Applications II

On minimizers of Helfrich energy for two-phase biomembranes

Marco Veneroni

Joint work with: R. Choksi and M. Morandotti

McGill University Montreal

University of Pavia

12th International Conference on Free Boundary Problems Frauenchiemsee, 11-15 June 2012

Proof

Applications II

Biological membranes

A lipid bilayer [Picture: M. A. Peletier and M. Röger]

Mechanical properties:

- in-plane fluid behaviour
- resistance to stretching
- bending elasticity

Proof

Applications II

Artificial membranes

Section of an artificial liposome

[Picture: lyposphericnutrients.co.uk]

Applications:

- Pharmacology (deliverers of drugs)
- Bioengineering
- Gene-therapy
- Medical diagnostics

The model by Helfrich: elasticity "as a special case of the well-established theory of thin elastic shells"¹.

¹W. Helfrich, Elastic Properties of Lipid Bilayers: Theory and Possible Experiments, *Z. Naturforsch.*, vol. 28c (1973)

The model by Helfrich: elasticity "as a special case of the well-established theory of thin elastic shells"¹.

¹W. Helfrich, Elastic Properties of Lipid Bilayers: Theory and Possible Experiments, *Z. Naturforsch.*, vol. 28c (1973)

The model by Helfrich: elasticity "as a special case of the well-established theory of thin elastic shells"¹.

¹W. Helfrich, Elastic Properties of Lipid Bilayers: Theory and Possible Experiments, *Z. Naturforsch.*, vol. 28c (1973)

Proof

Applications II

Modelling membranes

Shape configurations are modeled as minimizers of

$$F(\mathcal{S}) := \sum_{i} \frac{\kappa}{2} \int_{S_i} (H - H_0)^2 \, d\sigma + \kappa_G \int_{S_i} K \, d\sigma$$

on $\mathcal{M} :=$ systems of surfaces $\mathcal{S} = (S_1, \dots, S_k)$ such that

- S_i is axisymmetric
- $\partial S_i = \emptyset$
- $\sum |S_i| = A$
- $\sum \operatorname{Vol}\left(S_{i}\right) = V$

Note: if $A \ge |\partial B_V|$, this set is not empty (w/ strict inequality, the set is infinite)

Axial symmetry

Question:

Find the maximal set Ω of parameters (H_0, A, V) such that the global minimizer, in the class of *embedded* surfaces, is axisymmetric.

(note: $(0, 4\pi r^2, 4\pi r^3/3) \in \Omega \subset \{A \ge |\partial B_V|\}$)

Proof

Applications II

Gauss-Bonnet theorem

Let $\chi(S)$ be the Euler-Poincaré characteristic of the surface S(χ = Faces-Edges+Vertices, for any triangulation)

The genus is defined as

$$g(S) = \frac{2 - \chi(S)}{2}.$$

Gauss-Bonnet Theorem ($k_g :=$ geodesic curvature)

$$\int_{S} K \, d\sigma + \int_{\partial S} k_g \, ds = 2\pi \chi(S) \quad (= 4\pi (1 - g(S)))$$

Theorem

If $A \geq |\partial B_V|, \ \kappa > 0$ and $\kappa_G/\kappa > -2$, the minimization problem

 $\min_{\mathcal{S}\in\mathcal{M}}F(\mathcal{S})$

has at least one solution.

where

$$F(\mathcal{S}) := \sum_{i} \frac{\kappa}{2} \int_{S_i} (H - H_0)^2 \, d\sigma + \kappa_G \int_{S_i} K \, d\sigma$$

 $\mathcal{M} :=$ systems of surfaces $\mathcal{S} = (S_1, \dots, S_k)$ such that

- S_i is axisymmetric
- $\partial S_i = \emptyset$
- $\sum |S_i| = A$
- $\sum \operatorname{Vol}(S_i) = V$

The direct method in the calculus of variations

General scheme: given $F: X \to \mathbb{R}$, let $m := \inf \{F(u) : u \in X\}$, to prove: $\exists u \in X : F(u) = m$ Step 0 by definition: $\exists u_n \in X : F(u_n) \to m$. Step 1 show that: $\exists u_{n_k}, u \in X : u_{n_k} \to u$. Step 2 show that: $\liminf_{k \to \infty} F(u_{n_k}) \ge F(u).$

