Finite Element Techniques for the Simulation of Two-phase Incompressible Flows

Arnold Reusken

Chair for Numerical Mathematics RWTH Aachen

Free

Introduction:

• Standard model for two-phase flow.

Introduction:

• Standard model for two-phase flow.

Nitsche's method for a mass transport problem:

- Explanation of the method.
- Results of numerical experiments.

Sharp Interface Model for two-phase flows with interfacial phenomena

Fluid dynamics in the two phases

Incompressible Navier-Stokes in the subdomains:

Domains: $\Omega_1 = \Omega_1(t), \ \Omega_2 = \Omega_2(t)$

Interface: $\Gamma = \Gamma(t)$

$$\begin{array}{ll} \rho_i: & \text{density in } \Omega_i \\ \mu_i: & \text{viscosity in } \Omega_i \end{array}$$

$$\mathsf{D}(\mathsf{u}) =
abla \mathsf{u} +
abla \mathsf{u}^{\mathsf{T}}$$
, $oldsymbol{\sigma} = -
ho \, \mathsf{I} + \mu \mathsf{D}(\mathsf{u})$

$$\begin{cases} \rho_i(\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u}) = \operatorname{div}(\boldsymbol{\sigma}) + \rho_i \mathbf{g} \\ &= -\nabla p + \operatorname{div}(\mu_i \mathbf{D}(\mathbf{u})) + \rho_i \mathbf{g} \quad \text{in } \Omega_i \quad \text{for } i = 1, 2 \\ \operatorname{div} \mathbf{u} = 0 \quad &\text{in } \Omega_i \end{cases}$$

Interfacial effects

Force on
$$\gamma = \int_{\partial \gamma} \boldsymbol{\sigma}_{\Gamma} n \, ds = \int_{\gamma} \operatorname{div}_{\Gamma} \boldsymbol{\sigma}_{\Gamma} \, ds$$

Interfacial surface force: div_ $\Gamma \sigma_{\Gamma}$

Coupling interface-fluid

 $V_{\Gamma} = \mathbf{u} \cdot \mathbf{n} \quad (\text{immiscibility})$ $[\mathbf{u}]_{\Gamma} = 0 \quad (\text{viscosity})$ $[\boldsymbol{\sigma}\mathbf{n}]_{\Gamma} = \text{div}_{\Gamma} \boldsymbol{\sigma}_{\Gamma} \quad (\text{momentum conservation})$

Classical models

Interfacial effects

Force on
$$\gamma = \int_{\partial \gamma} \boldsymbol{\sigma}_{\Gamma} n \, ds = \int_{\gamma} \operatorname{div}_{\Gamma} \boldsymbol{\sigma}_{\Gamma} \, ds$$

Interfacial surface force: div_ $\Gamma \sigma_{\Gamma}$

Coupling interface-fluid

 $V_{\Gamma} = \mathbf{u} \cdot \mathbf{n} \quad (\text{immiscibility})$ $[\mathbf{u}]_{\Gamma} = 0 \quad (\text{viscosity})$ $[\boldsymbol{\sigma}\mathbf{n}]_{\Gamma} = \text{div}_{\Gamma} \boldsymbol{\sigma}_{\Gamma} \quad (\text{momentum conservation})$

Classical models

Reusken (RWTH Aachen)

Clean interface: only surface tension $\sigma_{\Gamma} = \tau \mathbf{P}$ with $\mathbf{P} := \mathbf{I} - \mathbf{nn}^{T}$ (projection on Γ) then $\operatorname{div}_{\Gamma} \sigma_{\Gamma} = -\tau \kappa \mathbf{n} + \nabla_{\Gamma} \tau$ (κ : curvature of Γ)

Free

5 / 28

Numerical methods for two-phase flows

 $\Gamma(t) =$ zero-level of a scalar function: the level set function $\varphi(x, t)$

$$arphi(x,t) = egin{cases} < 0 & \mbox{for } x \mbox{ in phase } \Omega_1 \ > 0 & \mbox{for } x \mbox{ in phase } \Omega_2 \ = 0 & \mbox{at the interface} \end{cases}$$

should be an "approximate signed distance function". $x(t) \in \Gamma(t) \Rightarrow \varphi(x(t), t) = 0.$

Level set equation

$$\varphi_t + \mathbf{u} \cdot \nabla \varphi = \mathbf{0}$$

Reusken (RWTH Aachen)

