Very singular diffusion equations: second and fourth order models for crystal growth phenomena

 On some macroscopic PDE models for crystal growth –

Yoshikazu Giga University of Tokyo

joint work with M.-H. Giga (Tokyo), R. V. Kohn (New York), P. Rybka (Warsaw)

June 2012

Contents

- 1. Introduction / Macroscopic PDE models for an evolving crystal surface including facets
- 2. Core examples of very singular diffusion equations
- 3. Speed of facets and finite time extinction
- 4. Well-posedness and approximation by smoother problem
- 5. Effect of kinetic and interfacial anisotropy: Which anisotropy plays a role for crystal growth from a disk-like shape?

1. Introduction / Macroscopic PDE models for an evolving crystal surface including facets

1.1 Nearly flat crystal surface (below roughening temperature)

1.2 A single crystal growth with facets

Singular diffusion equations = Fast diffusion equations

(i) $u_t = (|u_x|^{p-2}u_x)_x$ 1 (singular) $(ii) <math>u_t = (\operatorname{sgn} u_x)_x$ p = 1 (very singular) If we write in the form of $u_t = a(u_x)u_{xx}$, (i) $\Leftrightarrow a(r) = (p-2)|r|^{p-2} [a(r) \to \infty \text{ as } r \to 0, a \in L^1_{loc}]$. (ii) $\Leftrightarrow a(r) = 2\delta(r)$ $[a \notin L^1_{loc}]$.

If $\int_{-1}^{1} a(r)dr = \infty$, then patterns instantaneously disappear. e.g. equation for the inverse function u = u(x,t) of x = x(u,t) satisfying the heat eq $x_t = x_{uu}$ L. C. Evans (1996), Y. G. Chen – K. Sato – Y. Giga (1997)

- Macroscopic PDE models with facet
 1.1 Nearly flat crystal surface (phenomena below roughening temperature)
 - h = h(x, t) : height of a crystal at $x \in \mathbf{R}^n$ and $t \ge 0$
 - Free energy (often proposed)

$$E(h) = \int_{\mathbf{T}^n} \left(|\nabla h| + \frac{q}{3} |\nabla h|^3 \right) dx, \ q > 0$$

$$\mathbf{T}^n: \text{ periodic cell}$$

H. Spohn (1993), J. Phys. I. France

(I) Evaporation model

one dimensional version

 $h_t = (\operatorname{sgn} h_x)_x + q(|h_x|^2 h_x)_x$

If q = 0, it is the total variation flow. (Used for image denoising.)

(II) Relaxation model (motion by surface diffusion)

 H^{-1} gradient flow of *E*

$$h_t = \Delta \frac{\delta E}{\delta h}$$

$$h_t = -\Delta \left[\operatorname{div} \left(\frac{\nabla h}{|\nabla h|} \right) + q \operatorname{div} (|\nabla h|^2 \nabla h) \right], q > 0$$

If q = 0, the system is a 4-th order total variation flow.

1.2 A single crystal growth (with facets)

- Stefan problem with Gibbs Thomson effect and kinetic supercooling
- One phase
- Quasi-static approximation
- Both interfacial energy and kinetic coefficient is anisotropic (depending on orientation of crystal surface)

Unknowns

- $\Omega(t)$: a bounded domain in \mathbb{R}^n occupied by a crystal at time $t \ge 0$
- $\sigma = \sigma(x, t)$: supersaturation at x outside a crystal ($\mathbb{R}^n \setminus \overline{\Omega}(t)$)

Given functions

 γ_0 : $S^{n-1} \rightarrow (0, \infty)$ surface energy density

- $\gamma(p)$: = $|p|\gamma_0(p/|p|)$ homogeneous extension of γ_0 in \mathbb{R}^n
- $M: S^{n-1} \to (0, \infty)$ mobility

1/M: kinetic coefficient

Notations and concepts

 $\Gamma(t) := \partial \Omega(t)$ crystal surface in \mathbf{R}^n

 \vec{n} : outer unit normal of $\Gamma(t)$

 $\kappa_{\gamma} := -\operatorname{div}_{\Gamma}(\nabla_{p}\gamma(\vec{n}))$ anisotropic mean curvature

V : normal velocity in the direction of \vec{n}

Equations

$$\begin{cases} -\Delta \sigma = 0 \text{ in } \mathbb{R}^n \setminus \overline{\Omega(t)} \\ \frac{\partial \sigma}{\partial \vec{n}} = V \text{ on } \Gamma(t) \text{ (Stefan condition)} \\ V = M(\vec{n})(\kappa_{\gamma} + \sigma) \text{ on } \Gamma(t) \end{cases}$$

(curvature flow equation with driving force term) (cf. Y. G. Surface Evolution Equations, 2006) (σ , $\Omega(t)$) unknown!

