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ABSTRACT 
We give the conditions on data in order to have explicit solutions for Stefan-like problems 

with a particular convective boundary condition at the fixed face for a semi-infinite material in 
the following cases: 
 

1)  Classical two-phase solidification problem; Equivalence between convective and  
temperature boundary conditions at the fixed face. Inequality for the coefficient which 
characterizes the free boundary for the Neumann solution; 

 
2)  Classical two-phase solidification problem with density jump; Quilghini transformation to 

reduce the problem “with density jump” into a problem “without density jump”; 
 

3)  One-phase melting problem with the Solomon-Wilson-Alexiades model of mushy region; 
Determination of one unknown thermal coefficient with an over-specified condition at the 
fixed face; 

 
4)  Two-phase solidification problem with a mushy zone model; 

 
5)  Rubinstein binary-alloy solidification problem; 

 
6)  Thawing in a saturated porous medium by considering a density jump and the influence of 

the pressure on the melting temperature (in progress). 
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These explicit solutions complement the ones given recently in D.A. Tarzia, “Explicit and 
Approximated Solutions for Heat and Mass Transfer Problems with a Moving Interface”, In 
Advanced Topics in Mass Transfer, Mohamed El-Amin (Ed.), InTech Open Access Publisher, 
Rijeka (2011), Chapter 20, pp. 439-484. Available from: 

 
http://www.intechopen.com/articles/show/title/explicit-and-approximated-solutions-for-heat-
and-mass-transfer-problems-with-a-moving-interface 
 
 
 
MOTIVATION: 

S.M. Zubair – M.A. Chaudhry, Wärme und Stoffübertragung (now Heat and Mass 
Transfer), 30 (1994), 77-81. 
 
 
GOAL: 

The goal of this work is to find the necessary and/or sufficient conditions for data (initial 
and boundary conditions, and thermal coefficients) in order to obtain an instantaneous phase-
change with the corresponding explicit solution of the similarity type when a convective 
boundary condition is impossed on the fixed face. 
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1) CLASSICAL TWO-PHASE SOLIDIFICATION PROBLEM 
 

We consider the following free boundary problem: find the solid-liquid interface = ( )x s t  and 
the temperature ( , )T x t  defined by 

⎧ < < >
⎪= = >⎨
⎪ > >⎩ A

( , ) if  0 ( ), 0,
( , ) if ( ), 0,

( , ) if ( ), 0,

s

f

T x t x s t t
T x t T x s t t

T x t x s t t
     (1) 

 
which satisfy the following equations and boundary conditions 

 
α= < < >, 0 ( ), 0

t xxs s sT T x s t t        (2) 
α= > >A A A , ( ), 0

t xx
T T x s t t         (3) 

= = = >A( ( ), ) ( ( ), ) , ( ), 0s fT s t t T s t t T x s t t     (4) 
ρ− = = >A A �A( ( ), ) ( ( ), ) ( ), ( ), 0

x xs sk T s t t k T s t t s t x s t t    (5) 
= +∞ = > >A A( ,0) ( , ) , 0, 0iT x T t T x t       (6) 

=(0) 0s              (7) 

∞= − >0(0, ) ( (0, ) ), 0
xs s s

hk T t T t T t
t

      (8) 
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where the subscripts s  and A  represent the solid and liquid phases respectively, ρ  is the 
common density of mass, k  is the thermal conductivity, α ρ= /k c  is the thermal diffusivity, 
and A  is the latent heat of fusion, and ∞ < <f iT T T . We have the following results: 
 
Theorem 1 (T, MAT-Serie A (2004)) 

If the coefficient 0h  verifies the inequality 

πα ∞

−
>

−
A

A
0

i f

f

T Tkh
T T

        (9) 

there exists an instantaneous solidification process and then the free boundary problem (2)-(8) 
has the explicit solution to a similarity type given by 
 

λ α= A( ) 2s t t             (10) 
πα

α
πα αλ

α

∞

∞

⎡ ⎤
− +⎢ ⎥

⎣ ⎦= +
+ A

0

0

( ) 1 ( )
2

( , )
1 ( )

s
f

s s
s

s

s s

h xT T erf
k t

T x t T
h

erf
k

    (11) 
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α
λ

= − − A
A

( )
2

( , ) ( )
( )i i f

xerfc
t

T x t T T T
erfc

        (12) 

 
and the dimensionless parameter λ > 0 satisfies the following equation: 

