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Motivation

model single substance flow
two phases (liquid, vapor)
isothermal (for simplicity)
compressible
including phase transitions (due to
pressure changes)
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Sharp interface limit

sharp interface models diffuse interface models

Compute the sharp interface limit of a diffuse interface model:
justify the diffuse interface model,
relate its parameters to macroscopic quantities,
motivate a kinetic relation for the sharp interface model,
what is the entropy dissipation, how is it related to the kinetic
relation?
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Outline

1. Introduction to the Navier-Stokes-Korteweg system
2. General sharp interface models
3. A sharp interface limit
4. The entropy inequality for the SI limit
5. Prospects
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The NSK Equations
The local Navier-Stokes-Korteweg Model:
(Dunn&Serrin ’85)
ρpx, tq ą 0 density, upx, tq P Rd velocity, ppρq ą 0 pressure given by
constitutive relation.

ρt ` divpρuq “ 0

pρuqt ` div pρub u` ppρqIq “ divpσNSq ` γρ∇∆ρ in D ˆ Rą0,

σNS “ λpdiv uqI ` µp∇u` p∇uqT q,

u “ 0, ∇ρ ¨ n “ 0 in BD ˆ Rą0.

σK :“
ˆ

ρ∆ρ` 1
2 |∇ρ|

2
˙

I ´∇ρb∇ρ

divpσKq “ ρ∇∆ρ.
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ρpx, tq ą 0 density, upx, tq P Rd velocity, ppρq ą 0 pressure given by
constitutive relation.

ρt ` divpρuq “ 0

pρuqt ` div pρub u` ppρqIq “ divpσNSq ` γρ∇∆ρ in D ˆ Rą0,

σNS “ λpdiv uqI ` µp∇u` p∇uqT q,

u “ 0, ∇ρ ¨ n “ 0 in BD ˆ Rą0.

Energy/Entropy equality:
´

W pρq `
ρ

2 |u|
2 `

γ

2 |∇ρ|
2
¯

t
` div

´´

W pρq `
ρ

2 |u|
2 `

γ

2 |∇ρ|
2
¯

u
¯

` div ppppρq ´ σNS ´ σKqu` γρ∇ρp∇ ¨ uqq
“ ´σNS : p∇uq ď 0.
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Van der Waals pressure and energy

To have two phases, we need a non-monotone pressure function.

Helmholtz energy density pressure

ppρq “ ρW 1pρq ´W pρq, p1pρq “ ρW 2pρq.

The first order part is hyperbolic provided p1pρq ą 0.
ùñ Problem of hyperbolic-elliptic type.
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Sharp interface framework: In the bulk

A set of PDEs in each bulk domain, e.g.

isothermal Euler equations
ρt ` divpρuq “ 0,

pρuqt ` divpρub uq `∇ppρq “ 0.

Smooth solutions satisfy the entropy equality

in the bulk
´

W pρq `
ρ

2 |u|
2
¯

t
` div

´´

W pρq `
ρ

2 |u|
2 ` ppρq

¯

u
¯

“ 0.
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Sharp interface framework: At the interface

Conservation/ balance at the interface is equivalent to

Rankine-Hugoniot conditions
rrρpu ¨ ν ´ wνqss “ 0,

rrρupu ¨ ν ´ wνq ` νppρqss “ νσκ,

ν unit normal vector to the interface,
wν normal velocity of the interface,
κ is the sum of the principal curvatures, σ surface tension.

Entropy inequality
„„

ρpu ¨ ν ´ wνq
ˆ

W 1pρq `
1
2 |u´w|2

˙

ď 0.
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Uniqueness of solutions
Rankine Hugoniot conditions + entropy inequality œ uniqueness.
Overview on well-posedness in 1D, see LeFloch, Hyperbolic systems of
conservation laws.

We need an additional condition called kinetic relation,

ϕpρ´, ρ`,u´,u`,wq “ 0.

It must be compatible with the Entropy inequality.

Theorem (Benzoni-Gavage, Freistühler ’04):
The free boundary value problem for the Euler equations with a
van-der-Waals pressure function is locally well-posed, provided one
imposes the Rankine-Hugoniot conditions and zero entropy dissipation at
the interface, i.e.

