THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC POTENTIAL AND DYNAMIC BOUNDARY CONDITIONS

Alain Miranville

Université de Poitiers, France

Collaborators : L. Cherfils, G. Gilardi, G.R. Goldstein, G. Schimperna, S. Zelik

Cahn-Hilliard system :

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\kappa \Delta w, \kappa>0 \\
& w=-\alpha \Delta u+f(u), \alpha>0
\end{aligned}
$$

Equivalently :

$$
\frac{\partial u}{\partial t}+\alpha \kappa \Delta^{2} u-\kappa \Delta f(u)=0
$$

Describes the phase separation process in a binary alloy: spinodal decomposition, coarsening
u : order parameter
w : chemical potential
κ : mobility
α : related to the surface tension at the interface
f : derivative of a double-well potential F
Typical choice :

$$
\begin{aligned}
& F(s)=\frac{1}{4}\left(s^{2}-1\right)^{2} \\
& f(s)=s^{3}-s
\end{aligned}
$$

Thermodynamically relevant potential :

$$
\begin{aligned}
& F(s)=-\theta_{0} s^{2}+\theta_{1}((1+s) \ln (1+s) \\
& +(1-s) \ln (1-s)) \\
& f(s)=-2 \theta_{0} s+\theta_{1} \ln \frac{1+s}{1-s} \\
& s \in(-1,1), 0<\theta_{1}<\theta_{0}
\end{aligned}
$$

Derivation of the Cahn-Hilliard system :
Mass balance : $\frac{\partial u}{\partial t}=-\operatorname{div} h$
h : mass flux
Constitutive equation : $h=-\kappa \nabla w$
Ginzburg-Landau free energy : $\Psi_{\mathrm{GL}}(u, \nabla u)=\int_{\Omega}\left(\frac{\alpha}{2}|\nabla u|^{2}+F(u)\right) d x$
$\Omega \subset R^{N}, N \leq 3$: domain occupied by the material
Usual definition of w : derivative of $\Psi_{\text {GL }}$ w.r.t. u
\rightarrow No longer valid
New definition : variational derivative of $\Psi_{\text {GL }}$ w.r.t. u
$\rightarrow w=-\alpha \Delta u+F(u)$

Usual boundary conditions :

$$
\begin{aligned}
& \frac{\partial w}{\partial \nu}=0 \text { on } \Gamma \\
& \frac{\partial u}{\partial \nu}=0 \text { on } \Gamma
\end{aligned}
$$

$\Gamma=\partial \Omega$
ν : unit outer normal vector
\rightarrow Mass conservation : $\frac{d}{d t} \int_{\Omega} u d x=0$
Equivalently :

$$
\frac{\partial u}{\partial \nu}=\frac{\partial \Delta u}{\partial \nu}=0 \text { on } \Gamma
$$

Regular potentials :

- Well-posedness, regularity : C.M. Elliott-S. Zheng, B. Nicolaenko-B. Scheurer, D. Li-C. Zhong, ...
- Existence of finite-dimensional attractors : B. Nicolaenko-B. Scheurer-R. Temam, D. Li-C. Zhong, ...
- Convergence of solutions to steady states : S. Zheng, P. Rybka-K.-H. Hoffmann

Logarithmic (singular) potentials :

Main difficulty : prove that u remains in $(-1,1)$
Remark : Not true for regular potentials

- Well-posedness, regularity : C.M. Elliott-S. Luckhaus, C.M. Elliott-H. Garcke, A. Debussche-L. Dettori, A. Miranville-S. Zelik
- Existence of finite-dimensional attractors : A. Debussche-L. Dettori, A. Miranville-S. Zelik
- Convergence of solutions to steady states : H. Abels-M. Wilke

Dynamic boundary conditions :

