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Cahn-Hilliard system :

∂u
∂t = κ∆w, κ > 0
w = −α∆u + f (u), α > 0

Equivalently :

∂u
∂t

+ ακ∆2u− κ∆f (u) = 0

Describes the phase separation process in a binary alloy : spinodal
decomposition, coarsening

u : order parameter
w : chemical potential
κ : mobility
α : related to the surface tension at the interface



f : derivative of a double-well potential F

Typical choice :

F(s) = 1
4(s2 − 1)2

f (s) = s3 − s

Thermodynamically relevant potential :

F(s) = −θ0s2 + θ1((1 + s) ln(1 + s)
+(1− s) ln(1− s))
f (s) = −2θ0s + θ1 ln 1+s

1−s
s ∈ (−1, 1), 0 < θ1 < θ0



Derivation of the Cahn-Hilliard system :

Mass balance : ∂u
∂t = −divh

h : mass flux

Constitutive equation : h = −κ∇w

Ginzburg-Landau free energy : ΨGL(u,∇u) =
∫

Ω(α2 |∇u|2 + F(u))dx

Ω ⊂ RN , N ≤ 3 : domain occupied by the material

Usual definition of w : derivative of ΨGL w.r.t. u

→ No longer valid

New definition : variational derivative of ΨGL w.r.t. u

→ w = −α∆u + F(u)



Usual boundary conditions :

∂w
∂ν = 0 on Γ
∂u
∂ν = 0 on Γ

Γ = ∂Ω
ν : unit outer normal vector

→Mass conservation : d
dt

∫
Ω udx = 0

Equivalently :

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ



Regular potentials :

•Well-posedness, regularity : C.M. Elliott-S. Zheng, B. Nicolaenko-B.
Scheurer, D. Li-C. Zhong, ...

• Existence of finite-dimensional attractors : B. Nicolaenko-B. Scheurer-R.
Temam, D. Li-C. Zhong, ...

• Convergence of solutions to steady states : S. Zheng, P. Rybka-K.-H.
Hoffmann



Logarithmic (singular) potentials :

Main difficulty : prove that u remains in (−1, 1)

Remark : Not true for regular potentials

•Well-posedness, regularity : C.M. Elliott-S. Luckhaus, C.M. Elliott-H.
Garcke, A. Debussche-L. Dettori, A. Miranville-S. Zelik

• Existence of finite-dimensional attractors : A. Debussche-L. Dettori, A.
Miranville-S. Zelik

• Convergence of solutions to steady states : H. Abels-M. Wilke



Dynamic boundary conditions :

Influence of the walls for confined systems

Mainly studied for polymer mixtures

Technological applications

Problem : define the boundary conditions (we need 2 boundary conditions)

First boundary condition : no mass flux at the boundary :

∂w
∂ν

= 0 on Γ

→ Bulk mass conservation : d
dt

∫
Ω udx = 0



Second boundary condition : we consider, in addition to the Ginzburg-Landau
free energy

ΨGL(u,∇u) =
∫

Ω
(
α

2
|∇u|2 + F(u))dx

the surface free energy

ΨΓ(u,∇u) =
∫

Γ
(
αΓ

2
|∇Γu|2 + G(u))dx

αΓ > 0
∇Γ : surface gradient

Original surface potential : G(s) = 1
2 aΓs2 − bΓs

aΓ > 0 : accounts for a modification of the effective interaction between the
components
bΓ : characterizes the preferential attraction of one of the components by the
walls



Total energy : Ψ = ΨGL + ΨΓ

The system tends to minimize the excess surface energy :

1
d
∂u
∂t
− αΓ∆Γu + g(u) + α

∂u
∂ν

= 0 on Γ

d > 0 : relaxation parameter
∆Γ : Laplace-Beltrami operator
g = G′

→ Dynamic boundary condition



Different approach : G.R. Goldstein-A. Miranville-G. Schimperna

Total mass conservation : d
dt (

∫
Ω udx +

∫
Γ udσ) = 0

→ ∂u
∂t = βΓ∆Γw− κ∂w

∂ν on Γ, βΓ ≥ 0

Second boundary condition : w is a variational derivative of the total free
energy Ψ w.r.t. u

→ w = −αΓ∆Γu + g(u) + α ∂u
∂ν on Γ



Regular potentials : the system is well understood

Contributors : R. Chill, C.G. Gal, E. Fašangová, A. Miranville, J. Pruess, R.
Racke, H. Wu, S. Zelik, S. Zheng, ...

