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Applications - |

A |Ip|d bilayer [Picture: M. A. Peletier and M. Réger]

Hydrophilic head

o

Hydrophobic tail

Mechanical properties:

@ in-plane fluid behaviour
@ resistance to stretching
@ bending elasticity



Applications - |

Artificial membranes

Section of an artificial liposome
[Picture: lyposphericnutrients.co.uk]

Applications:
@ Pharmacology (deliverers of drugs)
@ Bioengineering
o Gene-therapy
@ Medical diagnostics



Model

Modelling membranes

The model by Helfrich: elasticity “as a special case of the
well-established theory of thin elastic shells"'.

Helfrich’s strain energy density

A ®

Mean curvature Gauss curvature
H=Fk + ko K =kik

TW. Helfrich, Elastic Properties of Lipid Bilayers: Theory and Possible Experiments,
Z. Naturforsch., vol. 28c (1973)
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Model

Modelling membranes

The model by Helfrich: elasticity “as a special case of the
well-established theory of thin elastic shells"'.

Helfrich’s strain energy density

o= 5 (@) +nolE]

Mean curvature Spontaneous Gauss curvature
H=Fk + ko curvature K = kiko

TW. Helfrich, Elastic Properties of Lipid Bilayers: Theory and Possible Experiments,
Z. Naturforsch., vol. 28c (1973)



Modelling membranes

Shape configurations are modeled as minimizers of

F(S) ::Zg/s(H—Ho)QdU-i-Iig/stO'

on M := systems of surfaces S = (Si,..., Sk) such that
@ S, is axisymmetric
095, =0
oY |S=A
@ Y Vol(S;) =V

Note: if A > |0Bv|, this set is not empty (w/ strict inequality, the set is infinite)



Axial symmetry

Find the maximal set Q of parameters (Hy, A, V) such
that the global minimizer, in the class of embedded
surfaces, is axisymmetric.

(note: (0, 4nr?, 473 /3) € Q € {A > |0Bv|})




Gauss-Bonnet theorem

Let x(5) be the Euler-Poincaré characteristic of the surface S
(x = Faces-Edges+Vertices, for any triangulation)

The genus is defined as

g<S>:2‘;‘(S).

Gauss-Bonnet Theorem (k, := geodesic curvature)

/Kdo—|— kyds = 21x(S) (= 4m(1 - g(S)))

¢ O N P



If A>|0By|, >0 and kqg/k > —2, the minimization problem

)

has at least one solution.

where
F(S) ::Zg/s (H*H())2d0+/€G/S K do
M := systems of surfaces S = (51, ...,S%) such that
@ S, is axisymmetric
@ Y |Si|=A

° Vol (S) =V



The direct method in the calculus of variations

General scheme: given F : X — R,

let m :=inf {F(u) :u e X}, toprove:‘ElueX:F(u):m‘

o Step 0
by definition: Ju, € X : F(u,) — m.
o Step 1
show that: Ju,,,u e X :u,, — u.
o Step 2

show that: likm inf F(up,) > F(u).
—00



The direct method in the calculus of variations

Given Helfrich’s functional F' : M — R,

@ Step 1: F-bounded sequences are compact
VS, F(S,)<C = 38, »SeM.
o Step 2: F is lower-semicontinuous
hnnii@ng(S") >F(S) VS,—S.

@ Step 3: Continuity of constraints

Sal = ISI, VoI (S,) — Vol (S)

Crucial point!
in whichsense S, —+S7




Surfaces of revolution

v:[0,1] = R? r:[0,1] x [0,27] — R®
Y(t) = [n(t), 72(t)] r(t,0) = [1(t) cos(0),71(t) sin(6), 72 (t)]



Surfaces of revolution

v:[0,1] = R? r:[0,1] x [0,27] — R®
Y(t) = [n(t), 72(t)] r(t,0) = [1(t) cos(0),71(t) sin(6), 72 (t)]



Surfaces of revolution

Principal curvatures:

k1= w (meridian) ko = i (parallel)
19 Y117l
1 1
Area: |S|= 27r/ Y|y dt Volume: Vol (S) = 7r/ Y34y dt.
0 0
Helfrich energy: 02
7(t)

F(S):/Sg(H—HO)%rnGKda

1
K .
= /O [5 (k1+ke — Ho)*+ Hlekz] 2my || dt. T



Compactness - bounds

Note:
o k2 +k}=H?-2K
0 ifk>0and kg/k > —2

/ k2 4 k2 do < C (F(S) +|S))
S

1
= /kﬁwg%%mmgc
0

On sequences 7"
@ vanishing control on curvatures (one.g. {7{ < 1/n})
@ need compactness and |.s.c. with respect to a moving measure



