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Motivation

Phase transitions

(-) Destroy material properties

(+) Possibility to design materials

Example: Final heat treatment in the production of GaAs (Dreyer, Duderstadt ’08)

I Unwanted droplets precipitate

I Large droplets grow, small droplets shrink

I Goal: Control resulting droplet distribution by temperature

Example: Ageing of polymers (Lion, Johlitz 2012)

I Thermooxidative processes enhance decomposition of polymer chains

I Cross-linking processes in the polymer network

I Goal: Control resulting fraction of intact polymer by injection of ageing inhibition
chemicals
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Models for phase transitions - Hierarchy

Models for phase transitions

Continuum models
Atomic models

-
- Becker-Döring

Phase field (/Diffuse-interface) models
- Allen-Cahn

- Cahn-Hilliard

Sharp-interface models
- Mullins-Sekerka, vol.-diffusion/interf.-

reaction regime, conserv. total mass/volume

Macroscopic models

- (in)homogeneous Lifshitz-Slyozov(-Wagner), volume-diffusion regime

- (in)homogeneous Lifshitz-Slyozov(-Wagner), interface-reaction regime

?

Sharp-
interface

limit

?

Homogenization limit

?

Homogenization limit
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Models for phase transitions - with control

Models for phase transitions

Continuum models
Atomic models

-
- Becker-Döring

Phase field (/Diffuse-interface) models
- Allen-Cahn (Farshbaf-Shaker)

- Cahn-Hilliard (Hintermüller & Wegner)

Sharp-interface models
- Mullins-Sekerka, vol.-diffusion/interf.-

reaction regime, conserv. total mass/volume

Macroscopic models

- generalized homog. Lifshitz-Slyozov-Wagner, vol.-diffusion regime (K.)

- (in)homogeneous Lifshitz-Slyozov(-Wagner), interf.-reaction regime, ...
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LSW model with mechanics

(Dis-)Advantages of models:

I Phase-field models: numerically suitable, arbitrary topologies, but articifially
smeared out interface

I Sharp-interface models: caption spatial structure, but topological restrictions, high
computational costs

I Macroscopic models: comprise efficient & important effects, low
computational costs, but no spatial structure

LSW model, generalized with mechanics (K. 2009)

I Surface tension AND bulk stresses

I Microstructure of the solid crystal

I Minimal droplet volume Vmin > 0

I Realistic model, not restricted to GaAs

I Derived from thermodynamical principles,→ clear how to control physically
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Optimal control problem - LSW - Cost function

Find states (droplet volume distribution & “mean field volume”)

νt (V ) ∈ C0
weak ([t0, tf ]; (C0

0 (0,∞))∗), V (t) ∈ C0([t0, tf ]; R),

an initial control parameter (total mass) u0 ∈ R+,
and a control (temperature difference)

u1(t) ∈ L∞([t0, tf ]; R+),

s.t. the

Cost function

J(νtf , u1) =
α0

2
‖u1‖2

L2(t0,tf )
+ α1

∫ ∞
Vmin

dνtf (V ) + α2

∫ ∞
Vmin

V dνtf (V )

+
α3

2

∫ ∞
Vmin

∣∣∣∣∣V
∫ ∞

Vmin

dνtf (S)−
∫ ∞

Vmin

S dνtf (S)

∣∣∣∣∣
2

dνtf (V )

where αk ≥ 0, 0 ≤ k ≤ 3 and
∑

k αk > 0,

is minimized under the following constraints:
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Opt. control pb. - LSW - PDAE system (Vol.-diff.-controlled regime)

LSW equation (Balance of mass/substance at interfaces)

∂tνt (V ) + a(V , V , u1) ∂Vνt (V ) = 0 in (Vmin,∞), a.e. in [t0, tf ],

with a(V , V , u1) = V 1/3µI(V , u1)− µI(V , u1)

X(V , u1)

Small droplets dissolve νt (V ) = 0 in [0, Vmin], in [t0, tf ],

Initial condition

ν(t0, V ) = ν0(V ) in [0,∞).

Algebraic equation (AE) (Global conservation of mass/substance)

V (t) = ζ

(
u0 −

∫∞
Vmin

ρL(V , u1) V dνt (V )

X0u0 −
∫∞

Vmin
ηL(V , u1) V dνt (V )

, u1

)
in [t0, tf ],
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Optimal control problem - LSW - Constraints

Pure state constraints

a) νt (V ) ≥ 0 ∀V ∈ [0,∞) ∀t ∈ [t0, tf ],

b) V (t) ≥ 0 ∀t ∈ [t0, tf ],

Box constraints for the controls

umin,0 ≤ u0 ≤ umax,0,

umin,1 ≤ u1(t) ≤ umax,1 ∀t ∈ [t0, tf ],

where 0 < umin,j < umax,j <∞, j = 0, 1.