Singular potentials : more complicated and less understood

First existence and uniqueness result : G. Gilardi-A. Miranville-G.
Schimperna

For f singular and g regular : sign assumptions on g near the singular points of
f :

g(1) > 0, g(−1) < 0

Forces the order parameter to stay away from ±1 on Γ

Question :

•What happens when the sign conditions are not satisfied ?



Nonexistence of classical solutions :

When the sign conditions are not satisfied, we can have nonexistence of
classical solutions

We consider the scalar ODE

y′′ − f (y) = 0, x ∈ (−1, 1)
y′(±1) = K > 0

Assumptions :

• f is singular at ±1
• F(±1) < +∞ (F′ = f )
• f is odd

Satisfied by the usual logarithmic potentials



When K is small : existence and uniqueness of a solution which is separated
from the singular values (‖y‖L∞(−1,1) < 1) and is odd

Standard interior regularity estimates yield

|y′(x)| ≤ c0, |y(x)| ≤ 1− δ

x ∈ (−1
2 ,

1
2), δ > 0, c0 independent of K

Multiply the equation by y′ and integrate over (0, 1) :

|1
2

K2 − F(y(1))| ≤ c1

c1 (and F(±1)) independent of K

This inequality cannot hold when K is large

→We do not have a classical solution



Since y is odd, the ODE can be rewritten as

y′′ − f (y) =< y′′ − f (y) >

< . >= 1
Vol(˙)

∫
Ω .dx

→ 1-D stationary Cahn-Hilliard system with dynamic BCs



Convergence of a sequence of solutions to regularized problems :

∂u
∂t = ∆w
w = −∆u + f0(u) + λu, λ ∈ R
∂w
∂ν = 0 on Γ
∂ψ
∂t −∆Γψ + g0(ψ) + ψ + ∂u

∂ν = 0 on Γ
ψ = u|Γ

f (s) = f0(s) + λs, g(s) = g0(s) + s

Assumptions :

• f0 ∈ C2(−1, 1), f0(0) = 0
• lims→±1 f0(s) = ±∞, lims→±1 f ′0(s) = +∞
• f ′0 ≥ 0, sgn(s)f ′′0 (s) ≥ 0
• g0 ∈ C2(R), ‖g0‖C2(R) ≤ c



Regularized potential :

f0,n(s) = f0(s), |s| ≤ 1− 1
n

f0,n(s) = f0(1− 1
n) + f ′0(1− 1

n)(s− 1 + 1
n)

s > 1− 1
n

f0,n(s) = f0(−1 + 1
n) + f ′0(−1 + 1

n)(s + 1− 1
n)

s < −1 + 1
n

Regularized problem : f0 replaced by f0,n

Existence and uniqueness of the solution un to the regularized problem



Satisfies, for n large enough

‖un(t)‖2
Cα(Ω) + ‖un(t)‖2

H2(Γ)
+ ‖un(t)‖2

H2(Ωε)
+ ‖un(t)‖2

H1(Ω)
+

‖∂un
∂t (t)‖2

H−1(Ω)
+ ‖∂un

∂t (t)‖2
L2(Γ)

+
‖∇Dτun(t)‖2

L2(Ω)2N + ‖f0,n(un(t))‖L1(Ω)+∫ t+1
t (‖∂un

∂t (s)‖2
H−1(Ω)

+ ‖∂un
∂t (s)‖2

L2(Γ)
)ds ≤

ce−βt(1 + ‖un(0)‖2
H1(Ω)

+ ‖un(0)‖2
H1(Γ)

+
‖∂un
∂t (0)‖2

H−1(Ω)
+ ‖∂un

∂t (0)‖2
L2(Γ)

