# A two scale model for liquid phase epitaxy with elasticity

Ch. Eck, M. Kutter, Ch. Rohde, A.-M. Sändig

Institute of Applied Analysis and Numerical Simulation University of Stuttgart

 International Conference on Free Boundary Problems Theory and Applications

Chiemsee, June 11-15, 2012

# Liquid phase epitaxy



- Molecules are solved in the liquid solution
- Epitaxial layer grows on a substrate
- Elastic deformations in the layer

## Two scale model [Eck/Emmerich]:

| In the liquid | On the surface            | In the layer    |
|---------------|---------------------------|-----------------|
| convection    | adsorption/desorption     | elastic effects |
| diffusion     | surface diffusion         |                 |
|               | incorporation of moleculs |                 |

## Phase field approximation

The phase field  $\phi$  represents the number of monomolecular layers over a point on  $S_0$ .



## Phase field approximation

The phase field  $\phi$  represents the number of monomolecular layers over a point on  $S_0$ .



### Two scale formulation



#### Macro:

Transport in the liquid

#### Micro:

- Transport in the liquid
- Evolution of the interface
- Elastic effects

# Microscopic Equations I

For the phase field  $\phi$  and the surface concentration  $c^S$ :

$$\alpha \xi^{2} \partial_{t} \phi - \xi^{2} \Delta_{y} \phi + f'(\phi) + q(c^{S}, u, \phi) = 0,$$

$$\partial_{t} c^{S} + \varrho_{S} h_{A} \partial_{t} \phi - D_{S} \Delta_{y} c^{S} = \frac{C^{V}}{\tau_{V}} - \frac{c^{S}}{\tau_{S}}, \quad \text{in } Y,$$

#### where

- Y: 2D-periodicity cell,
- f: multi-well potential with minima at integer values,
- $C^V$ : volume concentration of molecules in the liquid,
- u: mechanical displacement field in the layer,
- q: surface energy density on the interface.
  - + periodic boundary conditions,
  - + initial conditions.

# Microscopic Equations II

For the fluid velocity v and pressure p:

$$\begin{split} \operatorname{div}_y v &= 0, \quad \text{in } Q_I, \\ -\eta \Delta_y v + \nabla_y p &= 0, \quad \text{in } Q_I, \\ v &= -J_S^{-1} \big( \frac{1}{\varrho_V} - \frac{1}{\varrho_E} \big) \big( \frac{c^V}{\tau_V} - \frac{c^S}{\tau_S} \big) \mathbf{e}_3 \quad \text{on } \Gamma, \\ \text{matching condition for } y_3 &\to \infty. \end{split}$$

For the displacement field u:

$$\begin{split} -\operatorname{div}_y \sigma_y(u) &= 0, \quad \text{in } Q_s. \\ u &= b, \quad \text{on } \overline{\Gamma}, \\ (\sigma_y(u) + \eta(\nabla_y v + (\nabla_y v)^\top) - p\mathbf{I})\overrightarrow{n} &= 0, \quad \text{on } \Gamma, \end{split}$$

where 
$$\sigma_y(u) = \mathbf{c}e_y(u)$$
,  $e_y(u) = \frac{1}{2}(\nabla u + (\nabla u)^\top)$ .

+ periodic boundary conditions for  $y_1, y_2$ .



# Macroscopic Equations

For the fluid velocity V, pressure P and the volume concentration  $C^V$ :

$$\begin{aligned} \operatorname{div}_{x} V &= 0, \\ \partial_{t} V + (V \cdot \nabla_{x}) V - \eta \Delta_{x} V + \nabla_{x} P &= 0, \\ \partial_{t} C^{V} + V \cdot \nabla_{x} C^{V} - D_{V} \Delta_{x} C^{V} &= 0. \end{aligned}$$

Coupling conditions to the microscopic problems:

$$D_V \partial_{x_3} C^V|_{x_3=0} = \left(\frac{C^V}{\tau_V} - \frac{\bar{c}^S}{\tau_S}\right),$$
 on  $S_0$ .  
 $V = 0,$ 

(+ initial conditions and boundary conditions on the rest of the boundary.)

Here, 
$$\bar{c}^S(t,x) = \int_V c^S(t,x,y) dy$$
.

The Navier-Stokes equations decouple from the other equations.

# Solvability of the single models

Consider the coupling data as given. Then each single problem has a unique solution:

| Problem              | Coupling data                       | Unknowns                                |
|----------------------|-------------------------------------|-----------------------------------------|
| Stokes               | $\phi \in C^2(\bar{Y})$             | $v \in W^{2,r}_{\mathrm{loc}}(Q_I)$     |
|                      | $c^S \in W^{2-1/r,r}(Y)$            | $p \in W^{1,r}_{\mathrm{loc}}(Q_I)$     |
| Elasticity           | $v \in W^{2,r}_{\mathrm{loc}}(Q_I)$ |                                         |
|                      | $p \in W^{1,r}_{\mathrm{loc}}(Q_I)$ | $u \in W^{2,r}(Q_s)$                    |
|                      | $\phi \in C^2(ar{Y})$               |                                         |
| Phase field          | $u \in W^{2,r}(Y)$                  | $\phi \in L^2(I, W^{3-1/r, r/2}(Y))$    |
|                      | $C^V \in L^2(I)$                    | $c^{S} \in L^{2}(I, W^{3-1/r, r/2}(Y))$ |
| Convection-diffusion | $\bar{c}^S \in L^2(I \times S_0)$   | $C^V \in L^2(I, H^1(Q))$                |

with r > 5.

## Future work

## Fixed point approach

## Microscopic coupling:



## Future work

## Fixed point approach

## Microscopic coupling:



Phase field model

## Micro-macro coupling:





Convection-diffusion equation

## Conclusion and Outlook

#### Conclusion:

- Two scale model for liquid phase epitaxy with elasticity,
- Analytical results.

#### Outlook:

- Solvability of the fully coupled problem,
- Justification of the two scale approach.

Thank you for your attention.

**DFG** Support of the German Research Foundation is gratefully acknowledged.