Fluid dynamics model: Navier-Stokes + LS equation

Navier-Stokes equations coupled with level set equation

$$\rho(\varphi) \Big(\mathbf{u}_t + (\mathbf{u} \cdot \nabla) \mathbf{u} \Big) - \operatorname{div} \Big(\mu(\varphi) \, \mathbf{D}(\mathbf{u}) \Big) + \nabla p = \rho(\varphi) \, g + \delta_{\Gamma}(\varphi) \operatorname{div}_{\Gamma} \boldsymbol{\sigma}_{\Gamma}$$
$$\operatorname{div} \mathbf{u} = 0$$
$$\varphi_t + \mathbf{u} \cdot \nabla \varphi = 0$$

Localized force term in weak formulation

$$f_{\Gamma}(\mathbf{v}) = \int_{\Gamma} (\operatorname{div}_{\Gamma} \boldsymbol{\sigma}_{\Gamma}) \cdot \mathbf{v} \, ds, \qquad f_{\Gamma} \in H^{-1}(\Omega)$$

Accurate discretization of f_{Γ} is essential!.

Fluid dynamics + mass- and surfactant transport

Mass transport (or heat transport)

$$\begin{split} \frac{\partial c}{\partial t} + \mathbf{u} \cdot \nabla c &= D(\varphi) \Delta c, \\ [D(\varphi) \nabla c \cdot \mathbf{n}] &= 0 \quad \text{at the interface,} \\ c_1 &= C_H c_2 \quad \text{at the interface.} \end{split}$$

D: piecewise constant. Henry condition: discontinuity in c.

Fluid dynamics + mass- and surfactant transport

Mass transport (or heat transport)

$$\begin{split} \frac{\partial c}{\partial t} + \mathbf{u} \cdot \nabla c &= D(\varphi) \Delta c, \\ [D(\varphi) \nabla c \cdot \mathbf{n}] &= 0 \quad \text{at the interface,} \\ c_1 &= C_H c_2 \quad \text{at the interface.} \end{split}$$

D: piecewise constant. Henry condition: discontinuity in c.

Transport of surfactants: PDE on $\Gamma(t)$

$$\frac{\partial S}{\partial t} + \mathbf{u} \cdot \nabla S + S \operatorname{div}_{\Gamma} \mathbf{u} = \operatorname{div}_{\Gamma} (D_{\Gamma} \nabla_{\Gamma} S)$$
 on Γ

with D_{Γ} : interfacial diffusion coefficient.

Fluid dynamics + mass- and surfactant transport

Mass transport (or heat transport)

$$\begin{split} \frac{\partial c}{\partial t} + \mathbf{u} \cdot \nabla c &= D(\varphi) \Delta c, \\ [D(\varphi) \nabla c \cdot \mathbf{n}] &= 0 \quad \text{at the interface,} \\ c_1 &= C_H c_2 \quad \text{at the interface.} \end{split}$$

D: piecewise constant. Henry condition: discontinuity in c.

Transport of surfactants: PDE on $\Gamma(t)$

$$\frac{\partial S}{\partial t} + \mathbf{u} \cdot \nabla S + S \operatorname{div}_{\Gamma} \mathbf{u} = \operatorname{div}_{\Gamma} (D_{\Gamma} \nabla_{\Gamma} S)$$
 on Γ

with D_{Γ} : interfacial diffusion coefficient.

No chemical reactions considered!

Reusken (RWTH Aachen)

Numerical issues

Numerical challenges

- Unknown interface $\Gamma(t)$.
- Highly nonlinear couplings between **u**, φ , $f_{\Gamma(\varphi)}$, *c*, *S*.
- Treatment of force balance $[\sigma n]_{\Gamma} = \operatorname{div}_{\Gamma} \sigma_{\Gamma}$ (driving interfacial forces)
- Discontinuities (in p, ρ , μ , c) across $\Gamma(t)$.
- PDE on the evolving interface.

Numerical challenges

- Unknown interface $\Gamma(t)$.
- Highly nonlinear couplings between **u**, φ , $f_{\Gamma(\varphi)}$, *c*, *S*.
- Treatment of force balance $[\sigma n]_{\Gamma} = \operatorname{div}_{\Gamma} \sigma_{\Gamma}$ (driving interfacial forces)
- Discontinuities (in p, ρ , μ , c) across $\Gamma(t)$.
- PDE on the evolving interface.

Demand for:

- Adaptive space discretization, that can handle discontinuities.
- Accurate time integration, that can handle moving discontinuities.
- Methods for PDEs on interfaces.
- Efficient and robust iterative solvers.

