Models of multiphase flow in porous media,
including fluid-fluid interfaces

S. Majid Hassanizadeh
Department of Earth Sciences, Utrecht University, Netherlands
Soil and Groundwater Systems, Deltares, Netherlands

Collaborators:

Vahid Joekar-Niasar; Shell, Rijswijk, The Netherlands
Nikos Karadimitriou; Utrecht University, The Netherlands
Simona Bottero; Delft University of Technology, The Neth.
Jenny Niessner; Stuttgart University, Germany

Rainer Helmig; Stuttgart University, Germany

Helge K. Dahle; University of Bergen, Norway

Michael Celia; Princeton University, USA

Laura Pyrak-Nolte; Purdue University, USA # S

was proposed for to apply to 3D
1D steady-state flow  unsteady flow of two or
of almost pure more compressible fluids,
incompressible water with any amount of

in saturated dissolved matter, in
homogeneous heterogeneous

isotropic rigid sandy anisotropic deformable
soil under isothermal porous media under non-

conditions isothermal conditions
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“Extended” Darcy’s Law
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We have added bells and whistles to a simple formula to
make it (look more complicated and thus) applicable to
a much more complicated system!

One must follow a reverse process:
- develop a general theory for a complex system
- reduce it to a simpler form for a less complex system

Standard two-phase flow equations
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Measurement of Capillary Pressure-Saturation Curve
In a pressure plate
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Often it takes more than one week to get a set of
wetting and drying curves

Two-phase flow dynamic experiments (PCE and Water)

Selective pressure transducers used to
measure average pressure of each phase
within the porous medium
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Two-phase flow dynamic experiments (PCE and Water)

Dynamic Main Imbibition Curves
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Two-phase flow dynamic experiments (PCE and Water)
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There is no unique p°-S curve.

Fluids pressure diff. in kPa

Dynamic Drainage Curves

Main Scanning Drainage Curves

Main Drainage Curves

Main Imbibition Curve

Main Scanning Imbibition Curves

Secundary Scanning Imbibition Curves
Dynamic Imbibition Curves
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Relative permeability-saturation curve
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Relative permeability is supposed to be less than 1.
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Standard theory does not model the development
of vertical infiltration fingers in dry soil

Experiments by Rezanejad et al., 2002

Non-monotonic distribution of saturation during
infiltration into dry soil; experiments in our gamma system

Sand
Column




Non-monotonic distribution of saturation during

infiltration into dry soil; experiments in our gamma system

_ At different flow rates q (in cm/min)
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Non-monotonic distribution of pressure during infiltration

pressure

into dry soil; experiments in our gamma system

Pressure at different positions along the column
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Outline

Thermodynamic basis for macroscacle theories of two-
phase flow in porous media

Experimental and computational determinations of
capillary pressure under equilibrium conditions

Experimental and computational determinations of
capillary pressure under non-equilibrium conditions

Non-equilibrium capillarity theory for fluid pressures

Truly extended Darcy’s law

Averaging-Thermodynamic Approach

First, a microscale picture of the porous medium is given:
Porous solid and the two phases form a juxtaposed
superposition of three phases filling the space and separated
by three interfaces: solid-water, water-oil, solid-oil,
and a water-oil-solid common line.

There is mass, momentum, energy associated with each domain.




Averaging-Thermodynamic Approach

First, a microscale picture of the porous medium is given:
Porous solid and the two phases form a juxtaposed
superposition of three phases filling the space and separated
by three interfaces: solid-water, water-oil, solid-oil,
and a water-oil-solid common line.

Microscale conservation equations for mass, momentum, and
energy are written for points within phases or points on
interfaces and the common line.

These equations are averaged to obtain macroscale
conservation equations.

No microscopic constitutive equations are assumed.
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Averaging-Thermodynamic Approach

First, a microscale picture of the porous medium is given:
Porous solid and the two phases form a juxtaposed
superposition of three phases filling the space and separated
by three interfaces: solid-water, water-oil, solid-oil,
and a water-oil-solid common line.

Microscale conservation equations for mass, momentum, and
energy are written for points within phases or points on
interfaces and the common line.

These equations are averaged to obtain macroscale
conservation equations.

No microscopic constitutive equations are assumed.

Macroscopic constitutive equations are proposed at the
macroscale and restricted by 2" Law of Thermodynamic.

"
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Equations of conservation of mass

For each phase: o(nS*“ p“
( )+V.(paqa)zzra,aﬁ
Pra
Divide by a constant p and neglect mass exchange term:
0S“
N +Veq®=0
ot

For each interface:
0 (a“ﬂ r )

ot
Divide by a constant I"%:

ﬁ+V0(aaﬁW“ﬂ) =HERe
ot

+Ve(a”T¥w )= 1/

Macroscale capillary pressure;
theoretical definition

g H" o OHY OH™ oH™ oH

0S" os" os" os*  oS"
H is macroscopic Helmholz free energy, which depends on
state variables such as S”, a*, p*, T, etc.

