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The biological context

We consider a cross-diffusion system which describes a simplified
model for contact inhibition of growth of two cell populations. In one
space dimension it is known that the solutions satisfy a segregation
property: if two populations initially have disjoint habitats, this property
remains true at all later times.

Our purpose today : Extend this result to higher space dimension.
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Proliferation of cells
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Proliferation of cancer cells
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Contact inhibition
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The model equations

This tumor growth model has been proposed by Chaplain, Graziano
and Preziosi

{
nt = div(n∇V (N)) + Gn(N)n in RN × R+

at = div(a∇V (N)) + Ga(N)a in RN × R+

n: density of normal cells;
a: density of abnormal cells;
N: total density of cells;
V: monotone increasing function;
Gn: growth rate of normal cells;
Ga: growth rate of abnormal cells.
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The model studied by Bertsch, Dal Passo and Mimura

Bertsch, Dal Passo and Mimura have proved the existence of a
segregated solution of the system{

ut = div(u∇χ(u + v)) + u(1− u − αv)

vt = D div(v∇χ(u + v)) + γv(1− βu − v/k)

u: density of normal cells;
v: density of abnormal cells;
the function χ is a monotone increasing function;
D, α, β, γ are positive constants.

in the one dimensional case. The growth terms are Lotka-Volterra
competition terms.

FBP 2012 - Frauenchiemsee (June 15, 2012) On a tumour-growth model 7 / 36



The model studied by Bertsch, Dal Passo and Mimura

Bertsch, Dal Passo and Mimura have proved the existence of a
segregated solution of the system{

ut = div(u∇χ(u + v)) + u(1− u − αv)

vt = D div(v∇χ(u + v)) + γv(1− βu − v/k)

u: density of normal cells;
v: density of abnormal cells;
the function χ is a monotone increasing function;
D, α, β, γ are positive constants.

in the one dimensional case. The growth terms are Lotka-Volterra
competition terms.

FBP 2012 - Frauenchiemsee (June 15, 2012) On a tumour-growth model 7 / 36



The model studied by Bertsch, Dal Passo and Mimura

Bertsch, Dal Passo and Mimura have proved the existence of a
segregated solution of the system{

ut = div(u∇χ(u + v)) + u(1− u − αv)

vt = D div(v∇χ(u + v)) + γv(1− βu − v/k)

u: density of normal cells;
v: density of abnormal cells;
the function χ is a monotone increasing function;
D, α, β, γ are positive constants.

in the one dimensional case. The growth terms are Lotka-Volterra
competition terms.

FBP 2012 - Frauenchiemsee (June 15, 2012) On a tumour-growth model 7 / 36



The model studied by Bertsch, Dal Passo and Mimura

Bertsch, Dal Passo and Mimura have proved the existence of a
segregated solution of the system{

ut = div(u∇χ(u + v)) + u(1− u − αv)

vt = D div(v∇χ(u + v)) + γv(1− βu − v/k)

u: density of normal cells;
v: density of abnormal cells;
the function χ is a monotone increasing function;
D, α, β, γ are positive constants.

in the one dimensional case. The growth terms are Lotka-Volterra
competition terms.

FBP 2012 - Frauenchiemsee (June 15, 2012) On a tumour-growth model 7 / 36



The Bertsch, Dal Passo and Mimura result

More precisely, Bertsch, Dal Passo and Mimura have proved the
existence of a segregated solution of the system

ut = (u(χ(u + v))x )x + u(1− u − αv) − L < x < L, t > 0
vt = D (v(χ(u + v))x )x + γv(1− βu − v/k) − L < x < L, t > 0
u(χ(u + v))x ) = v(χ(u + v))x = 0 x = −L,L, t > 0
u(x ,0) = u0(x), v(x ,0) = v0(x),−L < x < L.

The habitats of the two cell populations remain disjoint. Mathematically
we express this property as follows
If u0v0 = 0, then u(t)v(t) = 0 for all t > 0.

This system has the form of a nonlinear cross-diffusion system.
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The nonlinear cross-diffusion system

We suppose that χ = Id and D = 1{
ut = 1

24u2 + u4v +∇u.∇v + u(1− u − αv),

vt = D
24v2 + D v4u + D ∇u.∇v + γv(1− βu − v/k),

so that it is a hard system. This motivated Bertsch et al to look for
other unknown functions. One of them is quite natural. We set

w = u + v , w0 := u0 + v0

and suppose that

u0 ≥ 0, v0 ≥ 0,w0 ≥ B0 > 0.