)2 + c′

Ωε = {x ∈ Ω, d(x,Γ) > ε}, ε > 0
Dτun = ∇un − ∂un

∂ν ν
α > 0, β > 0, c, c′ independent of n

Remark : Actually, un(t) ∈ H2(Ω), but this regularity does not pass to the
limit



Smoothing property :

‖∂un
∂t (t)‖2

H−1(Ω)
+ ‖∂un

∂t (t)‖2
L2(Γ)

≤
c
t (1 + ‖un(0)− < un(0) > ‖2

H−1(Ω)
+ ‖un(0)‖2

L2(Γ)
)

t ∈ (0, 1], c independent of n

Lipschitz estimate :

‖u1(t)− u2(t)‖H−1(Ω)+
‖u1(t)− u2(t)‖L2(Γ) ≤
cec′t(‖u1(0)− u2(0)‖H−1(Ω)+
‖u1(0)− u2(0)‖L2(Γ))
< u1(0) >=< u2(0) >= m, t ≥ 0

c, c′ independent of t, n, u1, u2

un converges to some function u



We wish to call u the "generalized" solution to the singular problem

Variational solutions :

We set

B(u, v) = (∇u,∇v)Ω + λ(u, v)Ω+
+L((−∆)−1u, v)Ω + (∇Γu,∇Γv)Γ

u, v ∈ H1(Ω)⊗ H1(Γ) = {w, w ∈ H1(Ω), w|Γ ∈ H1(Γ)}

L > 0 chosen s.t.

‖∇u‖2
L2(Ω)3 + λ‖u‖2

L2(Ω)
+ L‖u‖2

H−1(Ω)
≥

1
2‖u‖

2
H1(Ω)

, u ∈ H1(Ω), < u >= 0

u = u− < u >
(., .)Ω, (., .)Γ : scalar products in L2(Ω) and L2(Γ)



We rewrite the problem as

(−∆)−1 ∂u
∂t −∆u+

f0(u) + λu− < w >= 0
w = −∆u + f0(u) + λu
∂ψ
∂t −∆Γψ + g(ψ) + ∂u

∂ν = 0 on Γ
ψ = u|Γ
u|t=0 = u0, ψ|t=0 = ψ0

We multiply the first equation by u− v, v = v(x) s.t.

< u(t)− v >= 0, t ≥ 0 :

((−∆)−1 ∂u
∂t , u− v)Ω + (∂u

∂t , u− v)Γ+
B(u, u− v) + (f0(u), u− v)Ω =
L(u, (−∆)−1(u− v))Ω − (g(u), u− v)Γ



Positivity of B and monotonicity of f0 :

((−∆)−1 ∂u
∂t , u− v)Ω + (∂u

∂t , u− v)Γ+
B(v, u− v) + (f0(v), u− v)Ω ≤
L(u, (−∆)−1(u− v))Ω − (g(u), u− v)Γ

Variational inequality (VI)

We set

Φ = {(u, ψ) ∈ L∞(Ω)× L∞(Γ),
‖u‖L∞(Ω) ≤ 1, ‖ψ‖L∞(Γ) ≤ 1}



Definition : Let (u0, ψ0) ∈ Φ. Then, (u, ψ) is a variational solution if

(i) u(t)|Γ = ψ(t) a.e. t > 0, u(0) = u0, ψ(0) = ψ0 ;

(ii) −1 < u(t, x) < 1 a.e. (t, x) ∈ R+ × Ω ;

(iii) (u, ψ) ∈ C([0,+∞); H−1(Ω)× L2(Γ)) ∩ L2(0,T; H1(Ω)× H1(Γ)),
T > 0 ;

(iv) f (u) ∈ L1((0,T)× Ω), T > 0 ;

(v) (∂u
∂t ,

∂ψ
∂t ) ∈ L2(τ,T; H−1(Ω)× L2(Γ)), T > τ > 0 ;

(vi) < u(t) >=< u0 >, t ≥ 0 ;

(vii) the variational inequality (VI) is satisfied for a.e. t > 0 and every test
function v = v(x) s.t. v ∈ H1(Ω)⊗ H1(Γ), f (v) ∈ L1(Ω), < v >=< u0 >.