Influence of the walls for confined systems
Mainly studied for polymer mixtures
Technological applications
Problem : define the boundary conditions (we need 2 boundary conditions)
First boundary condition : no mass flux at the boundary :

$$
\frac{\partial w}{\partial \nu}=0 \text { on } \Gamma
$$

\rightarrow Bulk mass conservation : $\frac{d}{d t} \int_{\Omega} u d x=0$

Second boundary condition : we consider, in addition to the Ginzburg-Landau free energy

$$
\Psi_{\mathrm{GL}}(u, \nabla u)=\int_{\Omega}\left(\frac{\alpha}{2}|\nabla u|^{2}+F(u)\right) d x
$$

the surface free energy

$$
\Psi_{\Gamma}(u, \nabla u)=\int_{\Gamma}\left(\frac{\alpha_{\Gamma}}{2}\left|\nabla_{\Gamma} u\right|^{2}+G(u)\right) d x
$$

$\alpha_{\Gamma}>0$
∇_{Γ} : surface gradient
Original surface potential : $G(s)=\frac{1}{2} a_{\Gamma} s^{2}-b_{\Gamma} s$
$a_{\Gamma}>0$: accounts for a modification of the effective interaction between the components
b_{Γ} : characterizes the preferential attraction of one of the components by the walls

Total energy : $\Psi=\Psi_{\mathrm{GL}}+\Psi_{\Gamma}$
The system tends to minimize the excess surface energy :

$$
\frac{1}{d} \frac{\partial u}{\partial t}-\alpha_{\Gamma} \Delta_{\Gamma} u+g(u)+\alpha \frac{\partial u}{\partial \nu}=0 \text { on } \Gamma
$$

$d>0$: relaxation parameter
Δ_{Γ} : Laplace-Beltrami operator
$g=G^{\prime}$
\rightarrow Dynamic boundary condition

Different approach : G.R. Goldstein-A. Miranville-G. Schimperna
Total mass conservation : $\frac{d}{d t}\left(\int_{\Omega} u d x+\int_{\Gamma} u d \sigma\right)=0$
$\rightarrow \frac{\partial u}{\partial t}=\beta_{\Gamma} \Delta_{\Gamma} w-\kappa \frac{\partial w}{\partial \nu}$ on $\Gamma, \beta_{\Gamma} \geq 0$
Second boundary condition : w is a variational derivative of the total free energy Ψ w.r.t. u
$\rightarrow w=-\alpha_{\Gamma} \Delta_{\Gamma} u+g(u)+\alpha \frac{\partial u}{\partial \nu}$ on Γ

Regular potentials : the system is well understood
Contributors : R. Chill, C.G. Gal, E. Fašangová, A. Miranville, J. Pruess, R. Racke, H. Wu, S. Zelik, S. Zheng, ...

Singular potentials : more complicated and less understood
First existence and uniqueness result : G. Gilardi-A. Miranville-G. Schimperna

For f singular and g regular : sign assumptions on g near the singular points of f :

$$
g(1)>0, g(-1)<0
$$

Forces the order parameter to stay away from ± 1 on Γ
Question :

- What happens when the sign conditions are not satisfied ?

Nonexistence of classical solutions :

When the sign conditions are not satisfied, we can have nonexistence of classical solutions

We consider the scalar ODE

$$
\begin{aligned}
& y^{\prime \prime}-f(y)=0, x \in(-1,1) \\
& y^{\prime}(\pm 1)=K>0
\end{aligned}
$$

Assumptions :

- f is singular at ± 1
- $F(\pm 1)<+\infty\left(F^{\prime}=f\right)$
- f is odd

Satisfied by the usual logarithmic potentials

When K is small : existence and uniqueness of a solution which is separated from the singular values $\left(\|y\|_{L^{\infty}(-1,1)}<1\right)$ and is odd

Standard interior regularity estimates yield

$$
\left|y^{\prime}(x)\right| \leq c_{0},|y(x)| \leq 1-\delta
$$

$x \in\left(-\frac{1}{2}, \frac{1}{2}\right), \delta>0, c_{0}$ independent of K
Multiply the equation by y^{\prime} and integrate over $(0,1)$:

$$
\left|\frac{1}{2} K^{2}-F(y(1))\right| \leq c_{1}
$$

c_{1} (and $F(\pm 1)$) independent of K
This inequality cannot hold when K is large
\rightarrow We do not have a classical solution

Since y is odd, the ODE can be rewritten as

$$
y^{\prime \prime}-f(y)=<y^{\prime \prime}-f(y)>
$$

$<.>=\frac{1}{\operatorname{Vol}(\cdot)} \int_{\Omega} \cdot d x$
\rightarrow 1-D stationary Cahn-Hilliard system with dynamic BCs