Maximum principle type arguments successively tell that

u(t) ≥ 0, v(t) ≥ 0,w(t) ≥ B1 > 0 for all t > 0.
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Regularity considerations

The equation for w has the form of a nonlinear diffusion equation

wt = div(w∇w) + wF(u, v ,w).

This equation is uniformly parabolic since w is bounded away from
zero, and therefore w is smooth. But now, suppose that u and v have
disjoint supports. Then both u and v have to be discontinuous across
the interface between their supports.

We are searching for discontinuous solutions u and v of the original
system. This makes our problem very hard.
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A typical (u,v,w) profile
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Disjoint supports
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Overlapping supports

FBP 2012 - Frauenchiemsee (June 15, 2012) On a tumour-growth model 13 / 36



New set of unknown functions

We set
w := u + v , r :=

u
u + v

and remark that in the case of disjoint supports, r can only take the
values 0 and 1, and that

uv = 0 is equivalent to r(1− r) = 0.

The system for w and r is given by
wt = div(w∇w) + wF (r ,w) in RN × R+

rt = ∇w · ∇r + r(1− r)G(r ,w) in RN × R+

w(x ,0) = w0(x) and r(x ,0) = r0(x) for x ∈ RN ,

where

F (r ,w) := r(1− rw − α(1− r)w) + γ(1− r)(1− βrw − (1− r)w/k)

G(r ,w) := (1− rw − α(1− r)w)− γ(1− βrw − (1− r)w/k).
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Regularity again

We deal with a coupled system with a parabolic equation for w coupled
to a transport equation for r . Now what can we expect for regularity?
First consider the equation for w ; applying again the maximum
principle, we will have that w is bounded from below by a positive
constant whereas 0 ≤ r ≤ 1. Therefore we can apply a very handy
result of the book of Lieberman; this result is based upon regularity
considerations such as in the elliptic articles of Agmon, Douglis, and
Nirenberg. We obtain that w is bounded in

W 2,1
p (BL × (0,T )) and in C1+µ,(1+µ)/2(BL × [0,T ]),

for all positive constants L, where BL ⊂ RN is the ball of radius L. In
particular

∇w ∈ Cµ,µ/2(BL × [0,T ]).
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The function r

We recall that it satisfies the first order hyperbolic equation

rt = ∇w · ∇r + r(1− r)G(r ,w) in RN × R+

so that in particular
0 ≤ r ≤ 1.

A possibility is to first solve the equations for the characteristics{
Xt (y , t) = −∇w(X (y , t), t) for t > 0
X (y ,0) = y for y in RN

and then solve for R(y , t) = r(X (y , t), t) along the characteristics:{
Rt = R(1− R)G(R,w(X (y , t), t)) in RN × R+,

R(·,0) = r0 in RN .
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A regularity problem

However, since ∇w is not Lipschitz continuous, but only Hölder
continuous, the characteristics are not well-defined in the classical
sense. This is why we work with a recent concept of characteristics
developed by DiPerna and Lions, De Lellis and Ambrosio.

More precisely, it permits to work with a velocity field b = −∇w which
only possess the "Sobolev regularity", namely

b ∈ L∞loc(RN × [0,∞)) ∩ L1
loc([0,∞); W 1,1

loc (RN)).
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The main concepts of the survey paper by De Lellis

The starting point is a velocity field b with the Sobolev regularity,
namely

b ∈ L∞loc(RN × [0,∞)) ∩ L1
loc([0,∞); W 1,1

loc (RN)).

We have here b = −∇w . Another new concept is that of a regular
Lagrangian flow Φ satisfying{

Φt (y , t) = −∇w(Φ(y , t), t) for t > 0
Φ(y ,0) = y for y in RN

We have here Φ = X .
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Nearly incompressible vector field

A velocity field b is said to be nearly incompressible
if there exists a function η ∈ L∞(RN × [0,∞)) and a positive constant
C such that C ≤ η ≤ C−1 and

ηt + div (ηb) = 0

in the sense of distributions. Here we will have η = ρ, with
ρ(x , t) = |det(J−1(x , t)| and J(y , t) the Jacobian matrix {(Xi)yj}.
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Concept of renormalized solutions

We say that the bounded nearly incompressible velocity field b with
density η has the renormalization property if for all
c ∈ L1

loc(RN × [0,∞)) and q ∈ L∞loc(RN × [0,∞)) such that

(qη)t + div (bηq) = cη

in the sense of distributions, β(q) satisfies

(β(q)η)t + div (bηβ(q)) = cηβ′(q)

in the sense of distributions for all β ∈ C1(R). This property, which is
trivially satisfied if c and q are smooth functions, is nontrivial because
of the regularity which is assumed here.
Any velocity field b which possesses the "Sobolev regularity" satisfies
the renormalization property.
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Regularization method