P =

P*=F(S",a™) or a™ =F(P*S")

?
Pe=P" - P"
n n aHn w w aHW
o) 25 (e

Hassanizadeh and Gray, WRR, 1990




Capillary pressure-saturation data points measured in laboratory
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Imbibition Drainage
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Capillary pressure-saturation curve is hysteretic

Capillary pressure and saturation are two independent quantities
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Macroscale capillary pressure;
theoretical definition

P*=F(S",a™) or a™ =F(P*,S")
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Interfacial area and saturation are two independent properties

So, microscale p¢ is proportional to a*". - T




Macroscale capillary pressure
Dynamic Pore-network modeling (Joekar-Niasar et al., 2010, 2011)
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Equilibrium P_-S _-a  sutrfaces
imbibition drainage

2 2
Awn(Sw, pe) = (aoo +ai08w + ao1 pe + a8, +aiSy - pe+ aozpc)
Joekar-Niasar et al. 2008 %ﬁ

P_-S -a, Surface
Results from Lattice-Bolzmann simulations
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Capillary Pressure-Interfacial Area-
Saturation data form a (unique) surface

This has been shown by:

- Reeves and Celia (1996); Static pore-network modeling

- Held and Celia (2001); Static pore-network modeling

- Joekar-Niasar et al. (2007) Static pore-network modeling

- Joekar-Niasar and Hassanizadeh (2010, 2011)
Dynamic/static pore-network modeling

- Porter et al. (2009); Column experiments and LB modeling
- Chen and Kibbey (2006); Column experiments

- Cheng et al. (2004); Micromodel experiments

- Chen et al. (2007); Micromodel experiments

- Bottero (2009); Micromodel experiments

- Karadimitriou et al. (2012); Micromodel experiments

A new generation of micro-model experiments

A micro-model (made of PDMS) with a length of 35 mm
and width of 5 mm;

It has 3000 pore bodies and 9000 pore throats with a
mean pore size of 70 pm and constant depth of 70 pm

# Universiteit Utrechr
Karadimitriou et al., 2012




A new generation of micro-model experiments

Micromodel experimental setup # NS—

Visualization of interfaces in a micromodel
Drainage Drainage

S"=124%

Pc=4340 Pa *
_ 2 Universiteit Utrechr
A""'=18.32 mm Karadimitriou et al., 2012




Visualization of interfaces in a micromodel
Drainage Imbibition
Karadimitriou et al., 2012 # o

Visualization of interfaces in a micromodel

Drainage Imbibition
Sr=24% Sn=24%
Pc=4340 Pa Pc=2200 Pa

— 2 —
A" =18.32 mm Karadimitriou et al., 2012 A" = 30.56 mm?




Capillary pressure-saturation points
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Capillary pressure-saturation-interfacial area Surface
Fitted to drainage points
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Capillary pressure-saturation-interfacial area Surface
Fitted to imbibition points
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Capillary pressure-saturation-interfacial area
Surface

The average difference between the surface for
drainage and the surface with all the data points is
9.7%.

The average difference between the surface for
imbibition and the surface with all the data points is -
5.77%.

a" =—18070+151500*S —1.075* P,
—137300*S? +2.577*S* P, —0.0001104* P?

"
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Macroscale capillarity theory

Capillary Pressure-Saturation-
Interfacial Area data points fall on a
(unique) surface, which is a property
of the fluids-solid system.

Fluids Pressure Difference, P"-P"

is a dynamic property which depends
on boundary conditions and fluid
dynamic properties (e.g. viscosities).

Non-equilibrium Capillary Equation:

P"—-P" = PC—Z’Q
ot

The coefficient T is a material property
which may depend on saturation.

It has been determined through column
experiments, as well as computational
models, by many authors.




Two-phase flow equations with dynamic
capillarity effect

0S“
n—+Veq”“=0
ot 1
qa:_iKa .(vpa_pag)
I
oS"

P"—P"=P°—¢
ot

Combine the three equations for unsaturated flow:

ou 0o ( ou j o d2u
—=—9e| D + ol 7T
ot  0oXx OX OX oxot

Development of vertical wetting fingers in dry soil;

Simulations based on dynamic capillarity theory
finger core

finger tip

distribution layer
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Experimental Set-up for measurement of dynamic capillarity effect;

Bottero et al., , 2011

Pressure
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No membranes

Steady-state flow
of invading fluid
with incremental
pressure increase

Primary drainage
Main drainage
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3 Air
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Switch on/off

Pressure [T Water Pump
transducer
® 5
Differential
Differential Water Pump pressure
pressure gauge
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7~ Switch on/off

with large
injection pressure

@np PCE Pump

@O / Valves

Non-equilibrium primary drainage; Local
Fluids Pressure Difference vs Saturation at position z1
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Value of the damping coefficient T as a function of
saturation; local scale

Sw
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Bottero et al., 2011

Simulation of non-equilibrium primary drainage;
Local pressure difference vs time; Injection pressure, 35kPa
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Conclusions on Capillarity Theory:
Capillary Pressure is not just a function of saturation.

Capillary Pressure -Saturation-Interfacial Area form a
(unique) surface, which is a property of the fluids-solid
system.