 
= >( ) , 0F x x x           (13) 

 
where function F  and the b’s  coefficients are given by 

 
− −

= −
+

2 2

1 3
2

exp( ) exp( )( )
( )1 ( )

bx xF x b b
erfc xb erf x b

      (14) 

 
α
α ρ α

∞−
= > = >A

AA
0

1

( )
0; 0f

s

h T T
b b        (15) 

 

πα
π
−

= > = >A

A
0

2 3

( )
0; 0i f

s
s

c T Thb b
k

.     (16) 
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EQUIVALENCE BETWEEN CONVECTIVE AND TEMPERATURE BOUNDARY 
CONDITIONS AT THE FIXED FACE. THE INEQUALITY FOR THE COEFFICIENT 
WHICH CHARACTERIZES THE FREE BOUNDARY FOR THE NEUMANN 
SOLUTION 
 
 When we consider the following temperature boundary condition: 
 

= > < <0 0(0, ) , 0 ( )s f iT t T t T T T        (17) 
 
instead of the convective boundary condition (8), the free boundary problem (2)-(7) and (17) 
has the classical Neumann solution whose solid-liquid interface is given by the expression: 
 

ξ α= >A( ) 2 , 0s t t t ,         (18) 
 
where the coefficient ξ > 0 is the unique solution of an adequate equation. 
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If we define the relation between >0 0T , and ∞ > 0T  and >0h 0  by the following 
expression: 

πα αλ
α

πα αλ
α

∞+
=

+

A

A

0

0
0

( )

1 ( )

s
f

s s

s

s s

h
T T erf

k
T

h
erf

k

      (19) 

 
then we obtain the following result: 
 
Theorem 2 
 Taking into account the relation (19), the free boundary problems (2)-(8), and (2)-(7) and 
(17) are equivalent (i.e. λ ξ= , and the solid and liquid temperatures and the free boundaries are 
coincident). Moreover, the coefficient ξ > 0, which characterizes the free boundary of the 
Neumann solution, satisfies the following inequality: 
 
 

 ( )α αξ
α α

∞
∞

∞

− −⎛ ⎞
< ∀ ∈⎜ ⎟ − −⎝ ⎠

A A

A

0
0

0

, ,f fs
f

s s i f

T T T Tkerf T T T
k T T T T

.    (20) 
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2) CLASSICAL TWO-PHASE SOLIDIFICATION PROBLEM WITH DENSITY JUMP 
We consider the following free boundary problem: find the solid-liquid interface = ( )x s t  and 

the temperature ( , )T x t  defined by 
⎧ < < >
⎪= = >⎨
⎪ > >⎩ A

( , ) if  0 ( ), 0,
( , ) if ( ), 0,

( , ) if ( ), 0,

s

f

T x t x s t t
T x t T x s t t

T x t x s t t
     (21) 

 
which satisfy the following equations and boundary conditions 

 
α= < < >, 0 ( ), 0

t xxs s sT T x s t t         (22) 
ρ ρα
ρ
−

= + > >A
A A A A

A

�( ) , ( ), 0
t xx x

sT T s t T x s t t      (23) 

= = = >A( ( ), ) ( ( ), ) , ( ), 0s fT s t t T s t t T x s t t      (24) 
ρ− = = >A A �A( ( ), ) ( ( ), ) ( ), ( ), 0

x xs s sk T s t t k T s t t s t x s t t    (25) 
= +∞ = > >A A( ,0) ( , ) , 0, 0iT x T t T x t        (26) 

=(0) 0s               (27) 

∞= − >0(0, ) ( (0, ) ), 0
xs s s

hk T t T t T t
t

       (28) 
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where the subscripts s  and A  represent the solid and liquid phases respectively, ρ  is the density 
of mass ρ ρ≠ A( )s , k  is the thermal conductivity, α ρ= /k c  is the thermal diffusivity, and A  is 
the latent heat of fusion, and ∞ < <f iT T T . We have the following results: 
 
Theorem 3. If the coefficient 0h  verifies the inequality 

πα ∞

−
>

−
A

A
0

i f

f

T Tkh
T T

          (29) 

there exists an instantaneous solidification process and then the free boundary problem (22)-
(28) with ρ ρ≠ As  has the explicit solution to a similarity type given by 
 

λ α=( ) 2 ss t t            (30) 
πα

πα α
λ

∞
∞

⎡ ⎤−
= + +⎢ ⎥

⎢ ⎥⎣ ⎦+

0

0

( , ) 1 ( )
2

1 ( )

f s
s

ss s

s

T T h xT x t T erf
kh t

erf
k

    (31) 