Our general approach is to work with smooth solutions, which are easy
to work with, and then study their limit as the regularization parameter
n tends to infinity.
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Existence of smooth solutions on a bounded domain

Theorem. Let Bn ⊂ RN be a ball of radius Rn, α, β, γ and k positive
constants, and u0, v0 ∈ C3(Ω) such that u0, v0 ≥ 0 and
u0 + v0 ≥ B0 > 0 in Ω. Then there exists a pair of smooth nonnegative
solutions (u, v), with u, v ∈ C2,1(Ω× [0,T ]), of the problem

(Pn)


ut = div(u∇(u + v)) + u(1− u − αv) in Bn × R+

vt = div(v∇(u + v)) + γv(1− βu − v/k) in Bn × R+

u
∂(u + v)

∂ν
= v

∂(u + v)

∂ν
= 0 on ∂Bn × R+

u(·,0) = u0, v(·,0) = v0 in Bn,

where ν(x) denotes the outward normal at x ∈ Bn.
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A remark

Note that u and v can be smooth since they are overlapping, first at
the time t = 0 and then at all later times.
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The corresponding approximating problem in w and r

We recall that w = u + v and that r = u/(u + v).The problem then
reads as

(Pn)


wt = div(w∇w) + wF (r ,w) in Bn × (0,T ]

rt = ∇w · ∇r + r(1− r)G(r ,w) in Bn × (0,T ]

w
∂w
∂ν

= 0 on ∂Bn × (0,T ]

w(·,0) = w0 := u0 + v0, r(·,0) = r0 := u0/w0 in Bn.
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Existence of solution for the approximate problems

We define

A = {r ∈ Cµ,µ/2(Bn × [0,T ]), 0 ≤ r ≤ 1}

For given r ∈ Cµ,µ/2(Bn × [0,T ]), let w ∈ C2+µ,1+µ/2(Bn × [0,T ]) be
the unique solution of

wt = div(w∇w) + wF (r ,w) in Bn × (0,T ]

w
∂w
∂ν

= 0 on ∂Bn × (0,T ]

w(·,0) = w0 := u0 + v0 in Bn.

An priori estimate of the form 0 < B1 ≤ w ≤ B2 follows from the
maximum principle.
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The equation on the characteristics

For given w , we consider the ODE for the characteristics{
Xt (y , t) = −∇w(X (y , t), t) for 0 < t ≤ T
X (y ,0) = y .

Then X is continuously differentiable and one to one from Bn × [0,T ]
into itself.
On the characteristics the transport equation reduces to the ODE{

Rt = R(1− R)G(R,w(X (y , t), t)) in Bn × (0,T ]

R(·,0) = r0 in Bn.

The bounds on w(x , t) and X (y , t) imply that R ∈ C1,1(Bn × [0,T ]).
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Existence of a smooth solution

We transform R(y , t) to the original variables:

r̃(x , t) := R(X−1(x , t), t) for (x , t) ∈ Bn × [0,T ].

and we find that r̃ ∈ C1,1(Bn × [0,T ]).
We finally apply Schauder’s fixed point theorem to the map
r 7→ w 7→ r̃ =: T (r) from the closed convex set A into itself and
conclude that there exists a solution (wn, rn) of Problem (Pn).
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Existence of solution of the original system

We then return to the system
wt = div(w∇w) + wF (r ,w) in RN × R+

rt = ∇w · ∇r + r(1− r)G(r ,w) in RN × R+

w(x ,0) = w0(x) and r(x ,0) = r0(x) for x ∈ RN ,

and would like to prove that it possesses a solution. The main idea is
to find a (weak) solution (w , r) as a limit of a sequence of solutions
(wn, rn) of the problems (Pn).
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Technical difficulties

We have already seen that {wn} is bounded in W 2,1
p (Bn × (0,T )).

Therefore there exist a function w ∈W 2,1
p,loc(RN × [0,∞)) and a

subsequence of {wn} which we denote again by {wn} such that

wn → w in C1+µ,(1+µ)/2
loc (RN × [0,∞)) as n→∞.

On the other hand, we only know that

0 ≤ rn ≤ 1

but nothing more; thus there exist r ∈ [0,1] and a subsequence of {rn}
which we denote again by {rn} such that

rn ⇀ r in L2
loc(RN × [0,∞)) as n→∞.