Fluids Pressure Difference, P"-P” is a dynamic property
which depends on boundary conditions and fluid dynamic
properties (e.g. viscosities)

Fluids Pressure Difference, P"-P”, is equal to capillary
pressure but only under equilibrium conditions.
Otherwise, it depends on the rate of change of saturation.

Extended theories of two-phase flow

Extended Darcy’s law (linearized equation of motion ):
qOC = _pOZK(Z.(VGOl _g)

where G“ is the Gibbs free energy of a phase:
G* = G (pa’awn,sa’-l-)

Extended Darcy’s law :

q° =—k§ K+ VP* — g —y/*Va" —/*Vs*)

where ;/** and “° are material coefficients.

o




Extended theories of two-phase flow

Linearized equation of motion for interfaces:
w' =—K"a"T"(VG" —g)
where G"" is the Gibbs free energy of wn-interface:
G"=G"(r*,a™,sT)

Simplified equation of motion for interfaces
(neglecting gravity term):

Wi — KW [ywnvawn 4 anvsw}

. . . wn,
where Q""is a material coefficient and / is
macroscale surface tension.

Summary of extended two-phase flow equations

n Gi:+ Veq®=0

qa:_iKa .(Vpa _pag_waﬁvawn _l//asvsa)
oa" wn__wn wn
Zt +V0(a w )—E

w' =—K"[ y""Va"" + Q""VS" |

pr_pr—pt 5 pe_ f(s",a™m)
ot




Simulation of redistribution
moisture; a numerical example

@ 0.5m

6m

_ 4m
p' =98100 Pa
w

Equilibrium moisture distribution from
standard two-phase flow equations
with no hysteresis

Initial distribution

Final distribution

interface




Simulating horizontal moisture redistribution with
standard two-phase flow equations+hysteresis

Solving moisture redistribution problem with
standard two-phase flow equations

pc
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Equilibrium result from standard two-
phase flow equations with hystresis

interface

Solving a problem with extended two-phase
flow equations

(2

n = +Veq?=0
=——K o Vb -p'g —
(Wn Wn) Ewn(awn’sw)

—K"[ y""va"" + %" |

n W C aw c W AWn
P’ - :P—% P°=f(S"a")




Governing eqs for moisture redistribution
There is a self-similar solution for this problem:

S=S1n) and p=p(y) with q_iq
y

and obtain the problems

spyd ~25 +(DS)p(S)) =0 for € (~o0,0),
1 Si—o0) =&,

and

(SP.) %Fl F(Di5) F"[ST'JT'J =0 I'ur.'q e (0, 4+c0),
" Si+x) =§.

With a semi-analytical solution.

Long-term result from extended two-
phase flow equations with no hystresis

2p 2pia
Snl-] E e I
[T T 177 17 e BT T T e
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1
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CONCLUSIONS

Under nonequilibrium conditions, the difference in
fluid pressures is a function of time rate of change
of saturation as well as saturation.

Resulting Eq. will lead to nonmonotonic solutions.

Fluid-fluid interfacial areas should be included in
multiphase flow theories.

Hysteresis can be modelled by introducing
interfacial area into the two-phase flow theory

simulating two-phase flow in a long domain
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Transient relative permeability curves
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simulating two-phase flow in a long domain
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simulating two-phase flow in a long domain
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simulating two-phase flow in a long domain
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simulating two-phase flow in a long domain

@ ve(amwm)=E" (2", 5%)

E{1/mm.s)

Rate of generation/destruction of interfacial area as a
function of saturation and rate of change of saturation

CONCLUSIONS

The driving forces in Darcy’s law should be gradient
of Gibbs free energy and gravity.

Difference in fluid pressures is equal to capillary
pressure but only under equilibrium conditions.

Under nonequilibrium conditions, the difference in
fluid pressures is a function of time rate of change
of saturation as well as saturation.

Fluid-fluid interfacial areas should be included in
multiphase flow theories.

Hysteresis can be modelled by introducing
interfacial area into the two-phase flow theory




Development of vertical wetting fingers in dry soil;

Simulations based on new capillarity theory
finger core

Development of vertical wetting fingers in dry soil;

Simulations based on new capillarity theory

Dynamic Capillary Pressure Mechanism for Instability in
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P, - S,, measurement: the measurement cell

sample diameter: 25 mm
flow rates for every step:
- pumping: 3 pl / min
- withdrawing: 3 pl / min
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Figure 1.2: Schematic representation of the micro-model
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Micromodel experiments

Dark area is solid and light area is pore space

J.-T. Cheng, L. J. Pyrak-Nolte, D. D. Nolte and N. J. Giordano,
Geophysical Research Letters, 2004
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Measuring a*" interfaces in a micromodel

Drainage Imbibition

J.-T. Cheng, L. J. Pyrak-Nolte, D. D. Nolte and N. J. Giordano,
Geophysical Research Letters, 2004
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Equilibrium drainage and imbibition experiments*
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*Experiments performed by S. Bottero at Purdue Univ.




