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Koiter’s energy

Koiter’s energy for thin, linearly elastic shells (transverse displacements)

K (η) =
1

2

∫
∂Ω\Γ

ε〈C , σ(η)⊗ σ(η)〉+
ε3

3
〈C , θ(η)⊗ θ(η)〉 dA

Shell elasticity tensor Cαβγδ = 4λµ
λ+2µgαβgγδ + 2µ(gαγgβδ + gαδgβγ)

Linearisations σ and θ at η = 0 of the

change of metric tensor Σαβ(η) = 1
2 (gαβ(η)− gαβ)

change of curvature tensor Θαβ(η) = hαβ(η)− hαβ

Taking into account inertia, the equations of motion take the form

Generalisation of the Kirchhoff-Love plate equation

ερS∂
2
t η + gradL2 K (η) = g in I × ∂Ω \ Γ.
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Coupled system

Equations of the coupled fluid-shell system

ρF (∂tu +∇uu) = div(2σDu− πid) + f in Ωη(t)

div u = 0 in Ωη(t)

ερS∂
2
t η + gradL2 K (η) = ((−2σDu + πid)νt) · ν + g in ∂Ω \ Γ

u = ∂tην on ∂Ωη(t) \ Γ

u = 0 on Γ

η = 0,∇η = 0 on ∂Γ

Some important results:
Beirão da Veiga (2004): Local existence of strong solutions in plate
case with added damping of the shell equation in 2d for small data
Chambolle, Desjardins, Esteban, Grandmont (2005): Global
existence of weak solutions in plate case with added damping
Grandmont (2008): Same without damping
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Energy estimates

Energy identity

1

2

d

dt

∫
Ωη(t)

|u|2 dx +
1

2

d

dt

∫
∂Ω\Γ

|∂tη|2 dA +
d

dt
K (η)

= −
∫

Ωη(t)

|∇u|2 dx +

∫
Ωη(t)

f · u dx +

∫
∂Ω\Γ

g ∂tη dA

By Gronwall’s lemma:

η ∈W 1,∞(I , L2(∂Ω \ Γ)) ∩ L∞(I ,H2
0 (∂Ω \ Γ))

u ∈ L∞(I , L2(Ωη(t))) ∩ L2(I ,H1(Ωη(t)))

Note: W 1,∞(L2) ∩ L∞(H2) ↪→ C 0,µ(C 0,1−2µ), 0 < µ < 1/2
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Strategy of proof

Basic strategy:

Decouple the equations from the moving domain

Apply the Galerkin method

Apply a fixed-point theorem of Schauder type (multi-valued)

Hard to prove compactness:

Low regularity of the domain

Hard to use difference quotients, impossible to use Aubin-Lions

No Bochner spaces

No substitute for Bochner spaces of dual space-valued functions

No concept of time-derivatives

Sequences of formal dual spaces

Idea: Give an elementary proof of Aubin-Lions theorem

Daniel Lengeler Global weak solutions for an incompressible, Newtonian fluid interacting with a linearly elastic shell



Coupled fluid-shell system
Strategy of proof

Strategy of proof

Basic strategy:

Decouple the equations from the moving domain

Apply the Galerkin method

Apply a fixed-point theorem of Schauder type (multi-valued)

Hard to prove compactness:

Low regularity of the domain

Hard to use difference quotients, impossible to use Aubin-Lions

No Bochner spaces

No substitute for Bochner spaces of dual space-valued functions

No concept of time-derivatives

Sequences of formal dual spaces

Idea: Give an elementary proof of Aubin-Lions theorem

Daniel Lengeler Global weak solutions for an incompressible, Newtonian fluid interacting with a linearly elastic shell



Coupled fluid-shell system
Strategy of proof

Strategy of proof

Basic strategy:

Decouple the equations from the moving domain

Apply the Galerkin method

Apply a fixed-point theorem of Schauder type (multi-valued)

Hard to prove compactness:

Low regularity of the domain

Hard to use difference quotients, impossible to use Aubin-Lions

No Bochner spaces

No substitute for Bochner spaces of dual space-valued functions

No concept of time-derivatives

Sequences of formal dual spaces

Idea: Give an elementary proof of Aubin-Lions theorem

Daniel Lengeler Global weak solutions for an incompressible, Newtonian fluid interacting with a linearly elastic shell



Coupled fluid-shell system
Strategy of proof

Compactness

Let (un) ⊂ L2(I ,H1
0 (Ω)) ∩ L∞(I , L2(Ω)) be a bounded sequence of weak

solutions of the heat equation.

1 Choose ϕ ∈ H1
0 (Ω) as a test function:

t∫
0

∫
Ω

∇un·∇ϕ dxdt =

∫
Ω

un(t) ϕ dx−
∫
Ω

un(0) ϕ dx =: cϕ,n(t)−cϕ,n(0)

⇒ (cϕ,n) is bounded in C 0, 1
2 (Ī ), uniformly in n and ‖ϕ‖H1

0 (Ω) ≤ 1

2 un(t)→ u(t) strongly in H−1(Ω) for t from dense subset
⇒ cϕ,n(t)→ cϕ(t) for the same t, independently of ‖ϕ‖H1

0 (Ω) ≤ 1

3 Arz-Asc argument: cϕ,n → cϕ uniformly, independ. of ‖ϕ‖H1
0 (Ω) ≤ 1.

4 Ehrling lemma argument:

sup
‖ϕ‖L2(Ω)≤1

∫
I

(cϕ,n−cϕ) dt ≤ ε ‖un−u‖L2(I ,H1
0 (Ω))+c(ε) sup

‖ϕ‖
H1

0
(Ω)
≤1

∫
I

(cϕ,n−cϕ) dt.

We conclude: un → u in L2(I , L2(Ω)).
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Thank you for your attention!
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