δ
ααδ λ

α

⎛ ⎞−
= − +⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠+⎜ ⎟

⎝ ⎠

A
A

A

( , )
2

i f
i

s

T T xT x t T erfc
t

erfc
       (32) 

where   
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ρ ρ αε δ εξ
ρ α
−

= =A

A A

,s s          (33) 

 
and the dimensionless parameter λ > 0 satisfies the following equation: 

 
= >( ) , 0G x x x           (34) 

 
where function G  and the d’s  coefficients are given by 

 
− −

= −
+

2 2 2

1 3
2

exp( ) exp( )( )
1 ( ) ( )

x d xG x d d
d erf x erfc dx

        (35) 

 

( )
α αα
α ρ α ε

∞−
= > = > =

+
A A

AA
0

1 0 2
0

( )
0; 0;

1
f

s

h T T
d d      (36) 

 

πα
ρ πα α

−
= > = >A

AA
0

2 3

( )
0; 0i f

s
s s s

k T Thd d
k

.       (37) 
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QUILGHINI TRANSFORMATION TO REDUCE THE PROBLEM “WITH 
DENSITY JUMP” INTO A PROBLEM “WITHOUT DENSITY JUMP” 

 
 The Quilghini transformation (An. Mat. Pura Appl.(1965)) introduces the mass as a space 
variable by defining the following change of variables: 
 

ρ

ρ

ρ ρ
ρ ρ

⎧
⎪

= >⎪
⎪ ⎛ ⎞⎪ = < < >⎨ ⎜ ⎟

⎝ ⎠⎪
⎪ ⎛ ⎞−⎪ = + > >⎜ ⎟⎪ ⎝ ⎠⎩

A
A

A A

( ) ( ), 0,

( , ) , if 0 ( ), 0,

( , ) ( ) , if ( ), 0,

s

s s
s

s
l

e t s t t

yV y t T t x s t t

yV y t T s t t x s t t

     (38) 
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Theorem 4. (a) By the Quilghini transformation the free boundary problem (22)-(28) is given 
by the following one without density jump, i.e.: 
 

= < < >, 0 ( ), 0
t xxs s sV DV y e t t          (39) 
= > >A A A , ( ), 0

t xx
V DV y e t t           (40) 

= = = >A( ( ), ) ( ( ), ) , ( ), 0s fV e t t V e t t T y e t t       (41) 

− = = >
i

A A A( ( ), ) ( ( ), ) ( ), ( ), 0
x xs sK V e t t K V e t t e t y e t t     (42) 

= +∞ = > >A A( ,0) ( , ) , 0, 0iV y V t T y t         (43) 
=(0) 0e                (44) 

∞= − >0(0, ) ( (0, ) ), 0
xs s s

hK V t V t T t
t

        (45) 

 
where: 
 

ρρ= = = A(new conductivity); (new diffusivity) ( , )i i
i i i i

i

kK k D i s
c

. (46) 

 
 (b) If the coefficient 0h  verifies the inequality (29) we re-find the solution (30)-(32) for the free 
boundary problem (22)-(28). 
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3) ONE-PHASE MELTING PROBLEM WITH THE SOLOMON-WILSON-
ALEXIADES MODEL OF MUSHY REGION 

 
We consider a semi-infinite material in the solid phase at the melting temperature 0 without 

loss of generality. If we impose a temperature > 0B  at the fixed face = 0x , the melting process 
begins, and three regions can be distinguished, as follows: (Solomon – Wilson - Alexiades, 
Letters Heat Mass Transfer (1982); T., Int. Comm. Heat Mass Transfer (1987)): 

 
i)  the solid phase, at temperature = 0T , occupying the region > >( ), 0;x r t t  
 
ii) the liquid phase, at temperature <( , ) 0T x t , occupying the region < < >0 ( ), 0x s t t ; 
 
iii) the mushy zone, at temperature 0 , occupying the region < < >( ) ( ), 0s t x r t t . We make 

the following two assumptions on its structure: 
 
a)  the material in the mushy zone contains a fixed fraction εA  (with constant ε< <0 1) of the 

total latent heat A ; 
 
b) the width of the mushy zone is inversely proportional (with constant γ > 0) to the 

temperature gradient at  ( )s t . 
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Therefore the problem consists of finding the free boundaries = ( )x s t  and = ( )x r t , and the 
temperature = ( , )T T x t  such that the following conditions are satisfied: 
 

( )ρ − = < < >0 , 0 , 0t xxcT kT x s t t       (47)        
 

