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Traveling waves

Part I

Traveling waves: known facts



Traveling waves

Basic reaction-diffusion model in 1D

• Reaction-diffusion equation

ut = uxx + f (u), t > 0, x ∈ R

• A traveling wave (with f (0) = f (1) = 0): u(t, x) = U(x − ct)

c
1

0



Traveling waves

Nonlinearities f

(a) monostable KPP (b) monostable

(c) ignition (d) bistable, with
∫ 1
0 f > 0



Traveling waves

Existence results

• KPP (Kolmogorov, Petrovskii, Piskunov): {c} = [c∗,+∞) with
c∗ = 2

√
f ′(0)

• Monostable case: {c} = [c∗,+∞) with c∗ ≥ 2
√

f ′(0) and c∗ > 0

• Ignition and bistable: there is a unique speed c and c > 0

[Aronson and Weinberger, Fife and McLeod, Kanel’]

Uniqueness of the profile U (up to shifts) for each speed c, and U ′ < 0

Stability for the Cauchy problem with

u0 = U + perturbation

[Bramson, Eckmann and Wayne, Fife and McLeod, Kametaka, Kanel’,
Lau, McKean, Sattinger, Uchiyama...]



Traveling waves

Asymptotic speed of propagation (spreading speed)

Cauchy problem: {
ut = uxx + f (u), t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R.

Initial condition:

1

0

Asymptotic speed of propagation w∗ (= c∗, the minimal speed of the
fronts) {

u(t, x + c t)→ 0 for all c > w∗,
u(t, x + c t) 6→ 0 for all c < w∗.
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Part II

Inside structure of traveling waves.
Applications to population genetics.
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The model

• Same model for the total population:

ut = uxx + f (u), t > 0, x ∈ R

Here, u(t, x) =density of the population of genes
• A traveling front (with f (0) = f (1) = 0, KPP, monostable,
combustion or bistable)

c
1

0
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Decomposition of the front

u(t, x) = U(x − ct)

is the sum of neutral genetic fractions at initial time:

u(0, x) = U(x) =
∑
i∈I

υi
0(x), 0 ≤6≡ υi

0(x) ≤ U(x)
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All fractions υi are neutral and share identical characteristics:

• Same diffusion rate, equal to 1

• Same per capita growth rate as the global front, equal to

g(u(t, x)) =
f (u(t, x))

u(t, x)

[Hallatschek and Nelson, 2008, 2009], [Vlad, Cavalli-Sforza and Ross,
2004]

Questions:

• Evolution of the spatial genetic structure as time runs?

• Loss of diversity along the front?

• Gene surfing?
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Each fraction υi (t, x) satisfies the linear equation{
υi

t = υi
xx + g(u(t, x)) υi , t > 0, x ∈ R,

0 ≤6≡ υi
0(x) ≤ U(x), x ∈ R

Can also be derived from a system governing the genotype densities
[Aronson and Weinberger, 1975]
By uniqueness:

u(t, x) =
∑
i∈I

υi (t, x) and g(u(t, x)) = g
(∑

i∈I
υi (t, x)

)
Comparison principle:

0 < υi (t, x) ≤ u(t, x) = U(x − ct), t > 0, x ∈ R

Space-time heterogeneity with a forced speed c

Main question: Can υi follow the global front?
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Results, KPP case

Theorem (KPP case)
Assume that f is of KPP-type.

Assume that υ0 converges to 0 faster than U as x → +∞ :∫ +∞

0
ecx υ0(x)2dx < +∞,

then

∀ ε > 0, max
x≥εt

υ(t, x)→ 0 as t → +∞.

Furthermore, if υ0(−∞)=0, then υ(t, ·)→0 as t→+∞ uniformly in R.
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Consequences, KPP case

• If υ0 is compactly supported, or supported in (−∞, a) then
the right spreading speed of υ is equal to 0.

• If υ0 = U · 1[α,∞), for some α > 0, then
υ(t, x) converges to U(x − c t) in any moving half-line [A + c t,∞).
→ The fraction υ manages to “surf" on the front.
→ The propagation is due to the leading edge of the front.

• Strong erosion of diversity due to the demographic advantage of
isolated individuals ahead of the colonization front.
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t = 0
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t = 20 (speed=2)
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t = 40 (speed=2)
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Theorem (Allee case=Bistable)
Bistable = strong Allee effect: negative growth rate at low densities.

