Models of multiphase flow in porous media, including fluid-fluid interfaces

S. Majid Hassanizadeh

Department of Earth Sciences, Utrecht University, Netherlands Soil and Groundwater Systems, Deltares, Netherlands

Collaborators:

Vahid Joekar-Niasar; Shell, Rijswijk, The Netherlands Nikos Karadimitriou; Utrecht University, The Netherlands Simona Bottero; Delft University of Technology, The Neth. Jenny Niessner; Stuttgart University, Germany Rainer Helmig; Stuttgart University, Germany Helge K. Dahle; University of Bergen, Norway Michael Celia; Princeton University, USA Laura Pyrak-Nolte; Purdue University, USA

Standard two-phase flow equations

$$n \frac{\partial S^{\alpha}}{\partial t} + \nabla \bullet \mathbf{q}^{\alpha} = 0$$

$$\mathbf{q}^{\alpha} = -\frac{k^{r\alpha}}{\mu^{\alpha}} \mathbf{K} \bullet (\nabla P^{\alpha} - \rho^{\alpha} \mathbf{g})$$

$$P^{n} - P^{w} = f(S^{w}) = P^{c}$$

$$k^{r\alpha} = k^{r\alpha} (S^{w})$$

Outline

Thermodynamic basis for macroscacle theories of twophase flow in porous media

Experimental and computational determinations of capillary pressure under equilibrium conditions

Experimental and computational determinations of capillary pressure under **non-equilibrium** conditions

Non-equilibrium capillarity theory for fluid pressures

Truly extended Darcy's law

Capillary Pressure-Interfacial Area-Saturation data form a (unique) surface

This has been shown by:

- Reeves and Celia (1996); Static pore-network modeling
- Held and Celia (2001); Static pore-network modeling
- Joekar-Niasar et al. (2007) Static pore-network modeling
- Joekar-Niasar and Hassanizadeh (2010, 2011) Dynamic/static pore-network modeling
- Porter et al. (2009); Column experiments and LB modeling
- Chen and Kibbey (2006); Column experiments
- Cheng et al. (2004); Micromodel experiments
- Chen et al. (2007); Micromodel experiments
- Bottero (2009); Micromodel experiments
- Karadimitriou et al. (2012); Micromodel experiments

Macroscale capillarity theory

Capillary Pressure-Saturation-Interfacial Area data points fall on a (unique) surface, which is a property of the fluids-solid system.

Fluids Pressure Difference, P^n - P^w is a dynamic property which depends on boundary conditions and fluid dynamic properties (e.g. viscosities).

Non-equilibrium Capillary Equation:

$$P^{n} - P^{w} = P^{c} - \tau \frac{\partial S^{w}}{\partial t}$$

The coefficient τ is a material property which may depend on saturation.

It has been determined through column experiments, as well as computational models, by many authors.

Value of the damping coefficient τ as a function of saturation; local scale			
S	w $\tau[Pa$	[s.s]	
0.	85 1.587 ×	$*10^{5}$	
0.	80 1.451 ×	$* 10^{5}$	
0.	75 1.361 ×	$* 10^{5}$	
0.	70 1.375 ×	$*10^{5}$	
0.	65 1.404 ×	$* 10^{5}$	
0.	50 1.402×	$*10^{5}$	
0.	55 1.461 ×	$*10^{5}$	
Bottero et al., 2011			Chiversneh Offecht

$$\mathbf{w}^{wn} = -K^{wn} a^{wn} \Gamma^{wn} (\nabla G^{wn} - \mathbf{g})$$

where G^{wn} is the Gibbs free energy of wn-interface:

$$G^{wn} = G^{wn} \left(\Gamma^{\alpha}, a^{wn}, S^{\alpha}, T \right)$$

Simplified equation of motion for interfaces (neglecting gravity term):

$$\mathbf{w}^{wn} = -K^{wn} \left[\gamma^{wn} \nabla a^{wn} + \Omega^{wn} \nabla S^{w} \right]$$

where Ω^{wn} is a material coefficient and γ^{wn} is macroscale surface tension.

Summary of extended two-phase flow equations

$$n \frac{\partial S^{\alpha}}{\partial t} + \nabla \bullet \mathbf{q}^{\alpha} = 0$$

$$\mathbf{q}^{\alpha} = -\frac{1}{\mu^{\alpha}} \mathbf{K}^{\alpha} \bullet (\nabla P^{\alpha} - \rho^{\alpha} \mathbf{g} - \psi^{\alpha \alpha} \nabla a^{wn} - \psi^{\alpha S} \nabla S^{\alpha})$$

$$-\frac{\partial a^{wn}}{\partial t} + \nabla \bullet (a^{wn} \mathbf{w}^{wn}) = E^{wn}$$

$$\mathbf{w}^{wn} = -K^{wn} [\gamma^{wn} \nabla a^{wn} + \Omega^{wn} \nabla S^{w}]$$

$$P^{n} - P^{w} = P^{c} - \tau \frac{\partial S^{w}}{\partial t} \quad P^{c} = f(S^{w}, a^{wn})$$

Simulating horizontal moisture redistribution with standard two-phase flow equations+hysteresis

$$n \frac{\partial S^{\alpha}}{\partial t} + \nabla \bullet \mathbf{q}^{\alpha} = 0$$
$$\mathbf{q}^{\alpha} = -\frac{1}{\mu^{\alpha}} \mathbf{K}^{\alpha} \bullet \nabla P^{\alpha}$$
$$P^{n} - P^{w} = f_{d} \left(S^{w} \right) \qquad if \quad \frac{\partial S}{\partial t} < 0$$
$$P^{n} - P^{w} = f_{i} \left(S^{w} \right) \qquad if \quad \frac{\partial S}{\partial t} > 0$$

Solving a problem with extended two-phase
flow equations

$$n \frac{\partial S^{\alpha}}{\partial t} + \nabla \bullet \mathbf{q}^{\alpha} = 0$$

$$\mathbf{q}^{\alpha} = -\frac{1}{\mu^{\alpha}} \mathbf{K}^{\alpha} \bullet (\nabla p^{\alpha} - \rho^{\alpha} \mathbf{g} - \psi^{\alpha \alpha} \nabla a^{wn} - \psi^{\alpha S} \nabla S^{\alpha})$$

$$\frac{\partial a^{wn}}{\partial t} + \nabla \bullet (a^{wn} \mathbf{w}^{wn}) = E^{wn} (a^{wn}, S^{w})$$

$$\mathbf{w}^{wn} = -K^{wn} [\gamma^{wn} \nabla a^{wn} + \Omega^{wn} S^{w}]$$

$$p^{n} - p^{w} = P^{c} - \chi \partial s^{w} P^{c} = f(S^{w}, a^{wn})$$