↪→ Optimal control problem with measure-valued partial differential algebraic equation
with switch from PDE to algebraic equation (K. 2012)
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Assumptions / Other regime

Assumptions:

I X(V , u1) strictly positive function, smooth, monotone decreasing in V

I Chemical potential of a precipitate µI(V , u1), smooth, strictly monotone decr. in V

I ζ nonlinear, smooth, strictly monotone function

AE for V has index 1

I Total mass density in the liquid ρL(V , u1), smooth, strictly monotone decr. in V

I Arsenic mass density ηL(V , u1), smooth, strictly monotone decreasing in V

Interface-reaction-controlled regime:

I Different type of Stefan condition enters LSW eq.,∝ V 4/3
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Ageing of polymers

Let Ω ⊂ R3 open, bounded. Find states (polymer fractions & oxygen concentration &
mechanical displacement)

{pk}, c ∈ C1([t0, tf ]; R+), U ∈ C1([t0, tf ]; W 1,∞(Ω; R3))

and a control (concentration of injected chemicals)

u(t) ∈ L∞([t0, tf ]; R+),

s.t. a suitable cost functional J is minimized under the following constraints:

ṗ = f (p, c,U, u) a.e. in [t0, tf ],

ċ −∇ · (µ(c)∇c) = g(p, c,∇c,U, u) in Ω, a.e. in [t0, tf ],

∇ · S(U) = h(p, c,U,∇U, u) in Ω, a.e. in [t0, tf ],

+ algebraic equations for p (conservation of mass, 0 ≤ pk ≤ 1)
+ initial conditions on p, c + boundary conditions on U, c
+ constraints on the states & the control .
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Optimal control problem - How to solve it?

Optimal control problem

Direct methods –
First discretize then optimize (FDTO)

Indirect methods –
First optimize then discretize (FOTD)

Optimality system
(KKT conditions)

Characteristics:
Mean field model

Finite volume
methods

Sensitivity
approach

Adjoint
approach

Sensitivity
approach

Adjoint
approach

NumericsAnalysis Analysis

Same result ?

Analysis
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First discretize then optimize (FOTD)

Special initial condition: start withN0 distinct volumes V 0
i

ν0(V ) =
1
N0

N0∑
i=1

δV 0
i

(V ),

↪→ Solve PDAE forN0 characteristics:

Mean field model, (without control Dreyer & K. 2009)

N (t) number of droplets at time t with V > Vmin

tj first time when Vj ≤ Vmin, otherwise tj =∞

Keep record of dissolved droplets s.t. number of states doesn’t change with time
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Optimal control problem for mean field model

Find states Vi (t), 1 ≤ i ≤ N0, V (t) ∈ C0([t0, tf ]; R),

an initial control parameter u0 ∈ R+,
and a control u1(t) ∈ L∞([t0, tf ]; R+),

s.t. the cost functional J is minimized under the following constraints:

Mean field model - Droplet evolution

∂t Vi (t) = a(V , Vi , u1) in [t0, tf ] \ ∪1≤j≤N0
{tj},

Vi (t+) = Vi (t−) in
(
∪1≤j≤N0

{tj}
)
∩ [t0, tf ],

for Vi > Vmin,

Vi (t) = 0 in [t0, tf ], otherwise

Initial conditon

Vi (t0) = V 0
i ∀1 ≤ i ≤ N0,
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Optimal control problem for mean field model (continued)

Mean field model - Conservation of mass/substance

V (t) = ζ

 u0 − 1
N0

∑N
i=1 ρL(Vi , u1) Vi

X0u0 − 1
N0

∑N
i=1 ηL(Vi , u1) Vi

, u1

 ∀t ∈ [t0, tf ]

Pure state constraints

{Vi (t)}1≤i≤N0
, V (t) ≥ 0 ∀t ∈ [t0, tf ]

Box constraints for the controls

as above

Solvable under reasonable assumptions (on X, µI , ζ, ρL, ηL, umin,0/1, umax,0/1)
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Numerical methods

1) Sensitivity-based approach, suitable for few variables & many constraints
2) Adjoint-based approach, suitable for many variables & few constraints

Implementation in OCODE 1.5 (OCPID-DAE) (Gerdts 2010)

The algebr. equation (AE) for V or the AE Vi = 0 for Vi < Vmin have index 1:

I replace it by ODE & suitable initial condition
I At times tj use AE to determine V (tj +) or Vi (tj +) = 0.