( )( ) = >, 0 , 0T s t t t           (48) 
 

ρ ε ε− = − + >� �A( ( ), ) [(1 ) ( ) ( )], 0xkT s t t s t r t t      (49) 
 

γ− − = >( ( ), )( ( ) ( )) , 0xT s t t r t s t t        (50) 
 

= =(0) (0) 0s r             (51) 
 

( ) ( )= − − > >00, (0, ) , 0 ( 0)x
hkT t T t B t B
t

.     (52) 
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Theorem 5. If the coefficient 0h  verifies the inequality 

α
ρπα

⎛ ⎞
> =⎜ ⎟

⎝ ⎠
0

k kh
c

         (53) 

 
there exists an instantaneous melting process and then the free boundary problem (47)-(52) has 
the explicit solution to a similarity type given by: 
 

πα ξ α
ξπα ξ

⎡ ⎤
⎢ ⎥

= − < < >⎢ ⎥
⎢ ⎥−
⎣ ⎦

0

0

( )( ) 2( , ) 1 , 0 ( ), 0
( )

( ) 1

xerfBh erf tT x t x s t t
k erfh erf

k

  (54) 

 
ξ α=( ) 2s t t            (55) 

 
 

µ α=( ) 2r t t            (56) 
where 

γµ ξ ξ
α

= +
0

( )
2

k W
Bh

         (57) 

 
and ξ > 0 is the unique solution to the equation: 
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εγ

α ρ α
⎡ ⎤

+ = >⎢ ⎥
⎣ ⎦ A0 0

( ) ( ) , 0
2

W x W xk Bx x
h hB

    (58) 

 
where function W is defined by: 
 

πα⎡ ⎤
= − >⎢ ⎥

⎣ ⎦
2 0( ) exp( ) ( ) 1 , 0hW x x erf x x

k
.    (59) 

 
 
Moreover, we have: 

 

ξ ξ
πα

− ⎛ ⎞
> = ⎜ ⎟

⎝ ⎠
1

0
0

kerf
h

.         (60) 

 



12th FBP 2012, Frauenchiemsee, 11-15 June 2012   Tarzia, Explicit Solutions for Stefan-like Problems 18

DETERMINATION OF ONE UNKNOWN THERMAL COEFFICIENT WITH AN 
OVER-SPECIFIED CONDITION AT THE FIXED FACE 

 
 Following T., Int. Comm. Heat Mass Transfer (1987) we can obtain formula for the 
determination of one unknown thermal coefficient through a free boundary problem with an 
overspecified condition on the fixed face, i.e.: find the free boundaries = ( )x s t  and = ( )x r t , the 
temperature = ( , )T T x t  and one unknown thermal coefficient among { }, , , , ,k c ρ γ εA  such that 
the following conditions are satisfied: 
 

( )ρ α ρ− = < < > =0 , 0 , 0 ( / )t xxcT kT x s t t k c     (61)        
( )( ) = >, 0 , 0T s t t t            (62) 

ρ ε ε− = − + >� �A( ( ), ) [(1 ) ( ) ( )], 0xkT s t t s t r t t       (63) 
γ− − = >( ( ), )( ( ) ( )) , 0xT s t t r t s t t         (64) 

= =(0) (0) 0s r              (65) 

( ) = − >00, , 0x
qkT t t
t

.           (66) 

( ) ( )= − − > >00, (0, ) , 0 ( 0)x
hkT t T t B t B
t

.      (67) 
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Theorem 6. Let 0h and 0q  be determinated experimentally. The solution for the determination 
of one thermal coefficient is given by: 

πα αξ
ξ

⎡ ⎤
⎢ ⎥

= − < < >⎢ ⎥
⎢ ⎥
⎣ ⎦

0
( )
2( , ) ( ) 1 , 0 ( ), 0
( )

xerfq tT x t erf x s t t
k erf

,   (68) 

( ) 2 , 0s t t tξ α= > ,            (69) 
 

( ) 2 , 0r t t tµ α= > ,            (70) 
 
and ξ  and the unknown thermal coefficient are computed in the summarized way in the 
following Table 1: 
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Case 
# Formulae for unknown coefficients 

Parameter 
ξ  is the 
unique 

solution to 
the Eq. 

