant.

‘Find such that
on
on 
on

’

If such exists, then (calibrable).
30



G. Bellettini – M. Novaga – M. Paolini ’99: 
Counterexample of constancy of 

Bellettini, Novaga, Paolini ’01 and BV, 
sufficient condition for a Cheeger set

Kawohl, Lachand - Robert ’06: Characterization of 
Cheeger set

・ Little is known for a Cheeger set except for a 
convex facet on concave function

Facet : annulus 

Definition: If  admits a solution of this problem, 
 is called a Cheeger set.
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a a0

Obstacle Problem

I

graph of u

: not small

const. on  
⟺ is calibrable (Cheeger set)

Ex. 

Note: Two part of cannot split

speed profile ( ′)

optimal 
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Some explicit Solutions
(1) Angenent – Gurtin, Taylor 

‘admissible polygon’
(2)

Explicit solution starting with .
(bending solution)

Y.G. – Gorka – Rybka (2010)
Y.G. – Rybka (2009)

[M.-H. Giga – Y.G. ’98 for (a)]

Nonlocal Hamilton-Jacobi equations with 
unusual free boundary



3.3 Finite time extinction
Does a pattern remain or not?

・ Second order problem for total variation one
can compare typical solutions (see e.g. a
book of Andreu, Caselles, Mazon ’04)

・ Fourth order problem for total variation or
even relaxation dynamics

Neverthless, one obtain an 
estimate for the extinction time 
∗ from above by a norm of initial 

data. We impose periodic BC.
34



Thm (R. V. Kohn – Y. G. ’11)

Consider relaxation model or 4-th order total 
variation flow under periodic BC. Assume that 
the space dimension . Then the 
extinction time is estimated as
∗ C , ⁄

, 

where is the initial data. Here C is a scale-in 
dependent constant and 

.
35



Open for . For , the proof
is easy. Multiply with the
equation and integrate by parts yields

. Use Calderon

– Zygmund and Sobolev inequilities
to estimate RHS from above by

when . In general we
use interpolation inequilities as well
as growth estimate for negative norm.
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4. Well-posedness
(second order problem)

Viscosity theory is so far well-established for a curve
evolution when even if Frank has corners.

Thm (M.-H. Giga – Y. G. ’01)
For a given initial data (compact set in ) there is a 
unique global level-set flow for

provided that is constant in and is continuous. 
(More general dependence on is allowed) 

(Here Frank is convex and may have corners outside
the corners the curvature is assumed to be bounded)
Level-set flow for smooth : Y.-G. Chen – Y. G. – S. Goto ’91 L. C. Evans – J.
Spruck ’91; see also a book of Y. G. (2006) 37



Thm (M.-H. Giga – Y. G. ’01) (Approximation)

Assume that , uniformly. Assume that 
in Hausdorff distance sense. Then the level 

set solutions converge to in the sense

as  

provided that is regular up to , i.e. 
(for ) where is a flow starting from 

. 

・ Similar theorems are expected to be true for non
constant but so far only comparison principle for
a graph-like function is established. (M.-H. Giga –
Y. G. – P. Rybka ’11) 38



Rough idea of notion of solutions
Viscosity approach
Classical case. We say is a subsolution
of if 

at 
whenever takes its 
maximum in 
at for C .

39



Our case (b) : 
・ Choice of test function
・ Assign nonlocal quantity

on the facet
Higher dimension: Existence and 
comparison principle with no (M.-H. 
Giga, Y. G., N. Pozar, in preparation ’12)
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Variational approach
(Bellettini – Novaga – Paolini ’01～)

for  
The anisotropic signed distance function
(unit ball is the Wulff shape of ) is required to fullfill

in a nbd of 
on  

Underlining idea
fulfills in 

Comparison principle is OK / Existence is just for
convex case
(G. Bellettini, V. Caselles, A. Chambolle, M. Novaga ’06)
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5. Effect of kinetic and 
interfacial anisotropy

In what way a beautiful hexagonal snow 
flakes appear?

Conventional physical explanation
　

The kinetic coefficient dominates the
growth shape since is negligible. Then,
the equation looks like HJ equation

.
42



Its asymptotic shape is : Wulff
shape of , i.e.

In other words, slow direction remains. 
A surface with fast 
direction disappears.

43

Large time asymptotics



Rigorous Statement

Thm (H. Ishii – G. Pires – P. E. Souganidis ’99)

Assume that is continuous and is 
constant. If a compact set is bigger 
than the critical size, then its level-set flow 

has the asymptotic

in the Hausdorff distance sense. 

( -dimensional result) 44



Physical explanation (continued)
For snow crystal must be a regular hexagon 
in the plane. Thus snow flakes becomes a 
hexagon when it is very small.
A few problems (1) The asymptotic is a result by

scaling down. So there may exist
no real flat portion. Indeed, if the
curvature effect exists, a corner is
rounded and there is no flat portion
by the strong maximum principle
(if is Lipschitz).

(2) In reality may not be constant.
(cf. recent computation by J. Barrett, 
H. Garcke and R. Nürnberg ’11) 45



Does anisotropic curvature
plays a little role?

Assume that the Wulff shape of
is a regular polygon centered at
zero. Assume that is one in the
direction of normals of . Assume
that is a constant. Consider

.
46



Thm (M.-H. Giga – Y. G., work in progress)
Assume that  is a compact, convex
set in . If initial data is bigger than 
a critical size and sufficiently close to 
the critical size, then its level set flow 

becomes fully faceted with facets 
appeared in  in finite time.  If 
moreover and have the ‘same 
symmetry’ as  ,  then  becomes 
similar shape as .
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fully facetted

Examples of 
( i ) ( ii ) ( iii )

1 1 1
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( i ) ( ii )

49

( iii )



Ingredients of proofs 
・ Approximation by crystalline flow (use approximation 

theorem and consistency of level set and crystalline 
flows)

・ Prove that a facet with normal different from Wulff
moves very fast compared with other facets 
(everything is ODE)

Consider a self-similar solution of 

This gives an upper bound 
for facets with normals in Wulff
(by comparison principle). A facet with other 
directions moves faster at least for a short time.

d
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Remarks and further directions
・ Even if depends on , as far as

is small, then facet stays as a facet and
speed :
where is the average of over the
facet.

(In fact, one is able to solve the Stefan
type problem in 1.2; Y. G. – Rybka ’03.
Also existence of a self-similar solution
is known. Y. G. – Rybka ’05.)
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・ If is not small, a facet may break,
then the construction of solution itself
is nontrivial. Explicit solutions are
given for special cases (Y. G. – Rybka
’08, ’09, Y. G. – Rybka – Gorka ’10).

A general viscosity theory is under
construction.
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Crystal becomes fully faceted
because of anisotropy of interfacial
energy when it is small. Anisotropy
of mobility plays a little role.

Consistent with Barrett – Garcke –
Nürnberg’s simulation
(cf. R. Kobayashi – Y. G. ’01 JJIAM)

Explanation



Summary
1. Several examples of very singular

diffusion equations are discussed with
their applications.

2. Characterization of evolution speed of a
facet is given and it turns out that it is a
nonlocal quantity.

3. A scale free extinction time estimate is
given even for fourth order problems.

4. Well-posedness of initial value problem is
disscussed.

5. For anisotropic curvature flow equations
difference of role of two anisotropy (kinetic
and interfacial) is explained. 54