Methods:
(i) Replace AE for V and Vi < Vmin, use Runge-Kutta with fixed, suff. small time step
(ii) Using DSRTSE (DASSL)

a) Keeping both AE
b) Replace only AE for Vi < Vmin

c) Replace only AE for V

Feasibility:
I (i) & (ii)b): Reliable at switching points
I (i): For high accuracy time steps might be very small
I (ii): Problems with large time steps−→ Slow

15



Optimal Control of Macroscopic Models for Phase Transitions
Sven-Joachim Kimmerle

Theoretical results with sensitivity approach - Algorithm (ii) b)

Sensitivities Slm = (Vl )
′
um , l = 0, ...,N0,m = 0, 1, where V0 := V

W.l.o.g. V1 < V2 < ... < Vi < ... < VN0 .

Sensitivity ODEs - V as algebraic variable

S0·(t0) = (V 0)′u, Si·(t0) = 0, 1 ≤ i ≤ N0

S0·(t) =

N (t)∑
k=1

ζ
′
Vk

({Vi}, u)Sk·(t) + ζ′u({Vi}, u)

Ṡi·(t) = a′V (V , Vi , u1)S0·(t) + a′Vi
(V , Vi , u1)Si·(t) + (0, a′u1

(V , Vi , u1)), 1 ≤ i ≤ N (t)

Update of Sensitivities:

Si·(tj +) =
a(V , Vi , u1)[tj +]− a(V , Vi , u1)[tj−]

a(V , Vj , u1)[tj−]
Sj·(tj−) + Si·(tj−), 1 ≤ i < N (tj−) = j

Si·(t) = 0, ∀t ≥ ti +

Now discretize also time

Standard result for discretized DAE system applicable for typical data
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Numerical results with sensitivity approach - Algorithm (i)

Radii ri = (3/(4π)Vi )
1/3, initially 50 (yellow), 220 (cyan), 320 (magenta), 520 (blue), 590 (green),

“Mean field radius” (red), in [10−9 m] vs. time [1 s]. Top left: long-time behaviour (up to 1500 s). Top
right: short-time behaviour (up to 150 s). Bottom left: Control by temperature [102 K] vs. time [1 s].
Bottom right: Volume fraction 1/N0

∑N0
i=1 Vi (t) [10−18 m3]. α2 = 1, αj = 0, j 6= 2. (K. 2012).
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Theoretical results with adjoint approach - Case (i)

Theorem: Existence of adjoints / multiplicators; Necessary opt. cond.
W.l.o.g. α0 = α2 = 1, α1 = α3 = 0. Let (V , {V̂i}, û) ∈ W 1,∞([t0, tf ],RN0+1)
×R× L∞([t0, tf ],R) a (weak) local minimum of the mean field control problem. Let tf
s.t.Ntf = const . Further u ∈ U , closed, convex, with int(U) 6= ∅ and ξ = d

dt ζ.

Then there exist l0 ∈ R+, λ ∈ BV ([t0, tf ],RN0+1), µ ∈ NBV ([t0, tf ],RN0 ), s.t.

(1) (l0, λ, µ) 6= 0

(2) λ̇2 = −λ2ξ
′
V

(V̂ , {V̂i}, û)−
∑N0+2

i=3 λi a′V (V̂ , V̂i , û1), λi diff. a.e. in [t0, tf ] with

λ̇i = −λ2ξ
′
Vi

(V̂ , {V̂i}, û)− λi a′Vi
(V̂ , V̂i , û1) + µ̇i (3 ≤ i ≤ N0 + 2)

(3) λ2 cont. in tj , 1 ≤ j ≤ N0, λi (tj +)− λi (tj−) = µi (tj +)− µi (tj−)

(4) λ2(tf ) = 0, λi (tf ) = l0
N0

(5) (λ2ξ
′
u0

(V̂ , {V̂i}, û), l0û1 + λ2ξ
′
u1

(V̂ , {V̂i}, û) +
∑

i λi a′u1
(V̂ , V̂i , û1)) · (u− û) ≥

0 ∀u ∈ U
(6) µi strictly monotone increasing s.t. µ = const on (ti , tf )