- If $\gamma_0 = 1$, then interfacial energy is isotropic and κ_{γ} is nothing but an usual ((n - 1) times)mean curvature.
- The mobility M can be anisotropic.

Equilibrium shape (σ = const**)**

Wulff shape

$$W_{\gamma_0} = \bigcap_{|m|=1} \{ x \mid x \cdot m \le \gamma_0(m) \}$$

is a substitute of ball for anisotropic case. Indeed, formally

$$\kappa_{\gamma_0} = -(n-1)$$
 on ∂W_{γ_0}
(For smooth strictly convex energy,
 $\kappa_{\gamma_0} = \text{const} \Rightarrow \Gamma = \partial W_{\gamma_0}$ (Alexandrov type result))

- If γ_0 is smooth and strictly convex in the sense that Frank $\gamma = \{ p \mid \gamma(p) \le 1 \}$ has positive principle curvatures, this problem is locally well-posed for a given initial data $\Omega(0)$ and condition at space infinity or boundary condition at a ball containing $\Omega(0)$. (e.g. C. M. Elliott – K. Deckelnick '99 but two-phase) (one-phase, Hele – Shaw, isotropic, 2-D P. Mucha, '06)
- Recent simulation for snow crystal (with singular γ) : (J. Barrett H. Garcke R. Nürnberg '11).

Our situation

Frank γ is still convex but may have a corner (so that W_{γ_0} has a flat part.)

Typical example: If Frank γ is a polytope, γ_0 is called crystalline.

Why we say very singular?

The main reason is that the singularity is so strong in the equation so that its evolution speed is a nonlocal quantity. We shall see this property by simple examples. Note that the meaning of a solution is either nontrivial or unknown.

2. Core examples (curvature flow with driving force)

(a) $u_t = (\operatorname{sgn} u_x)_x + \sigma(x), x \in \mathbf{R}, t > 0$

More generally,

(b)
$$u_t = a(u_x) \left[\left(W'(u_x) \right)_x + \sigma(x) \right]$$

 W : convex, may not C^1
 $a \neq \text{const} \Rightarrow \text{non-divergence type}$
[Note: σ is given]

Feature

Energy density *W* has jump discontinuities so that diffusion is singular.

(a) is of the form $u_t = 2\delta(u_x)u_{xx} + \sigma(x).$

Simple examples

(a) with $\sigma = 0$: total variation flow

(b) with crystalline W : crystalline curvature flow for a graph-like function y = u(x, t)W(p) : piecewise linear, convex (crystalline) $a(p) = (1 + |p|^2)^{1/2}, \sigma = \text{constant}$ S.B. Angenent – M. Gurtin '89, J. Taylor '91 p^{\cdot}

Fourth order examples

(c)
$$u_t = -\Delta \left[\operatorname{div} \left(\frac{\nabla u}{|\nabla u|} \right) \right]$$

4th order total variation flow

(d)
$$u_t = -\Delta \left[\operatorname{div} \left(\frac{\nabla u}{|\nabla u|} \right) + q \operatorname{div} (|\nabla u|^2 \nabla u) \right]$$

relaxation dynamics

Further example (second order) (Vertical Diffusion)

A solution of (*) may overturn and cannot be viewed as the graph of an entropy solution.

Consider

 $V = y - M \operatorname{div} \nabla_p \gamma(\vec{n}), \quad \gamma(p_1, p_2) = |p_2|$ Instead of (*), where M > 0. ²⁰ Thm (M.-H. Giga – Y. G. '03)

If M > 0 is sufficiently large (with respect to jump size), then overturn is prevented and Γ_t becomes the graph of an entropy solution at least for the Riemann problem.

cf. Y. G. '02, Y.-H. R. Tsai – Y.G. – Osher '02, Y. Brenier: '09 formulation by an obstacle functional

Other examples

- Kobayashi Warren Carter model for averaged angle of multi-grain motion
 (K. Shirakawa's talk) (R. Kobayashi – J. Warren – C. Carter '00)
- 1-harmonic map flow

$$u_t = \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) + |\nabla u|u$$
, $u: S^2$ -valued

(Denoising chromaticity of images) Y. G. – H. Kuroda '04; Y. G. – Y. Kashima, N. Yamazaki, '04; ... L. Giacomelli – S. Moll '10