Convergence of a sequence of solutions to regularized problems :

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\Delta w \\
& w=-\Delta u+f_{0}(u)+\lambda u, \lambda \in R \\
& \frac{\partial w}{\partial \nu}=0 \text { on } \Gamma \\
& \frac{\partial \psi}{\partial t}-\Delta_{\Gamma} \psi+g_{0}(\psi)+\psi+\frac{\partial u}{\partial \nu}=0 \text { on } \Gamma \\
& \psi=\left.u\right|_{\Gamma}
\end{aligned}
$$

$f(s)=f_{0}(s)+\lambda s, g(s)=g_{0}(s)+s$
Assumptions :

- $f_{0} \in \mathcal{C}^{2}(-1,1), f_{0}(0)=0$
- $\lim _{s \rightarrow \pm 1} f_{0}(s)= \pm \infty, \lim _{s \rightarrow \pm 1} f_{0}^{\prime}(s)=+\infty$
- $f_{0}^{\prime} \geq 0, \operatorname{sgn}(s) f_{0}^{\prime \prime}(s) \geq 0$
- $g_{0} \in \mathcal{C}^{2}(R),\left\|g_{0}\right\|_{\mathcal{C}^{2}(R)} \leq c$

Regularized potential :

$$
\begin{aligned}
& f_{0, n}(s)=f_{0}(s),|s| \leq 1-\frac{1}{n} \\
& f_{0, n}(s)=f_{0}\left(1-\frac{1}{n}\right)+f_{0}^{\prime}\left(1-\frac{1}{n}\right)\left(s-1+\frac{1}{n}\right) \\
& s>1-\frac{1}{n} \\
& f_{0, n}(s)=f_{0}\left(-1+\frac{1}{n}\right)+f_{0}^{\prime}\left(-1+\frac{1}{n}\right)\left(s+1-\frac{1}{n}\right) \\
& s<-1+\frac{1}{n}
\end{aligned}
$$

Regularized problem : f_{0} replaced by $f_{0, n}$
Existence and uniqueness of the solution u_{n} to the regularized problem

Satisfies, for n large enough

$$
\begin{aligned}
& \left\|u_{n}(t)\right\|_{\mathcal{C}^{\alpha}(\Omega)}^{2}+\left\|u_{n}(t)\right\|_{H^{2}(\Gamma)}^{2}+\left\|u_{n}(t)\right\|_{H^{2}\left(\Omega_{\epsilon}\right)}^{2}+\left\|u_{n}(t)\right\|_{H^{1}(\Omega)}^{2}+ \\
& \left\|\frac{\partial u_{n}}{\partial t}(t)\right\|_{H^{-1}(\Omega)}^{2}+\left\|\frac{\partial u_{n}}{\partial t}(t)\right\|_{L^{2}(\Gamma)}^{2}+ \\
& \left\|\nabla D_{\tau} u_{n}(t)\right\|_{L^{2}(\Omega)^{2 N}}^{2}+\left\|f_{0, n}\left(u_{n}(t)\right)\right\|_{L^{1}(\Omega)}+ \\
& \int_{t}^{t+1}\left(\left\|\frac{\partial u_{n}}{\partial t}(s)\right\|_{H^{-1}(\Omega)}^{2}+\left\|\frac{\partial u_{n}}{\partial t}(s)\right\|_{L^{2}(\Gamma)}^{2}\right) d s \leq \\
& c e^{-\beta t}\left(1+\left\|u_{n}(0)\right\|_{H^{1}(\Omega)}^{2}+\left\|u_{n}(0)\right\|_{H^{1}(\Gamma)}^{2}+\right. \\
& \left.\left\|\frac{\partial u_{n}}{\partial t}(0)\right\|_{H^{-1}(\Omega)}^{2}+\left\|\frac{\partial u_{n}}{\partial t}(0)\right\|_{L^{2}(\Gamma)}^{2}\right)^{2}+c^{\prime}
\end{aligned}
$$