„„

W 1pρq `
1
2 |u´w|2



“ 0.
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Jump conditions including surface quantities
Surface quantities lead to more general jump conditions

Satz: Dreyer ’03
rrρpuν ´ wνq
looooomooooon

“:j

ss “ 0,

rrρpuν ´ wνqpu´wq ` νppρq ss “ 0,

and satisfy

` tju
„„

W 1pρq `
|u´w|2

2



“ 0,

where
rrass :“ a` ´ a´, tau :“ a` ` a´

2 ,

uν normal velocity of the fluid,

σΓ the surface tension vector.
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Jump conditions including surface quantities
Surface quantities lead to more general jump conditions

Satz: Dreyer ’03
rrρpuν ´ wνq
looooomooooon
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ss “ ´
BρΓ
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` tju
„„

W 1pρq `
|u´w|2

2



“ 0,

where
rrass :“ a` ´ a´, tau :“ a` ` a´

2 ,

ρΓ surface mass density, divΓ surface divergence,
wθ tangential velocity of the interface.
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Jump conditions including surface quantities
Surface quantities lead to more general jump conditions

Satz: Dreyer ’03
rrρpuν ´ wνq
looooomooooon

“:j

ss “ ´
BρΓ

Bt ´ ρΓ pdivΓpwθq ´ κwνq ,

rrρpuν ´ wνqpu´wq ` νppρq ss “ ´Bw
Bt ρΓ ` divΓpσΓq,

and satisfy

BWΓ

Bt ´ pγΓ ´WΓq pdivΓpwθq ´ κwνq

`rrjss
"

W 1pρq `
|u´w|2

2

*

` tju
„„

W 1pρq `
|u´w|2

2



ď0,

WΓ surface Helmholtz free energy density,
γΓ surface tension, given by σΓ “ γΓ

θ
}θ}2 .
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Aim of SI limit

Derive SI limit fitting into this framework, i.e, determine conditions
for

rrρpuν ´ wνqss ,
rrρpuν ´ wνqpu´wq ` νppρqss ,

„„

W 1pρq `
|u´w|2

2



and determine parameters ρΓ, σΓ, γΓ, WΓ. Surface quantities
given in terms of the solutions to the “inner equation”.
These jump conditions determine the energy dissipation.
SI -entropy inequality can be directly derived from the “continuous”
entropy inequality.
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Choose a scaling

We non-dimensionalise the equations and choose

M “ Op1q, Re :“ Opε´2q,
t2
r ρr

x4
r
γr “ Opε2q.

Scaled version of the NSK system

ρt `∇ ¨ pρuq “ 0,
pρuqt ` divpρub uq `∇ppρq “ ε2divpSq ` γε2ρ∇∆ρ,

which means that the magnitudes of viscosity and capillarity are of the
same (small) order.
For a low Mach number scaling, see Hermsdörfer, Kraus, Kröner ’09.
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Decomposition, and coordiante change at the interface

Decomposition the problem into
”outer problem” away from the interface,
”inner problem” inside the interfacial layer,

these are linked by ”matching conditions”

New coordinates pz, s, τq in the interfacial layer

px, tq “ prεps, τq ` εzνεps, τq, τq,

where rεp¨, tq is a parametrization of the interface

Γεptq :“
 

x P R2 : ρεpx, tq “ ρ˚
(

,

where ρ˚ P p0, bq such that p1pρ˚q ă 0.
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Assumptions

Quantities in inner coordinates (denoted by capital letters):

Rεpτ, s, zq “
8
ÿ

i“0
εiRipτ, s, zq and Uεpτ, s, zq “

8
ÿ

i“0
εiUipτ, s, zq.

Quantities in outer coordinates

ρεpx, tq “
8
ÿ

i“0
εiρipx, tq and uεpx, tq “

8
ÿ

i“0
εiuipx, tq.

Position of the interface Γεptq :“ tx P R2 : ρεpx, tq “ ρ˚u

rεpτ, sq “
8
ÿ

i“0
εiripτ, sq.
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Inner equations: leading order

We insert the inner expansions into (NSK) and change the coordinates.
Collecting the terms of order ε´1 yields

´wνR0,z ` pR0ν0 ¨U0qz “ 0,
ppν0 ¨U0 ´ wνqν0 ¨U0qz `W 1pR0qz “ γR0,zzz .

(IE)

The first equation implies that the zeroth order mass flux

j0 :“ R0pν0 ¨U0 ´ wν0q

is constant with respect to z. Hence,

ùñ rrρ0puν0 ´ wν0qss “ 0.
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Inner equations: leading order

Theorem (Benzoni-Gavage, Danchin, Descombes, Jamet, ’07):

For |j0| ! 1 there exist ρ˘0 pj0q ą 0 such that
„„

W 1pρ0q `
1
2

j2
0

pρ0q2



“ 0,
„„

ppρ0q `
j2
0
ρ0



“ 0.