Notion of Solutions

(1) Subdifferential formulation (a) (not (b)), (c), (d) u_t ∈ -∂E(u) T. Fukui - Y. G.'96 (a = const (a)) σ: general (c), (d) Y. Kashima '03, '12
(2) Viscosity approach : (b)

M.-H. Giga – Y. G. '98, '99, '01 σ : const, $u_t + F(u_x, (W'(u_x))_x + \sigma) = 0$ M.-H. Giga – Y. G. – P. Rybka '11 σ : nonconstant : comparison principle

(3) Variational approach for distance functions
 G. Bellettini et al. '01∼

3. Speed of facets and finite time extinction

- 3.1 Characterization of the speed
- 3.2 Evaluating nonlocal quantity
- 3.3 Finite time extinction

3.1 Characterization of the speed Consider simplest eq $(W(p) = |p|, \sigma \equiv 0)$ $u_t = (\operatorname{sgn} u_x)_x.$

What is the speed of the facet (flat part)? Assume 'facet stays as facet'

•••• Crystalline flow for admissible polygon. ²⁵

Speed of Evolution

Thm (Komura, Brezis - Pazy) *H*: Hilbert space, *E*: convex, lower semicontinuous, $u_0 \in H$ \Rightarrow There exists a unique solution $u \in C([0, \infty), H) \cap AC([\delta, T], H)$ solving $\frac{du}{dt} \in -\partial E(u) \text{ a.e. } t > 0, \ u(0) = u_0.$ Moreover, u is right differentiable for all t > 0 and $\frac{d^+u}{dt} = -\partial^0 E(u).$

canonical restriction / minimal section: $-\partial^0 E(u) = \operatorname{argmin} \{ \|f\|_H ; f \in \partial E(u) \}$ Solution knows how to evolve!

3.2 Evaluating nonlocal quantity

What is the quantity $\Lambda_{W}^{\sigma} = (W'(u_{x}))_{x} + \sigma(x)$?

In general Λ_W^{σ} is not constant on the facet so that facet may break.

How to calculate the Speed

$$E(u) = \int_{\mathbf{T}} \{W(u_x) - \sigma(x)u\} \, \mathrm{d}x \,, \mathbf{T} = \mathbf{R}/\mathbf{Z} \,, H = L^2(\mathbf{T}),$$

$$f \in \partial E(u) \Leftrightarrow f = -\eta_x - \sigma, \eta(x) \in \partial W(u_x(x)),$$

$$f^0 = \partial^0 E(u)$$

$$\Leftrightarrow f^0 = \operatorname{argmin} \left\{ \int_{\mathbf{T}} |f|^2 \mathrm{d}x; f = -\eta_x - \sigma,$$

$$\eta(x) \in \partial W(u_x(x)) \right\}.$$

Obstacle type condition at the place where the slope belongs to the jump of W. Formally, $\Lambda_W^{\sigma} = -f^0$.

28

Higher dimensional case ($\sigma = 0$)

$$E(u) = \int_{\mathbf{T}^n} |\nabla u| \mathrm{d}x$$

Even if one considers a facet *F* (with slope zero) of a concave function,

'
$$\Lambda = \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$$
' may not be a constant.

'Find z such that

$$\begin{cases} \operatorname{div} z = \operatorname{const} \ \operatorname{on} \ F \\ |z| \le 1 & \operatorname{on} \ F \end{cases}, \\ z \cdot \nu = 1 & \operatorname{on} \ \partial F \end{cases}$$

If such z exists, then $\Lambda = \text{const}$ (calibrable).

Definition: If *F* admits a solution of this problem, *F* is called a Cheeger set.

- G. Bellettini M. Novaga M. Paolini '99: Counterexample of constancy of Λ
- Bellettini, Novaga, Paolini '01 $\Lambda \in L^{\infty}$ and BV, sufficient condition for a Cheeger set
- Kawohl, Lachand Robert '06: Characterization of Cheeger set
- Little is known for a Cheeger set except for a convex facet on concave function

graph of
$$u$$
 Facet : annulus $\Rightarrow \Lambda = \text{const}$

Obstacle Problem

Note: Two part of Λ_W^{σ} cannot split

Some explicit Solutions

(1) σ : const Angenent – Gurtin, Taylor 'admissible polygon'

(2) $\sigma(x) = \sigma(-x), \sigma_x > 0$, e.g. $a(p) = (1 + p^2)^{1/2}$

Explicit solution starting with $u_0 \equiv 0$. (bending solution)

Nonlocal Hamilton-Jacobi equations with unusual free boundary

Y.G. – Gorka – Rybka (2010) Y.G. – Rybka (2009) [M.-H. Giga – Y.G. '98 for (a)]

3.3 Finite time extinction

Does a pattern remain or not?