Restrictions on data 

1 

ξ
πα

ξ
εγρ α ξ

α

− ⎛ ⎞⎛ ⎞
= +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

−
=

+
A

1

0 0

2
0

0

1

exp( )

2

k Berf
h q

q
k

q

 --------- 
πα

⎛ ⎞
+ <⎜ ⎟

⎝ ⎠0 0

1 1k B
h q

 

2 
ξ ξ

ξ
πα

α
γ ξ

ε ρ α

−

− −

⎛ ⎞⎛ ⎞
= +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎡ ⎤
= −⎢ ⎥

⎣ ⎦A
2 2

1

0 0

0 0

1

2 e e

k Berf
h q

q q
k

 --------- 

πα
⎛ ⎞

+ <⎜ ⎟
⎝ ⎠0 0

1 1k B
h q

 

ρ α

πα
−

<
⎛ ⎞⎛ ⎞⎛ ⎞

+⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

A 0

1
1

0 0

1
1

q

k Bg erf
h q

where 2
1( ) exp( )g x x x=  
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3 
ξ ξ

ξ
πα

α
ε ξ

γ ρ α

−

− −

⎛ ⎞⎛ ⎞
= +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎡ ⎤
= −⎢ ⎥

⎣ ⎦A
2 2

1

0 0

20 0
1

1

2 e e ( )

k Berf
h q

q q g
k

 --------- 

πα
⎛ ⎞

+ <⎜ ⎟
⎝ ⎠0 0

1 1k B
h q

 

( ) ( )ξ

ρ α
γ ξξ

α

< <
+

A
22 0 1

1
0

1 1

2
k q gg e

q
 

4 

π ξ

ρ

=
⎛ ⎞

+⎜ ⎟
⎝ ⎠

2
2

0 0

( )
1

k erf
Bc

h q

 
Eq. (A) ------------------ 

5 

πρ ξ=
⎛ ⎞

+⎜ ⎟
⎝ ⎠

2
2

0 0

( )
1

erf
Bkc

h q

 
Eq. (A) ------------------ 

6 

π ξ

ρ

=
⎛ ⎞

+⎜ ⎟
⎝ ⎠

2
2

0 0

( )
1

c erf
Bk

h q

 
Eq. (B) 2

0

1
2

k
q

εγ ρ
>

A  

 
Table 1 Summary of the determination of one thermal coefficient through a one-phase Lamé-

Clapeyron-Stefan problem with an overspecfied condition on the fixed face (6 cases) 
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where Eqs. (A) and (B) are defined by: 
  

(A):  εγ π
π

⎡ ⎤
⎢ ⎥ ⎛ ⎞⎢ ⎥+ = + >⎜ ⎟⎢ ⎥⎛ ⎞ ⎝ ⎠+⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

A
0

1
0 0

0
0 0

1( ) ( ) , 0
12

q c Bg x x erf x x
h qBq

h q

   (71) 

 

(B):  π εγ
ρ

⎡ ⎤
+ − = >⎢ ⎥

⎣ ⎦+ A
22 0

1
0

0 0

( ) ( ) 0, 01 2
x qg x erf x e xB q k

h q

     (72) 
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4) TWO-PHASE SOLIDIFICATION PROBLEM WITH A MUSHY ZONE MODEL 
 

We consider a semi-infinite material initially in the liquid phase at the temperature 
> = 0i fT T . If we impose a temperature − < = 0fD T  at the fixed face = 0x , the solidification 

process begins, and three regions can be distinguished, as follows: (Solomon – Wilson -
Alexiades, Letters Heat Mass Transfer (1982); T., Comput. Appl. Math. (1990)): 
  
i) the solid phase, at temperature = <( , ) 0s sT T x t , occupying the region < ≤ >0 ( ), 0;x s t t  
 
ii) the liquid phase, at temperature = >A A( , ) 0T T x t , occupying the region > >( ), 0x r t t ; 
 
iii) the mushy zone, at temperature = 0fT , occupying the region < < >( ) ( ), 0s t x r t t . We 

make the following two assumptions on its structure: 
 
a)  the material in the mushy zone contains a fixed fraction εA  (with constant ε< <0 1) of the 

total  latent heat A ; 
 

b) the width of the mushy zone is inversely proportional (with constant γ > 0) to the 
temperature gradient at  ( )s t . 
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Therefore, the problem consists of finding the two free boundaries = =( ), ( )x s t x r t , and the 
temperature: 
 

> < < >⎧
⎪= ≤ ≤ >⎨
⎪ < < >⎩ A

( , ) 0    if 0 ( ), 0
( , ) 0 if ( ) ( ), 0

( , ) 0    if ( ) , 0

sT x t x s t t
T x t s t x r t t

T x t r t x t
     (73) 

 
defined for > 0x  and > 0t , such that the following conditions are satisfied: 
 