Examples of numerical simulations

11 / 28

Multilevel adaptive finite elements

Reusken (RWTH Aachen)

Rising butanol droplet: fluid dynamics

system: n-butanol/water

drop radius $r = 3 mm \rightarrow \text{wobbling}$

Rising butanol droplet: fluid dynamics

Rising droplet with surfactant transport

- gravity-driven butanol-droplet (diam. 4mm) in water, interfacial tension 1.63mN/m
- Velocity field determined from NS-equations.

+ surfactant eqn.
$$\dot{S} - D_{\Gamma}\Delta_{\Gamma}S + (\nabla_{\Gamma}\cdot\mathbf{v})S = 0$$

• τ does **not** depend on *S*.

Observation

• accumulation of surfactant at the bottom.

solution

A few numerical aspects

 Γ = zero level of φ (= level set function)

 φ_h = piecewise quadratic FE approximation of φ .

Our strategy for Γ_h :

 φ_h (piecewise P_2) $\rightarrow I(\varphi_h)$ (piecewise P_1 on refined mesh).

Approximation of Γ by Γ_h : 3D illustration

Mass transport equation

$$\frac{\partial u}{\partial t} + \mathbf{w} \cdot \nabla u - \operatorname{div}(\alpha \nabla u) = f \quad \text{in} \quad \Omega_i, \ i = 1, 2, \ t \in [0, T],$$
$$[\alpha \nabla u \cdot \mathbf{n}]_{\Gamma} = 0,$$
$$[\beta u]_{\Gamma} = 0,$$
$$u(\cdot, 0) = u_0 \quad \text{in} \quad \Omega_i, \ i = 1, 2,$$
$$u(\cdot, t) = 0 \quad \text{on} \quad \partial \Omega, \ t \in [0, T].$$

With $\alpha = \alpha_i > 0$, $\beta = \beta_i > 0$.

Space-time weak formulation

Assumptions: $u_0 = 0$, div $\mathbf{w} = 0$, $V_{\Gamma} = \mathbf{w} \cdot \mathbf{n}$ (Γ transported by \mathbf{w}). Space-time: $Q_T := \Omega \times (0, T)$, $\Gamma_* := \{ (x, t) \mid x \in \Gamma(t), t \in (0, T) \}$. $Q_i := \{ (x, t) \mid x \in \Omega_i(t), t \in (0, T) \}, i = 1, 2.$

Spaces (anisotropic; $Q_T = Q_1 \cup Q_2$):

$$\begin{aligned} H^{1,0}(Q_i) &= \{ \ u \in L^2(Q_i) \ | \ \frac{\partial u}{\partial x_j} \in L^2(Q_i), \ \ j = 1, 2, 3 \} \\ H^{1,0}_0(Q_T) &= \{ \ u \in L^2(Q_T) \ | \ \frac{\partial u}{\partial x_j} \in L^2(Q_T), \ \ j = 1, 2, 3, \ \ u_{|\partial\Omega} = 0 \} \\ V_\beta &= \{ \ u \in L^2(Q_T) \ | \ u_i \in H^{1,0}(Q_i), \ i = 1, 2, \ u_{|\partial\Omega} = 0, \ [\beta u]_{\Gamma_*} = 0 \} \\ W_\beta &= \{ \ v \in V_\beta \ | \ \frac{\partial v}{\partial t} \in H^{1,0}_0(Q_T)' \}. \end{aligned}$$

Well-posed weak formulation

Determine $u \in W_{\beta}$ with $u(\cdot, 0) = 0$ such that

$$\frac{\partial u}{\partial t}(v) - \int_{Q_T} u \mathbf{w} \cdot \nabla v \, dx \, dt + \sum_{i=1}^2 \int_{Q_i} \alpha_i \nabla u_i \cdot \nabla v \, dx \, dt = \int_{Q_T} f v \, dx \, dt$$

or all $v \in H_0^{1,0}(Q_T)$

Note:

- Space-time formulation.
- Trial functions are discontinuous across Γ_* .
- Condition $[\beta u]_{\Gamma} = 0$ essential condition in space W_{β} .

Nitsche-DG-XFEM discretization

Space-time FE.