Remark : u(t)|Γ = ψ(t) only for t > 0



• A variational solution, if it exists is unique

• ∀(u0, ψ0) ∈ Φ, ∃ a variational solution and (un, ψn = un|Γ) converges (for a
subsequence) to a variational solution

• The variational solutions satisfy the a priori estimates mentioned earlier

• The variational solutions satisfy the smoothing and Lipschitz properties

• A variational solution does not necessarily solve the equations in the usual
sense :

It satisfies the bulk equation

It does not necessarily satisfy the dynamic boundary condition



Existence of classical solutions :

Related to the H2-regularity and the separation from the singularities of f0

Theorem : Let (u, ψ) be a variational solution and set, for δ > 0 and T > 0,

Ωδ(T) = {x ∈ Ω, |u(T, x)| < 1− δ}.

Then, u(T) ∈ H2(Ωδ(T)) and

‖u(T)‖H2(Ωδ(T)) ≤ Qδ,T ,

where Qδ,T is independent of u.



Consequence : if

|u(t, x)| < 1 a.e. (t, x) ∈ R+ × Γ

then u is a classical solution

→ The existence of classical solutions is related to the separation property on
the boundary

True if f0 has sufficiently strong singularities



Theorem : We assume that

lim
s→±1

F0(s) = +∞, F′0 = f0.

Then, the separation property on the boundary holds and a variational solution
is a classical one.

True if f0 behaves like s
(1−s2)p , p > 1

Not true for logarithmic potentials

In that case, we can have |u(t, x)| = 1 on a set with nonzero measure on the
boundary (possibly, on the whole boundary)

Theorem : We assume that

±g(±1) > 0.

Then, a variational solution is a classical one.



Existence of finite-dimensional attractors :

Conservation of the total mass (< u >) : we restrict ourselves to

Φm = {(u, ψ) ∈ Φ, < u >= m}, m ∈ (−1, 1)

Theorem : For every m ∈ (−1, 1), the semigroup S(t) acting on Φm possesses
the finite-dimensional global attractor Am (in H−1(Ω)× L2(Γ)) which is
bounded in Cα(Ω)× Cα(Γ), 0 < α < 1

4 .

Global attractor : unique compact set of Φm which is invariant
(S(t)Am = Am, t ≥ 0) and attracts all bounded sets of initial data

Suitable object in view of the study of the asymptotic behavior of the system
(smallest closed set enjoying the attraction property)

Finite dimensionality : the reduced dynamics can be described by a finite
number of parameters

Existence of the global attractor : follows from classical results



Finite-dimensionality : construction of an exponential attractor

Exponential attractor : compact and positively invariant
(S(t)Mm ⊂Mm, t ≥ 0) set which contains the global attractor and has finite
fractal dimension

We need some (asymptotically) compact smoothing property on the
difference of 2 solutions

We have

‖u1(t)− u2(t)‖2
Φw ≤ ce−βt‖u1(0)− u2(0)‖2

Φw+
c′

∫ t
0 ‖θ(u1(s)− u2(s))‖2

L2(Ω)
ds

β > 0, θ : smooth cut-off function

Φw = H−1(Ω)× L2(Γ)



→ Contraction, up to ‖θ(u1 − u2)‖L2(0,t;L2(Ω))

Compactness : We work on spaces of trajectories and use the compactness of

L2(0, t; H1(Ω)) ∩ H1(0, t; H−3(Ω)) ⊂
L2(0, t; L2(Ω))

We have

‖ ∂∂t [θ(u1 − u2)]‖2
L2(0,t;H−3(Ω))

+
‖θ(u1 − u2)‖2

L2(0,t;H1(Ω))
≤

cec′t‖u1(0)− u2(0)‖2
H−1(Ω)∩L2(Γ)

u1(0), u2(0) ∈ BH−1(Ω)∩L2(Γ)(u0, ε), ε > 0 small


