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Cell motility

Directed motion of cells is central to many biological processes, e.g., cancer metastasis, wound healing and immune
responses.

./../Movies_webpage/Keratocyte_experimental.mp4

Persistent migration of a fish keratocyte
./../Movies_webpage/pseudopod.mov

Dictyostelium chemotaxis [King and Insall, 2009]
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Outline

Modelling chemotaxis with ESFEM [Elliott, Stinner, and
Venkataraman, 2012]
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ing, whereas the blue areas are retracting. Note that these
regions are enriched in F-actin and myosin, respectively.
At 8 s after stimulation, the inactive state of the cell is
clearly visible by the dark colors of the outline, which
indicate slow node movement.

The tracking number analysis macro also creates a
cell track, which consists of the outlines of the cell
stacked on top of each other. In Fig. 4A, the cell track is
created with time driven coloring, which gives a global
idea of the cells’ movement during the course of the
movie. Figures 4B–4D are three examples of 2D plots

that can also be created by the macro. In this type of
plot, each row represents one frame and each pixel repre-
sents the data of one node. It can be depicted as the cell
perimeter that is cut open and straightened for each con-
secutive frame, going further in time from top to bottom.
The value of the pixel is determined by a certain feature,
which can be chosen by the user.

In Fig. 4B, the area change is displayed, whereas
Figs. 4C and 4D show the intensities of the F-actin stain
and myosin II, respectively. In Fig. 4B, the freezing of
the cell just after cAMP stimulation is clearly visible by

Fig. 3. Chemoattractant-induced myosin- and actin responses and
local membrane movement. Starved wild type Dictyostelium cells
expressing red fluorescent myosin II and a green fluorescent F-actin
label (the actin binding domain of LimE) were subjected to a global
cAMP stimulation at time point 0. The images are stills taken from
the original fluorescent movies (columns labeled with F-actin and My-
osin II) and from an outline movie that was created with the tracking
number analysis macro (column labeled Area change). The full movie
is available as supplementary data (Supp. Info. Movie S1). Shortly af-
ter the cAMP stimulation, a strong increase in cortical actin filaments

is observed (8 s). A second F-actin boost is visible at 60 s, which is
accompanied by the formation of two new pseudopodia (yellow
arrows). Subsequently, the normal localization of F-actin and myosin
is restored. The less pronounced myosin II translocation occurs
between the two actin boosts (28 s). The area change pictures visual-
ize the local displacement of the cell boundary; the calibration bar
indicates the meaning of the colors. Note the abundance of F-actin in
extending regions and the enrichment of myosin II in retracting
regions before stimulation (28 s), and the dramatic drop of the exten-
sion- and retraction activities after cAMP stimulation (8–44 s).

160 Bosgraaf et al.

Figure: Cell polarisation and movement [Bosgraaf, van Haastert, and Bretschneider, 2009]

(plausible) Model

Polarisation and gradient sensing: PDE posed on a continuously evolving surface.

Movement: Surface evolution law coupled to surface PDE.
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Model: Coupled surface RDS surface evolution law

(Turing) Reaction-diffusion system (RDS) on an evolving surface [Dziuk and Elliott, 2007]

∂
•
V a + a∇Γ(t) · V − D∆Γ(t)a = f (a) on Γ(t), t > 0, a(·, 0) = a0(·) on Γ(0),

where D is a diagonal matrix of positive diffusion coefficients, a0 is a bounded vector valued function, V is the
material velocity of the surface and the material derivative with respect to V is

∂
•
V a := ∂t a + V · ∇a

Evolution law

V =

 
K p · a| {z }

Protrusion/Retraction

− ksH|{z}
MCF (resistance to stretching)

+kb

 
∆ΓH + H |∇Γν|2 −

1

2
H3
!

| {z }
WF (resistance to bending)

+ λ|{z}
Volume conservation

!
ν.