Furthermore there exists a solution R0pj0q of (IE) satisfying

R0pj0q
zÑ˘8
ÝÑ ρ˘0 pj0q.

The interfacial normal velocity wν0 can be computed from mass flux and
density.
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Inner equations:

For j0 “ 0 (IE) also implies

rrθ0 ¨ u0ss “ 0.

So we can choose the parameterisation of the interface such that

wθ “ uθ0.

The Opεq order of the inner equations yields an inhomogeneous, linear
ODE system for R1,U1.

By the Fredholm Alternative we find solvability conditions, which yield
the Opεq order of the jump conditions.
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Jump Conditions up to Opεq I

Theorem (Dreyer, Giesselmann, Kraus, Rohde, ’10):
Under standard assumptions for asymptotic analysis the outer quantities
are subject to the following interface conditions

rrρεppuνqε ´ pwνqεqss “ ´
BρΓ

Bτ
´ ρΓ pdivΓpwθ0q ´ κ0wν0q `Opε2q,

where ρΓ is the mass attributed to the interface and divΓ is the surface
divergence:

ρΓ :“ ε

ż 8

0
R0 ´ ρ

`
0 dz ` ε

ż 0

´8

R0 ´ ρ
´
0 dz,

divΓpwθ0q :“ 1
}θ0}

p}θ0}wθ0qs .
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Jump Conditions up to Opεq II

Theorem: continued

rrρεppuνqε ´ pwνqεqpuε ´wεq ` νεppρεqss “ ´
Bw0

Bτ
ρΓ`divΓpσΓq`Opε2q,

where σΓ is the surface stress vector given by σj
Γ “ γΓ

θj
0

}θ0}2 with

γΓ “ ε

ż 8

0

ˆ

j2
0

R0
´

j2
0
ρ`0
` γR2

0,z

˙

dz ` ε
ż 0

´8

ˆ

j2
0

R0
´

j2
0
ρ´0
` γR2

0,z

˙

dz.

When pγΓqs “ 0 ùñ Young-Laplace like law
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Jump Conditions up to Opεq III

Theorem: continued

„„

1
2 |uε ´wε|

2 `W 1pρεq



“ ´ε

ż 8

0
ν0 ¨ pU0 ´ u`0 qτ dz

´ε

ż 0

´8

ν0 ¨ pU0 ´ u´0 qτ dz

´ε pλ` 2µq j0
ż 8

´8

ˆˆ

1
R0

˙

z

˙2
dz

`Opε2q.

λ, µ are bulk and shear viscosity parameters.

Is this a reasonable condition?
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Entropy dissipation at the interface

Theorem (Dreyer, Giesselmann, Kraus, Rohde, ’10):
For ε sufficiently small the above jump conditions imply

0 ě ´ε

ą0
hkkkikkkj

pλ` 2µq j2
0

ż 8

´8

ˆˆ

1
R0

˙

z

˙2
dz `Opε2q

“
BWΓ

Bτ
´ pγΓ ´WΓq pdivΓppwθqεq ´ κεpwνqεq

` rrjεss
"

W 1pρεq `
|uε ´wε|

2

2

*

`tjεu
„„

W 1pρεq `
|uε ´wε|

2

2



,

the jump conditions are compatible with the 2nd law of Thermodynamics.
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Entropy dissipation at the interface
Theorem: continued

WΓ “ε

ż 8

0

ˆ

W pR0q ´W pρ`0 q `
1
2

j2
0

R0
´

1
2

j2
0
ρ`0
`
γ

2 R2
0,z

˙

dz

` ε

ż 0

´8

ˆ

W pR0q ´W pρ´0 q `
1
2

j2
0

R0
´

1
2

j2
0
ρ´0
`
γ

2 R2
0,z

˙

dz,

γΓ “ε

ż 8

0

ˆ

j2
0

R0
´

j2
0
ρ`0
` γR2

0,z

˙

dz ` ε
ż 0

´8

ˆ

j2
0

R0
´

j2
0
ρ´0
` γR2

0,z

˙

dz

Gibbs adsorption law
A straightforward computation shows

WΓ ´ γΓ “ ρΓ

˜

gpρ˘0 q `
1
2

ˆ

j0
ρ˘0

˙2
¸

which is a special case of the Gibbs adsorption law.
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A different way to determine energy dissipation:
Apply coordinate change and inner expansion to the scaled entropy
equality:
ˆ

W pρq `
ρ

2 |u|
2 `

γε2

2 |∇ρ|2
˙

t
` div

ˆˆ

W pρq `
ρ

2 |u|
2 `

γε2

2 |∇ρ|2
˙

u
˙

` div
``

ppρq ´ ε2σNS ´ ε
2σK

˘

u` ε2γρ∇ρp∇ ¨ uq
˘

“ ´ε2σNS : p∇uq.

