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Coupled fluid-shell system

Koiter's energy

Koiter's energy for thin, linearly elastic shells (transverse displacements)

63
K =5 [ elCoatn)®olm) + (C.0n) © 6(x)) dA
AO\T

Shell elasticity tensor Cogys = %gaggws + 211(8a~ 8835 + 8as8~)
Linearisations o and 6 at n = 0 of the

e change of metric tensor La3(n) = 1(gas(n) — &ap)

@ change of curvature tensor ©,5(n) = hap(n) — hag
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Koiter's energy

Koiter's energy for thin, linearly elastic shells (transverse displacements)
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Shell elasticity tensor Copys = %gaggw +211(8ar8B5 + 8a586)
Linearisations o and 6 at n = 0 of the

e change of metric tensor La3(n) = 1(gas(n) — &ap)
@ change of curvature tensor ©,5(n) = hap(n) — hag

Taking into account inertia, the equations of motion take the form

Generalisation of the Kirchhoff-Love plate equation

epsd?n +grad;. K(n) =g in | x 0Q\ T.
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Coupled fluid-shell system
Coupled system

Equations of the coupled fluid-shell system

pr(0wu + Vyu) = div(20Du — 7id) + f in Q)
divu=0 in Qn(t)
epsdZn +grad;. K(n) = ((—20Du + wid)v,) - v+ g in 0Q\T

u=0mr on 0y \T
u=0 on [
n=0,Vn=20 on oI
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Some important results:

Beirao da Veiga (2004): Local existence of strong solutions in plate
case with added damping of the shell equation in 2d for small data
Chambolle, Desjardins, Esteban, Grandmont (2005): Global
existence of weak solutions in plate case with added damping
Grandmont (2008): Same without damping
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Coupled fluid-shell system

Energy estimates

Energy identity

d
2 - 2 el
th / Jul d + /\am\ dA+ — K(n)

Q) BQ\F

/|Vu|2dx+/f udx—i—/g@tndA

Q1) OO\l
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Coupled fluid-shell system
Energy estimates

Energy identity

d
2 - 2 el
th /I [ dx + /\am\ dA+ — K(n)

Q) BQ\F

—/|Vu|2dx+/f-udx+/g8mdA
() ()

OQ\F

By Gronwall's lemma:

n eWh (1, L2(0Q\ T)) N L>®(1, H3(0Q \ T)
uc Loo(lv L2(Qn(t))) N L2(I7 Hl(Qn(t)))

Note: Whoe(L2) N L>®(H?) — COr(CO1=21), 0 < p < 1/2
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Strategy of proof

Strategy of proof

Basic strategy:
@ Decouple the equations from the moving domain
@ Apply the Galerkin method
o Apply a fixed-point theorem of Schauder type (multi-valued)
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Strategy of proof

Strategy of proof

Basic strategy:
@ Decouple the equations from the moving domain
@ Apply the Galerkin method
o Apply a fixed-point theorem of Schauder type (multi-valued)

Hard to prove compactness:

@ Low regularity of the domain

@ Hard to use difference quotients, impossible to use Aubin-Lions
No Bochner spaces
No substitute for Bochner spaces of dual space-valued functions
No concept of time-derivatives

Sequences of formal dual spaces
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Strategy of proof

Basic strategy:
@ Decouple the equations from the moving domain
@ Apply the Galerkin method
o Apply a fixed-point theorem of Schauder type (multi-valued)

Hard to prove compactness:
@ Low regularity of the domain
@ Hard to use difference quotients, impossible to use Aubin-Lions
@ No Bochner spaces
@ No substitute for Bochner spaces of dual space-valued functions
@ No concept of time-derivatives

@ Sequences of formal dual spaces

Idea: Give an elementary proof of Aubin-Lions theorem
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Strategy of proof

Compactness

Let (uy) C L2(1, H3(Q)) N L°°(1, L?(Q2)) be a bounded sequence of weak
solutions of the heat equation.
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Strategy of proof
Compactness

Let (uy) C L2(1, H3(Q)) N L°°(1, L?(Q2)) be a bounded sequence of weak
solutions of the heat equation.

@ Choose ¢ € H}(2) as a test function:

t

//wn-w dxdt — /un(t)godx—/ un(0) @ dx = Cy.n(t)—Cpn(0)
Q Q

0 Q

= (¢yp,n) is bounded in C%z(7), uniformly in n and lellmp@) =1
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//wn-w dxdt — /un(t)godx—/ un(0) @ dx = Cy.n(t)—Cpn(0)
Q Q

0 Q

= (¢yp,n) is bounded in C%z(7), uniformly in n and lellmp@) =1

Q un(t) — u(t) strongly in H1(Q) for t from dense subset
= Cp,n(t) — c,(t) for the same t, independently of [[¢[|yyq) < 1
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Compactness

Let (uy) C L2(1, H3(Q)) N L°°(1, L?(Q2)) be a bounded sequence of weak
solutions of the heat equation.
@ Choose ¢ € H}(2) as a test function:
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© Arz-Asc argument: ¢,, — €, uniformly, independ. of [|¢[| ) < 1.
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sup [ (o) dt < clun—ull ey te@ s [(oncy)

HS"”LZ(Q)SI | HSOHH%(Q)S]- ]
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© Arz-Asc argument: ¢,, — €, uniformly, independ. of [|¢[| ) < 1.
@ Ehrling lemma argument:

sup [ (o) dt < clun—ull ey te@ s [(oncy)

HS"”LZ(Q)SI | HSOHH%(Q)S]- ]

We conclude: u, — u in L2(1,L%(R)).

Daniel Lengeler Global weak solutions for an incompressible, Newtonian fluid interacting with




Strategy of proof

Thank you for your attention!
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