α = < < >, 0 ( ), 0
xx ts s sT T x s t t         (74) 

α = < >A A A , ( ) , 0
xx t

T T r t x t          (75) 
= =(0) (0) 0,s r             (76) 

= = >A( ( ), ) ( ( ), ) 0, 0sT r t t T s t t t         (77) 
ρ ε ε− = + − >A A � �A( ( ), ) ( ( ), ) [ ( ) (1 ) ( )], 0,

x xs sk T s t t k T r t t s t r t t   (78) 
γ− = >( ( ), ) ( ( ) ( )) , 0

xs
T s t t r t s t t         (79) 

= +∞ = > >A A( ,0) ( , ) , 0, 0iT x T t T x t        (80) 

( )= + >0(0, ) (0, ) , 0
xs s s

hk T t T t D t
t

       (81) 
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Theorem 7 If the coefficient 0h  verifies the inequality 
γ
η α

>
A

0
02
skh

D
         (82) 

where 0 0
(1 ), 0s

i i

k
T k T c
γ εη η

⎛ ⎞−
= >⎜ ⎟

⎝ ⎠A A

A  is the unique solution of the equation: 

 
= >1 4( ) ( ), 0F x F x x         (83) 

 
where functions 1F  and 4F  is given by: 
 

ε πγ π− −
= = − >

A A

A
2

1 4
(1 )1( ) , ( ) , 0

( ) 2

x
s

i i

keF x F x x x
erfc x T k x Tc

   (84) 

 
then there exists an instantaneous solidification process and therefore the free boundary 
problem (74)-(81) has the explicit solution to a similarity type given by: 
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αξ
ξξ

πα

⎡ ⎤
⎢ ⎥− ⎢ ⎥= − < < >
⎢ ⎥+
⎢ ⎥⎣ ⎦0

( )
2( )( , ) 1 , 0 ( ), 0

( )( )
s

s
s

s

xerf
tDerfT x t x s t tk erferf

h

  (85) 

 

αµ
µ µ

⎡ ⎤
⎢ ⎥
⎢ ⎥= − > >
⎢ ⎥
⎢ ⎥⎣ ⎦

A
A

( )
2( )( , ) 1 , ( ), 0

( ) ( )
i

xerf
tT erfT x t x r t t

erfc erf
     (86) 

ξ α=( ) 2 ss t t            (87) 
 
 

µ α= A( ) 2r t t            (88) 
where 

αµ ξ
α

=
A

1( )s W            (89) 

 
and ξ > 0 is the unique solution to the equation: 
 

= >( ) ( ), 0F x G x x           (90) 
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where functions 1 3, ,  and FW G F  are defined by the followin expressions: 
 

γ π
πα

⎡ ⎤
= + + >⎢ ⎥

⎢ ⎥⎣ ⎦

2

1
0

( ) e ( ) , 0
2

x s

s

kW x x erf x x
D h

     (91) 

 
ε ε= + − >1( ) (1 ) ( ), 0G x x W x x          (92) 

 

πα

−

= >
+

2

3

0

( ) , 0
( )

x

s

s

eF x xkerf x
h

         (92) 

 
α

π απ
⎛ ⎞

= − >⎜ ⎟
⎝ ⎠

A A

AAA 3 1 1( ) ( ) ( ) , 0s i s s

s

Dc T k c cF x F x F W x x
k

.    (93) 
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5) RUBINSTEIN BINARY-ALLOY SOLIDIFICATION PROBLEM 
 

A semi-infinite material of a binary alloy consisting of two components A  and B  is 
considered. Let C  and T  the concentration and the temperature of the component B . We 
suppose that the solidification of the alloy is governed by a graph of balance of phase 
consisting of a curve "liquidus" ( )C f T= A  and a curve "solidus" ( )sC f T= . We assume that 

sf  and fA  are increasing functions in the variable T with: 
 

( ) ( ) ( ) ( ) ( ) ( ),A s A s B s B A Bf T f T f T f T f T f T T T T= < < < = < <A A A ,   (94) 
 

where AT  and BT  are the temperatures of merger of A  and B  respectively. We also assume that 
the material is in the solid phase if ( )sC f T>  and in the liquid phase if ( )C f T< A . 
 