$\Omega_{\epsilon}=\{x \in \Omega, d(x, \Gamma)>\epsilon\}, \epsilon>0$
$D_{\tau} u_{n}=\nabla u_{n}-\frac{\partial u_{n}}{\partial \nu} \nu$
$\alpha>0, \beta>0, c, c^{\prime}$ independent of n
Remark : Actually, $u_{n}(t) \in H^{2}(\Omega)$, but this regularity does not pass to the limit

Smoothing property :

$$
\begin{aligned}
& \left\|\frac{\partial u_{n}}{\partial t}(t)\right\|_{H^{-1}(\Omega)}^{2}+\left\|\frac{\partial u_{n}}{\partial t}(t)\right\|_{L^{2}(\Gamma)}^{2} \leq \\
& \frac{c}{t}\left(1+\left\|u_{n}(0)-<u_{n}(0)>\right\|_{H^{-1}(\Omega)}^{2}+\left\|u_{n}(0)\right\|_{L^{2}(\Gamma)}^{2}\right)
\end{aligned}
$$

$t \in(0,1], c$ independent of n
Lipschitz estimate :

$$
\begin{aligned}
& \left\|u_{1}(t)-u_{2}(t)\right\|_{H^{-1}(\Omega)}+ \\
& \left\|u_{1}(t)-u_{2}(t)\right\|_{L^{2}(\Gamma)} \leq \\
& c e^{c^{\prime} t}\left(\left\|u_{1}(0)-u_{2}(0)\right\|_{H^{-1}(\Omega)}+\right. \\
& \left.\left\|u_{1}(0)-u_{2}(0)\right\|_{L^{2}(\Gamma)}\right) \\
& <u_{1}(0)>=<u_{2}(0)>=m, t \geq 0
\end{aligned}
$$

c, c^{\prime} independent of t, n, u_{1}, u_{2}
u_{n} converges to some function u

We wish to call u the "generalized" solution to the singular problem

Variational solutions :

We set

$$
\begin{aligned}
& B(u, v)=(\nabla u, \nabla v)_{\Omega}+\lambda(u, v)_{\Omega}+ \\
& +L\left((-\Delta)^{-1} \bar{u}, \bar{v}\right)_{\Omega}+\left(\nabla_{\Gamma} u, \nabla_{\Gamma} v\right)_{\Gamma}
\end{aligned}
$$

$u, v \in H^{1}(\Omega) \otimes H^{1}(\Gamma)=\left\{w, w \in H^{1}(\Omega),\left.w\right|_{\Gamma} \in H^{1}(\Gamma)\right\}$
$L>0$ chosen s.t.

$$
\begin{array}{r}
\|\nabla u\|_{L^{2}(\Omega)^{3}}^{2}+\lambda\|u\|_{L^{2}(\Omega)}^{2}+L\|u\|_{H^{-1}(\Omega)}^{2} \geq \\
\frac{1}{2}\|u\|_{H^{1}(\Omega)}^{2}, u \in H^{1}(\Omega),<u>=0
\end{array}
$$

$\bar{u}=u-<u\rangle$
$(., .)_{\Omega},(., .)_{\Gamma}:$ scalar products in $L^{2}(\Omega)$ and $L^{2}(\Gamma)$

We rewrite the problem as

$$
\begin{aligned}
& (-\Delta)^{-1} \frac{\partial u}{\partial t}-\Delta u+ \\
& f_{0}(u)+\lambda u-<w>=0 \\
& w=-\Delta u+f_{0}(u)+\lambda u \\
& \frac{\partial \psi}{\partial t}-\Delta_{\Gamma} \psi+g(\psi)+\frac{\partial u}{\partial \nu}=0 \text { on } \Gamma \\
& \psi=\left.u\right|_{\Gamma} \\
& \left.u\right|_{t=0}=u_{0},\left.\psi\right|_{t=0}=\psi_{0}
\end{aligned}
$$

We multiply the first equation by $u-v, v=v(x)$ s.t.