For closed curves as |∇Γν|2 = H2:

V · ν|d=2 = K p · a − ksH + kb

 
∆ΓH +

1

2
H3
!

+ λ.
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Numerical methods

Geometric evolution equations [Deckelnick, Dziuk, and Elliott, 2005]

Level set [Droske and Rumpf, 2004; Sethian, 1999]

Phase field [Du, Liu, and Wang, 2004; Lowengrub, Rätz, and Voigt, 2009]

Parametric [Bänsch, Morin, and Nochetto, 2005; Barrett, Garcke, and Nürnberg, 2008; Bonito, Nochetto,
and Sebastian Pauletti, 2010; Dziuk, 2008; Elliott and Stinner, 2010]

Surface PDEs

Diffuse interface [Elliott, Stinner, Styles, and Welford, 2011; Rätz and Voigt, 2006]

Closest point [Macdonald and Ruuth, 2009; Ruuth and Merriman, 2008]

Surface finite elements [Dziuk and Elliott, 2007], finite volumes [Lenz, Nemadjieu, and Rumpf, 2008]

Main advantage of SFEM is efficiency.

Cons: Harder to include bulk phenomena, No topological change.
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Surface finite elements [Dziuk, 1990]

Approximate the surface (curve) Γ with a polyhedral (polygonal) surface Γh :

Γh = ∪Th∈T Th.

Surface finite element space:

Vm := {χh ∈ H1(Γm
h ) : χh|Th

is quadratic (linear)}.

s1 s2 s3

s4

s5

s6
s′
1 s′

2

s′
3

s′
4

s′
5

s′
6

s

s′
Isoparametric quadratic surface finite elements are (pos-
sibly) curved images of a linear reference element under
a quadratic map.

Use of isoparametric quadratic surface finite elements in 3d motivated by the need to approximate∇Γν.

O(h`−1) convergence of the Weingarten map (for a given smooth surface) in L2 was shown in [Heine].
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Discretisation

Schemes based on variational form of the identity

Hν = −∆Γx.

In 3D approximation of the shape operator based on the identity:Z
Γ
∇Γν · Φ = −

Z
Γ

ν · (∇Γ · Φ) +

Z
Γ

Hν · Φν.

Weak formulation

Z
Γ(t)

“
∂t x · νχ + kb∇Γ(t)H · ∇Γ(t)χ− kbH |ν|2 χ +

1

2
kbH3

χ + ksH
”

=

Z
Γ(t)

`
λχ + kp · aχ

´
Z

Γ(t)

“
Hν · χ−∇Γ(t)x : ∇Γ(t)χ

”
= 0, ∀χ ∈ H1(Γ(t)),χ ∈ H1(Γ(t))d
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Surface evolution

Discretisation of the evolution law by parameterising Γn+1
h over Γn

h , based on the scheme of [Barrett, Garcke, and
Nürnberg, 2008]. Induces a tangential velocity that results in good mesh-properties.
Surface densities treated explicitly.

Discrete curve evolution

Given Xn
h ∈ (Vn)2,Hn

h ∈ Vn and an
h ∈ (Vn)m , find Xn+1

h ∈ (Vn)2,Hn+1
h ∈ Vn such that

Z
Γn

h

 
1

τ

“
Xn+1

h − Xn
h

”
ν

n
hχh + kb∇Γn

h
Hn+1

h · ∇Γn
h
χh −

1

2
kb

“
Hn

h

”2
Hn+1

h χh + ksHn+1
h χh

!

=

Z
Γn

h

“
λ

n+1 + kp · am
h

”
χh

Z
Γn

h

„
Hn+1

h ν
n
h · χh −∇Γn

h
Xn+1

h : ∇Γn
h
χh

«
= 0,

for all χh ∈ Vn,χh ∈ (Vn)2.
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Discrete schemes