Then there is p = p[υ0] ∈ (0, 1] such that

υ(t, x + ct)→ p U(x) as t → +∞ locally uniformly in x ∈ R.

The proportion p[υ0] can be computed explicitly:

p[υ0] =

∫ +∞

−∞
υ0(x) U(x) ec x dx∫ +∞

−∞
U2(x) ec x dx

∈ [0, 1].
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Consequences, Allee case

• The right spreading speed of any fraction υ is c.

• Every fraction υ contributes to a positive proportion of the global
front (even if it is initially compactly supported).

• All of the genetic diversity is conserved in the colonization front.

Strong contrast with the KPP case.
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t = 0
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t = 20 (speed=2)
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t = 40 (speed=2)
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t = 40 (speed=2)

(e) KPP case (f) Allee case
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Notions of Pulled and pushed fronts

In the monostable case [Stokes, 1976]

• Pulled front:

- Either a critical front with c = c∗ = 2
√

f ′(0)

Same speed as the solution of the linearized problem

- Or any super-critical front, that is c > c∗

• Pushed front: a critical front with c = c∗ > 2
√

f ′(0)
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Theorem (Pulled case)
Assume f is monostable and (c,U) is a pulled front, that is

either c = c∗ = 2
√

f ′(0) or c > c∗.

If ∫ +∞

0
ecx υ0(x)2dx < +∞,

then

υ(t, x + ct)→ 0 as t → +∞ locally uniformly in x ∈ R

and, more precisely,

lim sup
t→+∞

(
max

x≥α
√

t
υ(t, x)

)
→ 0 as α→ +∞.

Furthermore, if υ0(−∞)=0, then υ(t, ·)→0 as t→+∞ uniformly in R.
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Theorem (Pushed case)
Assume f is monostable with c = c∗ > 2

√
f ′(0) (pushed front) or

ignition or bistable.

Then there is p = p[υ0] ∈ (0, 1] such that

υ(t, x + ct)→ p U(x) as t → +∞ locally uniformly in x ∈ R.

More precisely,

lim sup
t→+∞

(
max

x≥α
√

t

∣∣υ(t, x)− p U(x − ct)
∣∣)→ 0 as α→ +∞.
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Observations:
• All the pulled fronts share the same inside structure as KPP fronts,
when c = c∗ = 2

√
f ′(0) or when c > c∗.

→ The propagation is due to the leading edge of the front.

• The bistable and ignition fronts have the same inside structure as
pushed monostable fronts.

→ All of the genetic diversity of the population is conserved in the
colonization front.

New interpretation of the mathematical notions of pulled and pushed fronts.
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Notions of pulled and pushed generalized transition fronts

ut = D(u) + f (t, x , u)

Assume f (t, x , 0) = 0 and there is a solution p+(t, x) > 0.
Generalized transition fronts connecting 0 and p+(t, x) [Berestycki, Hamel]:{

u(t, x)− p+(t, x) → 0 as x − xt → −∞,
u(t, x) → 0 as x − xt → +∞.

Pulled transition front: for all 0 ≤6≡ υ0 ≤ u(0, ·), the solution υ of{
υt = D(υ) + g(t, x , u(t, x)) υ,

υ(0, ·) = υ0 (compactly supported)

where g(t, x , u) = f (t, x , u)/u, satisfies

∀M ≥ 0, sup
|x−xt |≤M

υ(t, x)→ 0 as t → +∞.

Pushed transition front: there is M ≥ 0 such that

lim sup
t→+∞

(
sup

|x−xt |≤M
υ(t, x)

)
> 0.
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Conclusions and perspectives

• Pulled and pushed solutions can be defined based on the inside
structure of the solutions.

→ More intuitive than previous notions of pulled/pushed fronts

→ Adaptable to more complex models that do not necessarily admit
traveling front solutions.

• Existence of an Allee effect leads to a maintenance of genetic
diversity.

→ The Allee effect not only have adverse consequences.
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Conclusions and perspectives

Further work: identify the pulled/pushed nature of the solutions of other
types of equations, such as

• Integro-differential equations including long distance dispersal events
[Garnier 2011]:

ut = J ? u − u + f (u) → υt = J ? υ − υ + υ
f (u)

u .

• Equations with nonlinear diffusion, e.g., porous media equations:

ut = ∆(u2) + f (u) → υt = ∆(u υ) + υ
f (u)

u .
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Thank you for your attention.
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