$$
\begin{gathered}
<u(t)-v>=0, t \geq 0: \\
\left((-\Delta)^{-1} \frac{\partial u}{\partial t}, u-v\right)_{\Omega}+\left(\frac{\partial u}{\partial t}, u-v\right)_{\Gamma}+ \\
B(u, u-v)+\left(f_{0}(u), u-v\right)_{\Omega}= \\
L\left(u,(-\Delta)^{-1}(u-v)\right)_{\Omega}-(g(u), u-v)_{\Gamma}
\end{gathered}
$$

Positivity of B and monotonicity of f_{0} :

$$
\begin{aligned}
& \left((-\Delta)^{-1} \frac{\partial u}{\partial t}, u-v\right)_{\Omega}+\left(\frac{\partial u}{\partial t}, u-v\right)_{\Gamma}+ \\
& B(v, u-v)+\left(f_{0}(v), u-v\right)_{\Omega} \leq \\
& L\left(u,(-\Delta)^{-1}(u-v)\right)_{\Omega}-(g(u), u-v)_{\Gamma}
\end{aligned}
$$

Variational inequality (VI)
We set

$$
\begin{aligned}
& \Phi=\left\{(u, \psi) \in L^{\infty}(\Omega) \times L^{\infty}(\Gamma)\right. \\
& \left.\|u\|_{L^{\infty}(\Omega)} \leq 1,\|\psi\|_{L^{\infty}(\Gamma)} \leq 1\right\}
\end{aligned}
$$

Definition : Let $\left(u_{0}, \psi_{0}\right) \in \Phi$. Then, (u, ψ) is a variational solution if
(i) $\left.u(t)\right|_{\Gamma}=\psi(t)$ a.e. $t>0, u(0)=u_{0}, \psi(0)=\psi_{0}$;
(ii) $-1<u(t, x)<1$ a.e. $(t, x) \in R^{+} \times \Omega$;
(iii) $(u, \psi) \in \mathcal{C}\left([0,+\infty) ; H^{-1}(\Omega) \times L^{2}(\Gamma)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega) \times H^{1}(\Gamma)\right)$, $T>0$;
(iv) $f(u) \in L^{1}((0, T) \times \Omega), T>0$;
(v) $\left(\frac{\partial u}{\partial t}, \frac{\partial \psi}{\partial t}\right) \in L^{2}\left(\tau, T ; H^{-1}(\Omega) \times L^{2}(\Gamma)\right), T>\tau>0$;
(vi) $<u(t)>=<u_{0}>, t \geq 0$;
(vii) the variational inequality (VI) is satisfied for a.e. $t>0$ and every test function $v=v(x)$ s.t. $v \in H^{1}(\Omega) \otimes H^{1}(\Gamma), f(v) \in L^{1}(\Omega),\langle v\rangle=\left\langle u_{0}\right\rangle$.

Remark : $\left.u(t)\right|_{\Gamma}=\psi(t)$ only for $t>0$

- A variational solution, if it exists is unique
- $\forall\left(u_{0}, \psi_{0}\right) \in \Phi, \exists$ a variational solution and $\left(u_{n}, \psi_{n}=\left.u_{n}\right|_{\Gamma}\right)$ converges (for a subsequence) to a variational solution
- The variational solutions satisfy the a priori estimates mentioned earlier
- The variational solutions satisfy the smoothing and Lipschitz properties
- A variational solution does not necessarily solve the equations in the usual sense :

It satisfies the bulk equation
It does not necessarily satisfy the dynamic boundary condition

Existence of classical solutions :

Related to the H^{2}-regularity and the separation from the singularities of f_{0}
Theorem : Let (u, ψ) be a variational solution and set, for $\delta>0$ and $T>0$,

$$
\Omega_{\delta}(T)=\{x \in \Omega,|u(T, x)|<1-\delta\} .
$$

Then, $u(T) \in H^{2}\left(\Omega_{\delta}(T)\right)$ and

$$
\|u(T)\|_{H^{2}\left(\Omega_{\delta}(T)\right)} \leq Q_{\delta, T},
$$

where $Q_{\delta, T}$ is independent of u.

Consequence : if

$$
|u(t, x)|<1 \text { a.e. }(t, x) \in R^{+} \times \Gamma
$$

then u is a classical solution
\rightarrow The existence of classical solutions is related to the separation property on the boundary

True if f_{0} has sufficiently strong singularities

Theorem : We assume that

$$
\lim _{s \rightarrow \pm 1} F_{0}(s)=+\infty, F_{0}^{\prime}=f_{0}
$$

Then, the separation property on the boundary holds and a variational solution is a classical one.