Discrete surface evolution

Given Xn
h ∈ (Vn

2)3,Hn
h ∈ Vn

2 and an
h ∈ (Vn

2)m , first find Qn
h ∈ (Vn

2)3×3 such that

Z
Γn

h

Qn
hΦh =

Z
Γn

h

„
Hn

h ν
n
hΦhν

n
h − ν

n
h∇Γn

h
· Φh

«
∀Φh ∈ (Vn

2)3×3
,

then find Xn+1
h ∈ (Vn

2)3,Hn+1
h ∈ Vn

2 such that

Z
Γn

h

 
1

τ

“
Xn+1

h − Xn
h

”
ν

n
hχh + kb∇Γn

h
Hn+1

h · ∇Γn
h
χh + kb

 
1

2
(Hn

h )2 −
˛̨̨
Qn

h

˛̨̨2!
Hn+1

h χh

+ksHn+1
h χh

!
=

Z
Γn

h

“
λ

n+1
χh + kp · am

h χh

”
Z

Γn
h

„
Hn+1

h ν
n
h · χh −∇Γn

h
Xn+1

h : ∇Γn
h
χh

«
=0,

for all χh ∈ Vn
2,χh ∈ (Vn

2)3.
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Enforcing the constraint

Linear system

Given data at time tm we have the linear system

"
(Nm)T Cm

−Am Nm

# "
xm+1

h
Hm+1

h

#
=

"
λm+1bm

h + f m
h

0

#
.

Solve linear system with right hand sides f h and bh , then determine λm+1 via a Newton method [Bonito, Nochetto,
and Sebastian Pauletti, 2010] such that volume is conserved. Newton method yields xm+1

h and Hm+1
h .

Cost two solves per timestep (iterative solver) for a direct solver only one matrix factorisation per timestep is needed.
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RDS approximation

Discretisation of the RDS via an ALE-ESFEM [Dziuk and Elliott, 2007].

(Lagrangian) ESFEM nodes moved with material velocity V = vν.

In our case nodal movement includes artificial tangential velocity V ALE := ∂t X = vν + T .

We have

∂
•
V a + a∇Γ · V = ∂t a + V · ∇a + a∇Γ · V

= ∂t a + V ALE · ∇a + a∇Γ · V ALE −∇Γ · (aT )

= ∂
•
VALE

a + a∇Γ · V ALE −∇Γ · (aT )

Thus an equivalent strong formulation of the RDS reads

∂
•
VALE

a + a∇Γ(t) · V ALE −∇Γ · (aT )− D∆Γ(t)a = f (a)
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RDS weak formulation

Leibniz formula [Dziuk and Elliott, 2007]

d

dt
〈ah, χh〉Γh

=
D
∂
•
VALE

(ah), χh

E
Γh

+
D

ah, ∂
•
VALE

χh

E
Γh

+ 〈ah, χh∇Γ · V ALE 〉Γh
(1)

Thus the transport property of the basis functions (w.r.t the ALE-velocity) gives

Weak formulation semidiscrete

d

dt

˙
(ah)i , χh

¸
Γh
−
D
∇Γh
· ((ah)i T h), χh

E
Γh

+
D

Di (∇Γh
(ah)i ),∇Γh

χh

E
Γh

=
˙
fi (ah), χh

¸
Γh

for all χh ∈ V(t).

The ALE-velocity plays the role of an (extra) advective flux in the RDS.
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RDS discrete scheme

Discrete scheme

We employ an IMEX method where the reaction terms are treated explicitly and diffusion implicitly. Given Γm+1
h find

am+1
h ∈ Vm+1 such that for i = 1, . . . , l :

Z
Γm+1

h

0@ (ah)m+1
i
τ

−∇Γm
h
· ((ah)i T

m+1
h ) + Di∇Γm+1

h
(ah)m+1

i ∇
Γm+1

h

1Aχm+1
h =

Z
Γm

h

(ah)m
i χ

m
h

τ
+ fi (am

h )χm
h .

The timestep needed for the surface update is sufficiently small that explicit treatment of the nonlinear reaction

kinetics necessitates no further timestep restriction.
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Implementation in ALBERTA [Schmidt and Siebert, 2005].

Provides Isoparametric surface finite elements.

Mesh adaptivity through newest vertex bisection (only employed for computations in 3d)

Linear systems solved using UMFPACK [Davis, 2004].
Visualisation with PARAVIEW.