Remarks to the proof: Consider H = l0
2 u2

1 + λ2ξ(V , {Vi}, u) +
∑N0+2

i=3 λi a(V , Vi , u1);
Apply Fritz-John conditions (KKT conditions - Regularity criterion fulfilled ?)
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Numerical results with adjoint approach - Algorithm (i)

Top left: State (as radius) r4 = (3/(4π)V4)1/3, initially 520, in [10−9 m] vs. time [1 s], with
corresponding adjoint λ4 (bottom left), in [m−1], and multiplier µ4 (top right), in [1]. Bottom right:
Adjoint corresponding to “mean field radius”, in [m−1]. Plots calculated a posteriori.

19



Optimal Control of Macroscopic Models for Phase Transitions
Sven-Joachim Kimmerle

Numerical results - Conclusions

Initial control parameter: u0 = umin,0

Control u1 of bang-bang type

Control u1 enters mainly in X

Different terms in J:

I α1-term: Depends on α2-term

I α2-term: Makes most sense to control

I α3-term: No impact for large tf

(since Vi = V unstable stationary point)

Adjoint-based approach: Non-trivial switching conditions for adjoints
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First optimize then discretize (FOTD)

Well-posedness for classical LSW equation without control (Niethammer, Pego 2000) :

Existence, Uniqueness & Continuous dependence on initial data ν0; No shocks

Assumption: Control-to-state operator

R+×L∞([t0, tf ]; R+) 3 u 7→ y := (νt , V ) ∈ C0
weak ([t0, tf ]; C0

0 (0,∞)∗)×C0([t0, tf ]; R)

is well-defined and Fréchet differentiable

Consider reduced problem for u

Adjoint-based approach, suitable for many variables & few constraints

21



Optimal Control of Macroscopic Models for Phase Transitions
Sven-Joachim Kimmerle

First optimize then discretize (FOTD)

Well-posedness for classical LSW equation without control (Niethammer, Pego 2000) :

Existence, Uniqueness & Continuous dependence on initial data ν0; No shocks

Assumption: Control-to-state operator

R+×L∞([t0, tf ]; R+) 3 u 7→ y := (νt , V ) ∈ C0
weak ([t0, tf ]; C0

0 (0,∞)∗)×C0([t0, tf ]; R)

is well-defined and Fréchet differentiable
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Adjoint-based approach

Let α0 = α2 = 0, α1 = α3 = 1. Replace here AE for V by ODE:

Expect λ ∈ (C0
weak ([t0, tf ]; C0

0 (0,∞)∗))∗ × rca([t0, tf ]; R+).

But

∂tλ1(t, V ) + ∂V

(
a(V (u), V , u1)λ1(t, V )

)
= 0 in (Vmin,∞), a.e. in [t0, tf ],

λ1(tf , ·) ≡ 0

yields λ1 ∈ C0([0, tf ]; L1(R)) ∩ L∞([0, tf ]× R).

Besides

∂tλ2(t, V ) + ξ′
V

(V (u), νt (·; u), u)λ2(t, V ))

= −∂V

(
a′

V
(V (u), V , u1)λ1(t, V )

)
νt (V ; u) in (Vmin,∞), a.e. in [t0, tf ],

λ2(tf , ·) ≡ 0.

Work in progress ...
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Summary

Optimal control problem

Direct methods –
First discretize then optimize (FDTO)

Indirect methods –
First optimize then discretize (FOTD)

Optimality system
(KKT conditions)

Characteristics:
Mean field model

Finite volume
methods

Sensitivity
approach

Adjoint
approach

Sensitivity
approach

Adjoint
approach

NumericsAnalysis AnalysisAnalysis

I Optimal control problem for (generalized) LSW as PDAE
I FDTO - Mean field model: Well-posed optimization problem; Numerical solution; Considered

different contributions to cost function
I FOTD - Adjoint LSW problem
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Outlook

Open questions:
I FDTO

I Mean field model: Optimal solution depends onNtf
I More efficient algorithms for long-time behaviour, finite volume discretization

I FOTD
I Continue analysis ...
I Sensitivity-based approach feasible ?

I First optimize then discretize (FOTD) vs. first discretize then optimize (FDTO)

Similar situations in:
I Traffic flow (Colombo, Herty, Mercier 2011),
I Highly re-entrant manufacturing systems (Coron, Kawski, Wang 2010),
I Aerospace dynamics / Gas dynamics
I ...
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