Then gathering Opε´1q terms gives

0 “´ wν0

ˆ

W pR0q `
R0

2 |U0|
2 `

γ

2 pR0,zq
2
˙

z

` νi
0

ˆˆ

W pR0q `
R0

2 |U0|
2 `

γ

2 pR0,zq
2
˙

U i
0

˙

z

`

ˆ

ppR0qν
i
0U i

0 ´ γpR0,zzR0 ´
1
2 pR0,zq

2qνi
0U i

0 ` γR0R0,zν
iU i

0,z

˙

z
.
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A different way to determine energy dissipation:

This equation can directly be integrated and due to the matching
conditions we obtain

””´

W pρ0q `
ρ0

2 |u0|
2
¯

puν0 ´ wν0q ` ppρ0quν0

ıı

“ 0

””´

W pρ0q ` ppρ0q `
ρ0

2 |u0 ´w0|
2
¯

puν0 ´ wν0q
ıı

“ 0
””´

ρ0W 1pρ0q `
ρ0

2 |u0 ´w0|
2
¯

puν0 ´ wν0q
ıı

“ 0
„„

ρ0puν0 ´ wν0q

ˆ

W 1pρ0q `
1
2 |u0 ´w0|

2
˙

“ 0

24 / 26



  Institute of Applied Analysis and
Numerical Simulations 

A different way to determine energy dissipation:
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2 |u0 ´w0|
2
¯

puν0 ´ wν0q
ıı

“ 0
„„

ρ0puν0 ´ wν0q

ˆ

W 1pρ0q `
1
2 |u0 ´w0|

2
˙

“ 0

Use rrρ0puν0 ´ wν0qss “ 0, rrρ0puν0 ´ wν0q
2 ` ppρ0qss “ 0 and uθ0 “ wθ0.
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A different way to determine energy dissipation:

This equation can directly be integrated and due to the matching
conditions we obtain

””´

W pρ0q `
ρ0

2 |u0|
2
¯

puν0 ´ wν0q ` ppρ0quν0

ıı

“ 0
””´

W pρ0q ` ppρ0q `
ρ0

2 |u0 ´w0|
2
¯

puν0 ´ wν0q
ıı

“ 0
””´

ρ0W 1pρ0q `
ρ0

2 |u0 ´w0|
2
¯

puν0 ´ wν0q
ıı

“ 0
„„

ρ0puν0 ´ wν0q

ˆ

W 1pρ0q `
1
2 |u0 ´w0|

2
˙

“ 0

i.e. there is no zeroth order entropy dissipation at the interface.
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A different way to determine energy dissipation:
Similarly applying the coordinate change and inner expansion to the
entropy equality and gathering the Opε0q terms, gives an equation, which
(using a lot of technicalities) can be integrated and implies

0 ě´ ε
ą0

hkkkikkkj

pλ` 2µq j2
0

ż 8

´8

ˆˆ

1
R0

˙

z

˙2
dz `Opε2q

“
BWΓ

Bτ
´ pγΓ ´WΓq pdivΓppwθqεq ´ κεpwνqεq

`

„„

ρεppuνqε ´ pwνqεq
ˆ

W 1pρεq `
|uε ´wε|

2

2

˙

,

with

WΓ “ε

ż 8

0

ˆ

W pR0q ´W pρ`0 q `
1
2

j2
0

R0
´

1
2

j2
0
ρ`0
`
γ

2 R2
0,z

˙

dz ` ε
ż 0

´8

. . .

γΓ “ε

ż 8

0

ˆ

j2
0

R0
´

j2
0
ρ`0
` γR2

0,z

˙

dz ` ε
ż 0

´8

. . .
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Summary

For NSK an entropy inequality for the SI limit can be derived using
the energy equality for the diffuse model.
In fact it even gives the dissipation rate.
The kinetic relation has to be in agreement with the entropy
inequality.
If the kinetic relation is derived via a sharp interface limit, the
kinetic relation has to be compatible with the condition from the
energy equality.
For mixtures without viscosity the situation is more involved
-> Talk of Clemens Guhlke.
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