At this point, we also know that there exists a bounded function χ such
that

F (rn,wn) ⇀ χ as n→∞,
but we do not know yet that χ = F (r ,w).

FBP 2012 - Frauenchiemsee (June 15, 2012) On a tumour-growth model 29 / 36



The essential result of Camillo De Lellis

Let b a bounded nearly incompressible velocity field with the
renormalization property. Then there exists a unique regular
Lagrangian flow Φ for b. Moreover, let bn be a sequence of bounded
nearly incompressible velocity fields with renormalization property
such that

(i) {bn} is uniformly bounded in L∞(RN × (0,∞);RN) and bn → b
strongly in L1

loc(RN × (0,∞);RN).
(ii) The densities ηn generated by bn satisfy

lim supn(‖ηn‖∞ + ‖η−1
n ‖∞) <∞.

Then the regular Lagrangian flows Φn generated by bn converge to Φ
in L1

loc(RN × (0,∞);RN).
We recall that here b = −∇w ,Φ = X and η = ρ = |det(J−1)|.
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Strong convergence of rn to r

It follows from the theorem of De Lellis that

Xn → X in L1
loc(RN × [0,∞)) as n→∞.

Defining
Rn(y , t) = rn(Xn(y , t), t),

we prove that
Rn → R in L1

loc(RN × [0,∞)),

and also deduce that

rn → r in L1
loc(RN × [0,∞)).
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Segregation property

We consider again the equation for R(y , t) = r(X (y , t), t). We recall
that r satisfies

rt = ∇w · ∇r + r(1− r)G(r ,w) in RN × R+

so that R is a solution of the problem{
Rt = R(1− R)G(R,w(X (y , t), t)) in RN × R+

R(y ,0) = r0(y) for y ∈ RN .

In turn this implies that{
(R(1− R))t = R(1− R)(1− 2R)G(R,w(X (y , t), t)) in RN × R+

(R(1− R))(y ,0) = 0 for y ∈ RN ,

so that
R(1− R) = 0 or else uv = 0 ∈ RN × R+.

FBP 2012 - Frauenchiemsee (June 15, 2012) On a tumour-growth model 32 / 36



Singular limit in a special case

We consider the special case that α = 1 and that β = 1
k and consider

the corresponding problem on a bounded domain with natural
boundary conditions. This gives

ut = div(u∇(u + v)) + (1− u − v)u,

vt = div(v∇(u + v)) + γ(1− u + v
k

)v ,
x ∈ Ω, t ∈ (0,T ],

u∇(u + v) · ν = 0,
v∇(u + v) · ν = 0,

x ∈ ∂Ω, t ∈ (0,T ],

u(x ,0) = u0(x),

v(x ,0) = v0(x),
x ∈ Ω,

where ν is a outward normal unit vector, and we we set w = u + v .
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Singular limit in a special case

The system for w and v is given by
wt = div(w∇w) + (1− w)w + (γ(1− κw)− 1− w)v in Ω× (0,T ],

vt = div(v∇w) + γ(1− κw)v in Ω× (0,T ],

w∇w · ν = v∇w · ν = 0 on ∂Ω× (0,T ],

w(x ,0) = w0(x), v(x ,0) = v0(x), x ∈ Ω

where κ = k−1. This problem is easier to study since the reaction
terms are linear in v.

FBP 2012 - Frauenchiemsee (June 15, 2012) On a tumour-growth model 34 / 36



The uniformly parabolic approximating problem

In order to prove the existence of a solution, we can approximate it by
a uniformly parabolic system, say

wt = ε4w + div(w∇w) + (1− w)w + (γ(1− κw)− 1− w)v in QT ,

vt = ε4v + div(v∇w) + γ(1− κw)v in QT ,

w∇w · ν = v∇w · ν = 0 on ∂Ω× (0,T ],

w(x ,0) = w0(x), v(x ,0) = v0(x), x ∈ Ω

where QT = Ω× (0,T ], and find that along a subsequence as ε→ 0

wε → w strongly in L2(QT ),

∇wε ⇀ ∇w weakly in L2(QT ),

vε ⇀ v weakly in L2(QT ),

where (w , v) is a solution of the original problem.
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The convergence result

Theorem. As k tends to zero, vk converges to zero weakly in L2(QT ),
and wk converges strongly in L2(QT ) to the unique weak solution u of
the problem

ut = div(u∇u) + (1− u)u in QT ,

u∇u · ν = 0 on ∂Ω× (0,T ],

u(x ,0) = u0(x) x ∈ Ω.
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