Compactness - bounds

Note:
o k2 +k}=H?-2K
0 ifk>0and kg/k > —2

é)k% + do)< C (F(S) +S])

1
= / k2 4+ k2
0

On sequences 7"
@ vanishing control on curvatures (one.g. {7{ < 1/n})
@ need compactness and |.s.c. with respect to a moving measure



...or lack of bounds

72
Problem: ~; “close to 0"
Can there be {y™} with
° |y"[=L gl
° 4" =7 ?
o |yl <L

Implication:

Area may not converge

7
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...or lack of bounds

72
Problem: ~; “close to 0"
Can there be {y™} with
° |y"[=L gl
o 4m— 4 ?
o |yl <L
e.g.
g / Y

Implication:

\Area may not converge
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[Hutchinson, Indiana Univ. Math. J., 1986]

Compactness and lower-semicontinuity for sequences of functions
{f»} and measures {u,} such that [(f,)*du, < C.

o Define: (weak) convergence of function-measure pairs
jn S in RM(R) = (CO(R)Y

i) — (f, iff
(frspn) = (fip) i {/fn¢dun*>/f¢du Vo € C2(R)

o (Generalized compactness) If ,, = ; and /(fn)Qdun <C

= 3 (fowr tiny,) = (f5 1)

o (Generalized lower-semicontinuity) If (f., un) — (f, 1)

= tmint [(F)%du > [(£2du

n—o0



Compactness - bounds

Bound on length

Bound on oscillations
For all (a,b) C (0,1)

b
4750 0) ~ (@) < P [ (8 + B3) 2 .




Sketch of the proof

Bound on
/kfn + k3, du,, and  Area (S,) J
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Sketch of the proof

Bound on
/kfn + k3, du,, and  Area (S,) J

Bound on Bound on Bound on
length (v,) I n° of componentsJ oscillations of 4, J
Y —> Y inCOJ — A — 4 in L2 |




Sketch of the proof

Bound on
/kfn + k3, du,, and  Area (S,) J

Bound on Bound on Bound on
length (v,) I n° of componentsJ oscillations of 4, J

Y —> Y inCOJ _— Ap — 4 in L2 |
N /

*
Hn —




Sketch of the proof

Bound on
/kfn + k3, du,, and  Area (S,) J

/ N\

Bound on Bound on Bound on
length (v,) I n° of componentsJ oscillations of 4, J

Yo =y inC° _— i —> A in L?
0 0 Y

NS \

—_—

T (s pin) = (35 11) |




Multiphase membranes

Applications II

Phase separation of rafts on
Giant Unilamellar Vesicles

[T. Baumgart, S. T. Hess, W. W. Webb,
Imaging coexisting fluid domains in
biomembrane models coupling curvature
and line tension, Nature, 2003.]




Modelling multiphase membranes

Energy of a 2-domain shape S = S, U S,

F(S) :/S % (H — HY)? + k& K Helfrich’s energy on S,
b
+ / % (H - 15[3)2 + K% K Helfrich’s energy on S,
Sh
2
+ [0
r
=095, =295,

2R. Lipowsky, Budding of membranes induced by intramembrane domains.
J. Phys. Il France 2, 1992.



Modelling multiphase membranes

Alternative model - sharp interface: introduce a phase indicator
¢:S8—{0,1}

F(S, ) ::L{@(H—Ho(@)zmg@m}+a%ﬂ1(r)

K(0) = K* Hy(0) = H§ ka(0) =k
k(1) = K? l Hy(1) = H} J ka(l) =k

1 (T") = one-dimensional Hausdorff measure of T




Applications |

Modelling multiphase membranes

Phases on a curve p:y—=R
VS
parametrized phases p=poy:[0,1]] >R

Figure: The problem of defining the phase on a curve when overlapping can
arise as limit of well-defined configurations (y", ¢™).



Applications Il

If A>|0By|, k>0 and kg/k > —2, the minimization problem

2R

has at least one solution (for every fixed phase-area value).

where

Z/ { (H — Ho(p))? +f-ic(<p)K}+cf<%"1(Fi)

M := systems of surface-phase couples S = ((S1,¥1), - - -, (Sk, ©x)) with

@ S;is C!, axisymmetric
y 0 98 =0

0 Y |Si|=4 | |
@ S Vol(S) =V ® ¢; € BVie((0,1);{0,1})



Applications II

Sketch of the proof

o Compactness
o Surfaces: as for one-phase membranes

Ascoli-Arzela for curves on a fixed interval
o Phases: BV compactness + L bound
" =@ inLP, @ € BVige

@ Lower semicontinuity
o o (T):
I.s.c. for BVjec + ...

o Mean and Gaussian curvatures:

I.s.c. for function-measure pairs, with phase-dependent measures



Applications Il
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Thank you for your attention !!
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