- Second order problem for total variation one can compare typical solutions (see e.g. a book of Andreu, Caselles, Mazon '04)
- Fourth order problem for total variation or even relaxation dynamics

Neverthless, one obtain an estimate for the extinction time T^* from above by a norm of initial data. We impose periodic BC.

Thm (R. V. Kohn – Y. G. '11)

Consider relaxation model or 4-th order total variation flow under periodic BC. Assume that the space dimension $n \le 4$. Then the extinction time is estimated as

 $T^*(u_0) \leq C \| (-\Delta)^{-1} u_0 \colon \dot{W}^{-1,p} \|^{(1/\theta)-1} \cdot \| u_0 \colon H^{-1} \|^{2-1/\theta},$ where u_0 is the initial data. Here *C* is a scale-in dependent constant and $1 + n/2 = \theta(n-1) + (1-\theta)(3+n/p), \ 1 \leq p < \infty, \ 1/2 < \theta \leq 1.$

Open for $n \ge 5$. For n = 4, the proof is easy. Multiply $(-\Delta)^{-1}u$ with the equation and integrate by parts yields $\frac{1}{2} \frac{d}{dt} \|u\|_{H^{-1}}^2 = -\int |\nabla u|$. Use Calderon - Zygmund and Sobolev inequilities to estimate RHS from above by $- \|u\|_{H^{-1}}$ when n = 4. In general we use interpolation inequilities as well

as growth estimate for negative norm.

4. Well-posedness (second order problem)

Viscosity theory is so far well-established for a curve evolution when $\sigma = \text{constant}$ even if Frank γ has corners.

Thm (M.-H. Giga – Y. G. '01)

For a given initial data E_0 (compact set in \mathbb{R}^2) there is a unique global level-set flow $\{E(t)\}_{t\geq 0}$ for $V = M(\vec{n})(\kappa_{\gamma} + \sigma)$

provided that σ is constant in x and M > 0 is continuous. (More general dependence on κ_{γ} is allowed)

(Here Frank γ is convex and may have corners outside the corners the curvature is assumed to be bounded) Level-set flow for smooth γ : Y.-G. Chen – Y. G. – S. Goto '91 L. C. Evans – J. Spruck '91; see also a book of Y. G. (2006) Thm (M.-H. Giga – Y. G. '01) (Approximation)

Assume that $\gamma_{\varepsilon} \to \gamma$, $M_{\varepsilon} \to M$ uniformly. Assume that $E_0^{\varepsilon} \to E_0$ in Hausdorff distance sense. Then the level set solutions E^{ε} converge to *E* in the sense

$$\sup_{0 < t < T} d_H(E^{\varepsilon}(t), E(t)) \to 0 \text{ as } \varepsilon \to 0$$

provided that *E* is regular up to *T*, i.e. $E(t) = \overline{D(t)}$ (for $t \in (0,T]$) where D(t) is a flow starting from $D_0 = \operatorname{int} E_0$.

Similar theorems are expected to be true for non constant *σ* but so far only comparison principle for a graph-like function is established. (M.-H. Giga – Y. G. – P. Rybka '11)

Rough idea of notion of solutions

Viscosity approach Classical case. We say *u* is a subsolution of $u_t - a(u_x)u_{xx} = 0$ ($a \ge 0$) if $\varphi_t - a(\varphi_x)\varphi_{xx} \leq 0 \text{ at } (\hat{x}, \hat{t})$ whenever $u - \varphi$ takes its Φ maximum in $Q = \mathbf{R} \times (0, \infty)$ at (\hat{x}, \hat{t}) for $\varphi \in C^{\infty}(Q)$. U

Our case (b): $u_t - a(u_x)\Lambda_W^{\sigma}(u) = 0$

- Choice of test function φ
- Assign nonlocal quantity

$$\Lambda^{\sigma}_{W}(u) = (W'(u_{x}))_{x} + \sigma(x)$$

on the facet

Higher dimension: Existence and comparison principle with no σ (M.-H. Giga, Y. G., N. Pozar, in preparation '12)

Variational approach (Bellettini – Novaga – Paolini '01~)

$$V = \gamma \kappa_{\gamma} \text{ for } \Gamma(t) \subset \mathbb{R}^n (n \ge 2)$$