 $I_n = (t_{n-1}, t_n]. \ Q^n = \Omega \times I_n. \quad V_n : \text{standard FE space on } \Omega.$

$$W_n := \{ v : Q^n \to \mathbb{R} \mid v(x,t) = \phi_0(x) + t\phi_1(x), \quad \phi_0, \phi_1 \in V_n \}$$
(1)
$$W := \{ v : Q \to \mathbb{R} \mid v_{|Q^n} \in W_n \} \quad \text{(space-time FE)}.$$
(2)

Free 22 / 28

Space-time XFEM.

$$Q_{i}^{n} := \bigcup_{t \in I_{n}} \Omega_{i}(t), \quad R_{i}^{n} : \text{ restiction to } Q_{i}^{n}$$
$$W_{n}^{\Gamma} := R_{1}^{n} W_{n} \oplus R_{2}^{n} W_{n}, \quad W^{\Gamma_{*}} := \{ v : Q \to \mathbb{R} \mid v_{|Q^{n}} \in W_{n}^{\Gamma} \}$$
$$\begin{pmatrix} t_{n} & t_{n-1} \\ t_{n-1}$$

23 / 28

Bilinear forms

$$a^{n}(u,v) = \sum_{i=1}^{2} \int_{Q_{i}^{n}} \left(\frac{\partial u_{i}}{\partial t} + \mathbf{w} \cdot \nabla u_{i} \right) \beta_{i} v_{i} + \alpha_{i} \beta_{i} \nabla u_{i} \cdot \nabla v_{i} \, dx \, dt$$

Discontinuous Galerkin (DG) w.r.t. time:

$$d^n(u,v) = \int_{\Omega} \beta(\cdot,t_n)[u]^{n-1} v_+^{n-1} dt$$

Nitsche method for Henry condition:

$$N_{\Gamma_*}^n(u,v) = -\int_{\Gamma_*^n} \{\alpha \nabla u \cdot \mathbf{n}\}_{\Gamma_*}[\beta v]_{\Gamma_*} ds - \int_{\Gamma_*^n} \{\alpha \nabla v \cdot \mathbf{n}\}_{\Gamma_*}[\beta u]_{\Gamma_*} ds + \lambda h_n^{-1} \int_{\Gamma_*^n} [\beta u]_{\Gamma_*}[\beta v]_{\Gamma_*} ds,$$

with $\{\cdot\}_{\Gamma_*}$ a suitable area weighted average. $\lambda > 0$: stablization parameter.

$$a(u,v) = \sum_{n=1}^{N} a^n(u,v)$$
, similarly: $d(u,v)$, $N_{\Gamma_*}(u,v)$.

Nitsche-DG-XFEM variational problem

Determine $U \in W^{\Gamma_*}$ such that

 $B(U, V) = f(V) \quad \text{for all} \quad V \in W^{\Gamma_*},$ $B(U, V) := a(U, V) + d(U, V) + N_{\Gamma_*}(U, V).$

Nitsche-DG-XFEM variational problem

Determine $U \in W^{\Gamma_*}$ such that

$$B(U, V) = f(V) \quad \text{for all} \quad V \in W^{\Gamma_*},$$

$$B(U, V) := a(U, V) + d(U, V) + N_{\Gamma_*}(U, V).$$

Error analysis for linear FE

Theorem.

$$\|(u-U)(\cdot,t_N)\|_{L^2(\Omega)} \leq c(h^2+\Delta t^2).$$

Nitsche-DG-XFEM variational problem

Determine $U \in W^{\Gamma_*}$ such that

$$B(U, V) = f(V) \text{ for all } V \in W^{\Gamma_*}, B(U, V) := a(U, V) + d(U, V) + N_{\Gamma_*}(U, V).$$

Error analysis for linear FE

Theorem.

$$\|(u-U)(\cdot,t_N)\|_{L^2(\Omega)} \leq c(h^2+\Delta t^2).$$

Remark: for standard space-time DG [V. Thomee] (no Nitsche, no XFEM):

$$\|(u-U)(\cdot,t_N)\|_{L^2(\Omega)} \leq c(h^2 + \Delta t^3)$$

One-dimensional, linear interface velocity, periodic BC.

Discretization error

Error:
$$\|(U-u)(\cdot,t_N)\|_{L^2(\Omega)}$$
, $\Delta t = h$.

This indicates: $\|(U-u)(\cdot,t_N)\|_{L^2(\Omega)} \sim \Delta t^3$ if h sufficiently small.

This indicates: $\|(U-u)(\cdot,t_N)\|_{L^2(\Omega)} \sim h^2$ of Δt sufficiently small.