The direct method in the calculus of variations

Given Helfrich's functional $F : \mathcal{M} \to \mathbb{R}$,

• Step 1: F-bounded sequences are compact

$$\forall \mathcal{S}_n : F(\mathcal{S}_n) \leq C \quad \Rightarrow \quad \exists \mathcal{S}_{n_k} \to \mathcal{S} \in \mathcal{M}.$$

• Step 2: *F* is lower-semicontinuous

$$\liminf_{n \to \infty} F(\mathcal{S}_n) \ge F(\mathcal{S}) \qquad \forall \, \mathcal{S}_n \to \mathcal{S}.$$

• Step 3: Continuity of constraints

$$|\mathcal{S}_n| \to |\mathcal{S}|, \quad \text{Vol}\left(\mathcal{S}_n\right) \to \text{Vol}\left(\mathcal{S}\right)$$

Crucial point!		
in which sense	$\mathcal{S}_n \to \mathcal{S}$?	

Surfaces of revolution

$$\begin{split} \gamma &: [0,1] \to \mathbb{R}^2 & r : [0,1] \times [0,2\pi] \to \mathbb{R}^3 \\ \gamma(t) &= [\gamma_1(t),\gamma_2(t)] & r(t,\theta) = [\gamma_1(t)\cos(\theta),\gamma_1(t)\sin(\theta),\gamma_2(t)] \end{split}$$

Surfaces of revolution

 $\gamma : [0, 1] \to \mathbb{R}^2$ $\gamma(t) = [\gamma_1(t), \gamma_2(t)]$ $r: [0,1] \times [0,2\pi] \to \mathbb{R}^3$ $r(t,\theta) = [\gamma_1(t)\cos(\theta), \gamma_1(t)\sin(\theta), \gamma_2(t)]$

Proof

Applications I

Surfaces of revolution

Principal curvatures:

$$k_1 = \frac{\ddot{\gamma}_2 \dot{\gamma}_1 - \ddot{\gamma}_1 \dot{\gamma}_2}{|\dot{\gamma}|^3} \quad \text{(meridian)} \qquad k_2 = \frac{\dot{\gamma}_2}{\gamma_1 |\dot{\gamma}|} \quad \text{(parallel)}$$

Area: $|S| = 2\pi \int_0^1 \gamma_1 |\dot{\gamma}| \, dt \qquad \text{Volume:} \quad \text{Vol}(S) = \pi \int_0^1 \gamma_1^2 \dot{\gamma}_2 \, dt.$

Helfrich energy:

$$F(S) = \int_{S} \frac{\kappa}{2} (H - H_0)^2 + \kappa_G K \, d\sigma$$

=
$$\int_{0}^{1} \left[\frac{\kappa}{2} (k_1 + k_2 - H_0)^2 + \kappa_G k_1 k_2 \right] 2\pi \gamma_1 |\dot{\gamma}| \, dt$$

Compactness - bounds

Note:

•
$$k_1^2 + k_2^2 = H^2 - 2K$$

• if
$$\kappa > 0$$
 and $\kappa_G/\kappa > -2$

$$\int_{S} k_{1}^{2} + k_{2}^{2} \, d\sigma \le C \left(F(S) + |S| \right)$$

$$\Rightarrow \quad \int_0^1 k_1^2 + k_2^2 \ 2\pi \, \gamma_1 |\dot{\gamma}| \, dt \le C$$

On sequences γ^n

- vanishing control on curvatures (on e.g. {γ₁ⁿ ≤ 1/n})
- need compactness and l.s.c. with respect to a moving measure

Compactness - bounds

Note:

•
$$k_1^2 + k_2^2 = H^2 - 2K$$

• if
$$\kappa > 0$$
 and $\kappa_G/\kappa > -2$

On sequences γ^n

- vanishing control on curvatures (on e.g. {γ₁ⁿ ≤ 1/n})
- need compactness and l.s.c. with respect to a moving measure

Applications II

Applications II

Applications II

Applications II

Applications II

Proof

[Hutchinson, Indiana Univ. Math. J., 1986]

Compactness and lower-semicontinuity for sequences of functions $\{f_n\}$ and measures $\{\mu_n\}$ such that $\int (f_n)^2 d\mu_n < C$.