When the concentration C  is between ( )sf T  and ( )f TA  the state of the material is not well 
definied and it is known by mushy region according to the description of the model proposed 
by: 
• Rubinstein, AMS (1971),  
• Solomon – Wilson - Alexiades, Quart. Appl. Math. (1983) 

 
which can by appreciated in the Figure 1. 
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Fig.1: Concentration vs. Temperature (graph of phase balance with  liquidus and solidus 
curves) 
 

We suppose that the alloy is initially in liquid phase at the constant temperature 0T  and at 
the constant concentration 0C . Then a boundary condition is imposed on the fixed face 0x =  
and a front of solidification starts by separating instantaneously the solid phase ( )( )x s t<  from 
the liquid phase ( )( )x s t> .The mathematical formulation of this process of crystallization 
consists in finding the temperature ( , )T T x t=  and the concentration ( , )C C x t= , both defined 
for 0x >  and 0t > , the free boundary ( )x s t= , defined for 0t > , and the critical temperature of 
solidification kT  so that the following conditions are verified: 
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, 0 ( ), 0
xx ts s sT T x s t tα = < < >        (95) 

, ( ) , 0
xx t

T T s t x tα = < >A A A         (96) 
, 0 ( ), 0

xx ts s sd C C x s t t= < < >        (97) 
, ( ), 0

xx t
d C C x s t t= > >A A A         (98) 

0 0( ,0) ( , ) , with  , x>0  A BT x T t T T T T= ∞ = < <A A    (99) 
0( ,0) , 0lC x C x= >           (100) 

( ( ), ) ( ( ), ) , 0s kT s t t T s t t T t= = >A        (101)        
( ( ), ) ( ), 0s s kC s t t f T t= >          (102) 
( ( ), ) ( ), 0kC s t t f T t= >A A          (103) 

( ( ), ) ( ( ), ) ( ), 0
x xs sk T s t t k T s t t s t tρ− = >A A �A      (104) 

( )( ( ), ) ( ( ), ) ( ) ( ), 0
x xs s s k kd C s t t d C s t t f T f T s t t⎡ ⎤− = − >⎣ ⎦A A A �  (105) 

(0, ) 0, 0
xsC t t= >           (106) 

and the boundary condition on 0x =  given by the convective condition: 

( )0
1 0(0, ) ( (0, ) ), 0 0

xs s s
hk T t T t T t h

t
= − > >     (107) 

or the heat flux condition: 

( )0
0(0, ) , 0 0

xs s
qk T t t q

t
= > >        (108)        
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Theorem 8  If 0h verifies the inequalities: 
 

0 00 0
0

0 1 0 1

( )( )
( ) ( )

s

s

T T kT T k
h

T T T Tπα πα

−−
< <

− −
A

A

AA

A A

       (109) 

 
where 1

0 0( )T f C−=
A A  y 1

0 0( )s sT f C−=  then there exists an instantaneous unique solution of the 
similarity type for the free boundary problem (95)-(107). 
 
 
 
Theorem 9  If 0q verifies the following inequalities  
 

0 00 0
0

( )( )
sl T T kT T k

q
πα πα

−−
< <A A

A A

        (110) 

 
 
then there exists a unique  solution of the similarity type for the free boundary  problem (95)-
(106) and (108). 
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6) THAWING IN A SATURATED POROUS MEDIUM BY CONSIDERING A 
DENSITY JUMP AND THE INFLUENCE OF THE PRESSURE ON THE MELTING 
TEMPERATURE (In Progress). 
 
We consider the problem of thawing of a partialIy frozen porous medium, saturated with an 

incompressible liquid. For a detailed exposition of the physical background we refer to: 
 
• Charach - Rubinstein, J. Appl. Phys. (1992); 
• Fasano – Guan – Primicerio – Rubinstein, Meccanica (1993);  
• Nakano, Cold. Reg. Sci. Tech. (1990); 
• O’Neill - Miller, Water Resour. Res. (1985); 
• Talamucci, Survey Math. Industry (1997); 
• Fasano – Primicerio – T., Math. Models Meth. Appl. Sci. (1999) for ( )= >(0, ) 0u t B  

• Lombardi – T., Meccanica (2002) for ⎛ ⎞= − >⎜ ⎟
⎝ ⎠

0(0, ) 0U x
qk u t
t
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More specifically, we deal with the following situations: 
 
(i) a sharp interface between the frozen part and the unfrozen part of the domain exists (sharp, 
in the macroscopic sense); 
 
(ii) the frozen phase is at rest with respect to the porous skeleton, which will be considered to 
be undeformable; 
 
(iii) due to the density jump between the liquid and solid phases, thawing can induce either 
desaturation or water movement in the melting regíon. We will consider the latter situation, 
assuming that liquid is continuously supplied to keep the medium saturated. 