True if f_{0} behaves like $\frac{s}{\left(1-s^{2}\right)^{p}}, p>1$
Not true for logarithmic potentials
In that case, we can have $|u(t, x)|=1$ on a set with nonzero measure on the boundary (possibly, on the whole boundary)

Theorem : We assume that

$$
\pm g(\pm 1)>0
$$

Then, a variational solution is a classical one.

Existence of finite-dimensional attractors :

Conservation of the total mass $(\langle u\rangle)$: we restrict ourselves to

$$
\Phi_{m}=\{(u, \psi) \in \Phi,<u>=m\}, m \in(-1,1)
$$

Theorem : For every $m \in(-1,1)$, the semigroup $S(t)$ acting on Φ_{m} possesses the finite-dimensional global attractor \mathcal{A}_{m} (in $H^{-1}(\Omega) \times L^{2}(\Gamma)$) which is bounded in $\mathcal{C}^{\alpha}(\Omega) \times \mathcal{C}^{\alpha}(\Gamma), 0<\alpha<\frac{1}{4}$.

Global attractor : unique compact set of Φ_{m} which is invariant $\left(S(t) \mathcal{A}_{m}=\mathcal{A}_{m}, t \geq 0\right)$ and attracts all bounded sets of initial data

Suitable object in view of the study of the asymptotic behavior of the system (smallest closed set enjoying the attraction property)

Finite dimensionality : the reduced dynamics can be described by a finite number of parameters

Existence of the global attractor : follows from classical results

Finite-dimensionality : construction of an exponential attractor
Exponential attractor : compact and positively invariant
$\left(S(t) \mathcal{M}_{m} \subset \mathcal{M}_{m}, t \geq 0\right)$ set which contains the global attractor and has finite fractal dimension

We need some (asymptotically) compact smoothing property on the difference of 2 solutions

We have

$$
\begin{aligned}
& \left\|u_{1}(t)-u_{2}(t)\right\|_{\Phi^{\mathrm{w}}}^{2} \leq c e^{-\beta t}\left\|u_{1}(0)-u_{2}(0)\right\|_{\Phi^{\mathrm{w}}}^{2}+ \\
& c^{\prime} \int_{0}^{t}\left\|\theta\left(u_{1}(s)-u_{2}(s)\right)\right\|_{L^{2}(\Omega)}^{2} d s
\end{aligned}
$$

$\beta>0, \theta$: smooth cut-off function
$\Phi^{\mathrm{w}}=H^{-1}(\Omega) \times L^{2}(\Gamma)$
\rightarrow Contraction, up to $\left\|\theta\left(u_{1}-u_{2}\right)\right\|_{L^{2}\left(0, t ; L^{2}(\Omega)\right)}$
Compactness : We work on spaces of trajectories and use the compactness of

$$
\begin{aligned}
& L^{2}\left(0, t ; H^{1}(\Omega)\right) \cap H^{1}\left(0, t ; H^{-3}(\Omega)\right) \subset \\
& L^{2}\left(0, t ; L^{2}(\Omega)\right)
\end{aligned}
$$

We have

$$
\begin{aligned}
& \left\|\frac{\partial}{\partial t}\left[\theta\left(u_{1}-u_{2}\right)\right]\right\|_{L^{2}\left(0, t ; H^{-3}(\Omega)\right)}^{2}+ \\
& \left\|\theta\left(u_{1}-u_{2}\right)\right\|_{L^{2}\left(0, t, t H^{1}(\Omega)\right)}^{2} \leq \\
& c e^{c^{\prime} t}\left\|u_{1}(0)-u_{2}(0)\right\|_{H^{-1}(\Omega) \cap L^{2}(\Gamma)}^{2}
\end{aligned}
$$

$u_{1}(0), u_{2}(0) \in B_{H^{-1}(\Omega) \cap L^{2}(\Gamma)}\left(u_{0}, \epsilon\right), \epsilon>0$ small