Tangential redistribution

./../Movies_webpage/equidistribution.avi
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Persistent migration

Related work:

[Keren, Pincus, Allen, Barnhart, Marriott, Mogilner, and Theriot, 2008] experimental study with simple
mathematical model neglecting details of cell shape

[Shao, Rappel, and Levine, 2010] Coupled surface evolution law bulk RDS, phase field numerics

[Ziebert, Swaminathan, and Aranson, 2011] Coupled surface evolution law bulk equation for orientation of
actin filaments, phase field numerics

Schnakenberg model

∂
•
V a1 + a1∇Γ(t) · V − D1∆Γa1 = γ

“
k1 − a1 + a2

1a2

”
,

∂
•
V a2 + a2∇Γ(t) · V − D2∆Γa2 = γ

“
k2 − a2

1a2

”
, on Γ(t), t > 0,

a(·, 0) = a0(·) on Γ0.

activator (a1) promotes retraction of the cell membrane ((kp)1 < 0).

Substrate (a2) promotes protrusion of the cell membrane ((kp)2 > 0).
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Persistent migration

Experiments show cells move at a constant speed with fixed shape. Positive relationship between aspect ratio and
cell speed [Keren, Pincus, Allen, Barnhart, Marriott, Mogilner, and Theriot, 2008].

./../Movies_webpage/keratocyte_curve.avi

./../Movies_webpage/keratocyte_surface.avi
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Pseudopod driven migration

Related work:
[Neilson, Mackenzie, Webb, and Insall, 2011] Coupled surface RDS surface evolution law, (2d) level set and
SFEM numerics
Lots of others e.g., [Hecht, Skoge, Charest, Ben-Jacob, Firtel, Loomis, Levine, and Rappel, 2011; Jilkine
and Edelstein-Keshet, 2011]

Meinhardt model

Extension of the [Meinhardt, 1999] model. Local activator (a) antagonised by a local inhibitor (c) and a global
(rapidly distributed) inhibitor (b) [Amarasinghe, Aylwin, Madhavan, and Pettitt, 2011; Neilson, Mackenzie, Webb, and
Insall, 2011].

∂
•
V a + a∇Γ(t) · V − Da∆Γa = γ

0@ ras(a2/b + ba)

(sc + c)(1 + saa2)
− raa

1A ,
b =

1

|Γ|

Z
Γ

a,

∂
•
V c + c∇Γ(t) · V − Dc∆Γc = γ(bcc − rca),

where s(x, t) models random fluctuations due to underlying noise and the stochastic chemotactic signal. (See B.
Stinner’s talk for details)

Spatial patterning due to local activation-global inhibition. Temporal patterning due to the local inhibitor.
Signals amplified due to autocatalysis.
Coupling to evolution law only through protrusive force proportional to activator (a) density.

We assume the chemotactic signal and underlying noise are OU processes [Neilson, Mackenzie, Webb, and Insall,

2011]. Approximated via the Euler-Maruyama method.
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Chemotaxis

./../Movies_webpage/signal_change.avi

Response to a changing signal
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Pseudopod driven migration in 3d

./../Movies_webpage/3dcell.avi

Migration of an unstimulated cell in 3d
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Migration in heterogeneous media

./../Movies_webpage/Neutrophil_Rogers1950s.mp4

Experiment of Rogers [1952], neutrophil chasing a bacte-
ria in a sea of obstacles (corpuscles)

./../Movies_webpage/obstacle_mcf.avi

Simulation based on simple phenomenological model
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Summary

Coupled surface evolution - surface RDS model capable of replicating aspects of cell behaviour observed
during chemotaxis.

Computational method capable of dealing with general surface PDE coupled to a surface evolution law
consisting of surface tension and elastic flow in the presence of constraints.

Movement in complex enviroments.

Movement of 3D cells.
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Future work

Crawling on a substrate

./../movies/curved.avi

Analysis

Well posedness (curves), Self-intersection
Numerical analysis:

PDEs on evolving surfaces [Dziuk and Elliott, 2012; Lubich, Mansour, and Venkataraman]

Geometric evolution laws [Deckelnick and Dziuk, 2010]
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Thank You
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