 
The unknowns of the problem are the function x=s(t), representing the free boundary, and 

the two functions u(x, t) and v(x, t)  representing the temperature of the unfrozen and of the 
frozen zone respectively which must satisfy the following conditions:  
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ρ= − < < >�1 ( ) , 0 ( ), 0t xx xu a u b s t u x s t t       (111) 
 

= > >2 , ( ), 0t xxv a v x s t t           (112) 
 

ρ= = >�( ( ), ) ( ( ), ) ( ) ( ), 0u s t t v s t t d s t s t t        (113) 
 

α β ρ− = + >� � 2( ( ), ) ( ( ), ) ( ) ( ) ( ( )) , 0F x U xk v s t t k u s t t s t s t s t t    (114) 
 

= +∞ = − < > >( ,0) ( , ) 0, 0, 0v x v t A x t        (115) 
 

=(0) 0s                (116) 
 

( )= − >0(0, ) (0, ) , 0U x
hk u t u t B
t

.         (117) 
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with 
ερ εγµα α

ρ ρ ρ

ε ρ γµρ ρρ α ερ β ε ρ
ρ

= = = = = =

−−
= = = = −A

2 2
1 1 2 2

2

, , ,

( ), , ( )

U W WF

U U F F U U

I W IW I
I I W I

W

k cka a b d
c c c K

c c d c c
K

  (118) 

where: 
 
ε : porosity, 

and W Iρ ρ : density of water and ice, 
c : specific heat at constant density, 

F and kUk : conductivity of the unfrozen and frozen zones, 
0u v= = : the melting point at atmospheric pressure,  

A : latent heat at 0u = , 
γ : coefficient in the Clausius-Clapeyron law, 

0µ > : viscosity of liquid, 
0K > : hydraulic permeability, 
0B > : external temperature at the fixed face 0x = , 

0A− < : initial temperature, 
0 0q > : coefficient which characterizes de heat flux at the fixed face 0x = , 
0 0h > : coefficient which characterizes de heat transfer at the fixed face 0x = . 
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Theorem 10  The free boundary problem (111) – (117) has the similarity solution  
 

ξα= 1( ) 2 ,s t t                (119) 
 

α

ξ ξ ξ ξ
α

ξ
α

+ + − − +
=

+

∫
1(2

2 2 2

0 1 0

0 1

( , ) ( ) exp( )
2

( , )
( , )

2

x
t

U

U

mkBg p m B r pr dr
h

u x t kg p
h

    (120) 

ξ γ ξ ξ
α

γ ξ

⎛ ⎞
+ − + ⎜ ⎟

⎝ ⎠=

2 2
0

2

0

( ) ( )
2

( , )
( )

xm Aerf A m erf
t

v x t
erfc

       (121) 

 
if and only if the coefficient 0ξ >  satisfies the following equation: 
 

δ δ− − = + >2 3
1 1 2 2(1 ) ( , ) ( , ) , 0AM y G p y G M y y Ny y

B
,   (122) 

 
where 
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= − +∫ 2

0

( , ) exp( )
y

g p y r pyr dr ,        (169) 

 
γ
γ

− −
= = +

+

2 2 2
2 0

1 2
0 0

exp(( 1) ) exp( )( , ) , ( , ) (1 )
( , ) ( )

p y yG p y G M y My
K g p y erfc y

  (170) 

 
 
and the constants are defined as follows: 
 

αγ δ αα
α αα π

= > = > = > = >1
0 2 0 1

1 0 22

0, 0, 0, 0
2

U Fk kK K
h

   (171) 

 

ρα υ βρα δ δ
δα δ

= = = > = >2 3 2
1 1 1 2

1

2 , 2 , 0, 0
2
Uk B K Am d     (172) 

 
υ ρα ρ
δ

= ∈ = ∈ = ∈
2
12, , 2dN M p b

A
R R R .       (173) 

 
Moreover, the existence and uniqueness of the unknown coefficient 0ξ >  depends on the 

sign of the three dimensionless real parameters ,  and p M N  of the problem. 
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Remark: 
 
 Other related free boundary problems with explicit solutions with a convective 

boundary conditions at the fixed face 0x =  are: 
 
• One-dimensional two-phase with either shrinkage or expansion: 

Natale – Santillan Marcus – T., Nonlinear Anal. Real World Appl. (2010) 
 
• One-dimensional one-phase non-classical Stefan problem: 

Briozzo – T., Int. J. Diff. Eq. (2010). 
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