Define: (weak) convergence of function-measure pairs

$$(f_n, \mu_n) \rightharpoonup (f, \mu) \quad \text{iff} \quad \begin{cases} \mu_n \stackrel{*}{\rightharpoonup} \mu & \text{in } RM(\mathbb{R}) = (C_c^0(\mathbb{R}))' \\ \int f_n \phi \, d\mu_n \to \int f \phi \, d\mu & \forall \phi \in C_c^0(\mathbb{R}) \end{cases}$$

• (Generalized compactness) If $\mu_n \stackrel{*}{\rightharpoonup} \mu$ and $\int (f_n)^2 d\mu_n < C$

$$\Rightarrow \exists (f_{n_k}, \mu_{n_k}) \rightharpoonup (f, \mu)$$

• (Generalized lower-semicontinuity) If $(f_n, \mu_n) \rightharpoonup (f, \mu)$

$$\Rightarrow \quad \liminf_{n \to \infty} \int (f_n)^2 d\mu_n \ge \int (f)^2 d\mu$$

Applications II

Compactness - bounds

Bound on length

$$\operatorname{length}(\gamma) \leq \frac{\sqrt{|S|}}{2\pi} \left\{ \left(\int_S k_1^2 \, d\sigma \right)^{1/2} + \left(\int_S k_2^2 \, d\sigma \right)^{1/2} \right\}.$$

Bound on oscillations

For all $(a,b) \subseteq (0,1)$

$$4\pi |\dot{\gamma}_1(b) - \dot{\gamma}_1(a)| \le |\dot{\gamma}|^2 \int_a^b \left(k_1^2 + k_2^2\right) 2\pi \gamma_1 |\dot{\gamma}| \, dt.$$

Proof

Applications II

Multiphase membranes

Phase separation of *rafts* on Giant Unilamellar Vesicles

[T. Baumgart, S. T. Hess, W. W. Webb, Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension, Nature, 2003.]

Proof

Modelling multiphase membranes

Energy of a 2-domain shape $S = S_a \cup S_b$

$$\begin{split} F(S) &= \int_{S_a} \frac{\kappa^a}{2} \left(H - H_0^a \right)^2 + \kappa_G^a K & \text{Helfrich's energy on } S_a \\ &+ \int_{S_b} \frac{\kappa^b}{2} \left(H - H_0^b \right)^2 + \kappa_G^b K & \text{Helfrich's energy on } S_b \\ &+ \int_{\Gamma} \sigma & \boxed{\text{Line tension}}^2 \\ &\Gamma &= \partial S_a = \partial S_b \end{split}$$

 $^{^2 \}rm R.$ Lipowsky, Budding of membranes induced by intramembrane domains. J. Phys. II France 2, 1992.

Proof

Applications II

Modelling multiphase membranes

Alternative model - sharp interface: introduce a phase indicator $\varphi:S\to\{0,1\}$

 $\mathscr{H}^1(\Gamma) = \text{one-dimensional Hausdorff}$ measure of Γ

Modelling multiphase membranes

Figure: The problem of defining the phase on a curve when overlapping can arise as limit of well-defined configurations (γ^n, φ^n) .

Proof

Applications II

Modelling multiphase membranes

Theorem

If $A \ge |\partial B_V|, \ \kappa > 0$ and $\kappa_G/\kappa > -2$, the minimization problem $\min_{\mathcal{S} \in \mathcal{M}} F(\mathcal{S})$

has at least one solution (for every fixed phase-area value).

where

$$F(\mathcal{S}) := \sum_{i} \int_{S_i} \left\{ \frac{\kappa(\varphi)}{2} (H - H_0(\varphi))^2 + \kappa_G(\varphi) K \right\} + \sigma \mathscr{H}^1(\Gamma_i)$$

 $\mathcal{M} :=$ systems of surface-phase couples $\mathcal{S} = ((S_1, \varphi_1), \dots, (S_k, \varphi_k))$ with

- S_i is C^1 , axisymmetric

- Compactness
 - Surfaces: as for one-phase membranes

Ascoli-Arzelà for curves on a fixed interval

• Phases: BV compactness $+ L^{\infty}$ bound

$$\varphi^n \to \varphi \quad \text{in } L^p, \qquad \varphi \in BV_{\text{loc}}$$

- Lower semicontinuity
 - $\sigma \mathscr{H}^1(\Gamma)$:

l.s.c. for $BV_{loc} + \ldots$

• Mean and Gaussian curvatures:

l.s.c. for function-measure pairs, with phase-dependent measures

References:

• R. Choksi, M. V.

Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case (submitted).

- R. Choksi, M. Morandotti, M. V. Global minimizers for multi-phase axisymmetric membranes (submitted).
- M. Helmers.

Convergence of an approximation for rotationally symmetric two-phase lipid bilayer membranes (submitted).

Thank you for your attention !!