The anisotropic signed distance function $d(x, \Gamma)$ (unit ball is the Wulff shape of γ) is required to fullfill

$$\begin{aligned} d_t - \operatorname{div} \nabla \gamma(\nabla d) &\geq 0 & \text{in a nbd of } \Gamma(t) \\ &= 0 & \text{on } \Gamma(t) \end{aligned}$$

$$\begin{cases} Underlining idea \\ V = \kappa \\ d = d(x, \Gamma) \text{ fulfills } d_t - \Delta d \ge 0 \text{ in } \mathbb{R}^n \end{cases}$$

Comparison principle is OK / Existence is just for convex case

(G. Bellettini, V. Caselles, A. Chambolle, M. Novaga '06)

5. Effect of kinetic and interfacial anisotropy

In what way a beautiful hexagonal snow flakes appear?

Conventional physical explanation $V = M(\vec{n})(\kappa + \sigma), \quad M(\vec{n}) \ge 0$ The kinetic coefficient dominates the growth shape since κ is negligible. Then, the equation looks like HJ equation

$$V = M(\vec{n})\sigma.$$

Large time asymptotics

Its asymptotic shape is W_M : Wulff shape of M, i.e.

$$W_m = \bigcap_{|m|=1} \{ x \mid x \cdot m \le M(\vec{m}) \}$$

In other words, slow direction remains.

A surface with fast direction disappears.

Rigorous Statement

Thm (H. Ishii – G. Pires – P. E. Souganidis '99)

Assume that *M* is continuous and $\sigma > 0$ is constant. If a compact set E_0 is bigger than the critical size, then its level-set flow E(t) has the asymptotic

$$E(t) / t \to W_M \quad (t \to \infty)$$

in the Hausdorff distance sense.

(*n*-dimensional result)

Physical explanation (continued)

For snow crystal W_M must be a regular hexagon in the plane. Thus snow flakes becomes a hexagon when it is very small.

A few problems (1) The asymptotic is a result by

scaling down. So there may exist no real flat portion. Indeed, if the curvature effect exists, a corner is rounded and there is no flat portion by the strong maximum principle (if M is Lipschitz).

(2) In reality σ may not be constant.
(cf. recent computation by J. Barrett, H. Garcke and R. Nürnberg '11)

Does anisotropic curvature plays a little role?

Assume that the Wulff shape of γ is a regular polygon centered at zero. Assume that *M* is one in the direction of normals of W_{γ} . Assume that $\sigma > 0$ is a constant. Consider $V = M(\vec{n})(\kappa_{\gamma} + \sigma)$.

Thm (M.-H. Giga – Y. G., work in progress) Assume that E_0 is a compact, convex set in \mathbb{R}^2 . If initial data E_0 is bigger than a critical size and sufficiently close to the critical size, then its level set flow E(t) becomes fully faceted with facets appeared in W_{γ} in finite time. If moreover E_0 and M have the 'same symmetry' as W_{γ} , then E(t) becomes similar shape as W_{ν} .

Ingredients of proofs

- Approximation by crystalline flow (use approximation theorem and consistency of level set and crystalline flows)
- Prove that a facet with normal different from Wulff moves very fast compared with other facets (everything is ODE)

Remarks and further directions

• Even if σ depends on x, as far as $|\nabla \sigma|$ is small, then facet stays as a facet and speed : $V = - \text{const/length} + \sigma_{av}$ where σ_{av} is the average of σ over the facet.

(In fact, one is able to solve the Stefan type problem in 1.2; Y. G. – Rybka '03. Also existence of a self-similar solution is known. Y. G. – Rybka '05.)

 If |∇σ| is not small, a facet may break, then the construction of solution itself is nontrivial. Explicit solutions are given for special cases (Y. G. – Rybka '08, '09, Y. G. – Rybka – Gorka '10).

A general viscosity theory is under construction.

Crystal becomes fully faceted because of anisotropy of interfacial energy when it is small. Anisotropy of mobility plays a little role.

Consistent with Barrett – Garcke – Nürnberg's simulation (cf. R. Kobayashi – Y. G. '01 JJIAM)

Summary

- 1. Several examples of very singular diffusion equations are discussed with their applications.
- 2. Characterization of evolution speed of a facet is given and it turns out that it is a nonlocal quantity.
- 3. A scale free extinction time estimate is given even for fourth order problems.
- 4. Well-posedness of initial value problem is disscussed.
- 5. For anisotropic curvature flow equations difference of role of two anisotropy (kinetic and interfacial) is explained. 54