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Motivation
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model single substance flow
two phases (liquid, vapor)
isothermal (for simplicity)
compressible

including phase transitions (due to
pressure changes)
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Sharp interface limit

sharp interface models  diffuse interface models

Compute the sharp interface limit of a diffuse interface model:

m justify the diffuse interface model,
m relate its parameters to macroscopic quantities,
m motivate a kinetic relation for the sharp interface model,

m what is the entropy dissipation, how is it related to the kinetic
relation?
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Outline
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Introduction to the Navier-Stokes-Korteweg system
General sharp interface models
A sharp interface limit

The entropy inequality for the Sl limit

ok =

Prospects
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The NSK Equations

The local Navier-Stokes-Korteweg Model:

(Dunn&Serrin '85)
p(x,t) > 0 density, u(x, t) € R? velocity, p(p) > 0 pressure given by

constitutive relation.

pe + div(pu) =0
(pu), + div(pu®u + p(p)Z) = div(ons) +vpVAp PSR- 0;
ons = A(divu)Z + p(Vu + (Vu) T),
u=0, Vp-n=0 in 0D x R.g. )

1
oK = (pAp + 2IV,OQ) I-Vp®Vp

div(ok) = pVAp.
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The NSK Equations

The local Navier-Stokes-Korteweg Model:

(Dunn&Serrin '85)
p(x,t) > 0 density, u(x, t) € R? velocity, p(p) > 0 pressure given by

constitutive relation.

Pt + div(pu) =0
(pu), + div(pu®u + p(p)Z) = div(ons) + 7pVAp in D xR,
ons = A(divu)Z + p(Vu + (Vu) 1),
u=0, Vp-n=0 in 0D x Ryg.
Energy/Entropy equality:
Pz 2 : P2, 7 2
(W) + Sl + 29p) +div ((W(o) + Elul® + 21Vp) u)

+div ((p(p) — ons — ok) u+7pVp(V - u))
= —opns : (Vu) <0.
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Van der Waals pressure and energy
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To have two phases, we need a non-monotone pressure function.

Helmholtz energy density pressure
wie)
<+ vapours i quid—>b F <« vapour® ——q—b

p(p) =pW'(p) = W(p),  p'(p)=pW"(p).

The first order part is hyperbolic provided p’(p) > 0.
== Problem of hyperbolic-elliptic type.
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Sharp interface framework: In the bulk

A set of PDEs in each bulk domain, e.g.
isothermal Euler equations
pr +div(pu) = 0,
(pu); +div(pu®u) + Vp(p) = 0.

Smooth solutions satisfy the entropy equality

in the bulk

(Wo)+StuaP) +div ((W(p)+ Sl + p(p) u) = 0.
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Sharp interface framework: At the interface

Conservation/ balance at the interface is equivalent to

Rankine-Hugoniot conditions
[[p(u V= wl/)]] = 07
[pu(u-v—w,)+vp(p)l

VOR,

®m v unit normal vector to the interface,
m w, normal velocity of the interface,

m x is the sum of the principal curvatures, o surface tension.

Entropy inequality

[t =) (W) + 1wt} | <o
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Uniqueness of solutions

Rankine Hugoniot conditions + entropy inequality = uniqueness.
Overview on well-posedness in 1D, see LeFloch, Hyperbolic systems of
conservation laws.

We need an additional condition called kinetic relation,
@(piaervuivqu’w) =0.
It must be compatible with the Entropy inequality.

Theorem (Benzoni-Gavage, Freistiihler '04):

The free boundary value problem for the Euler equations with a
van-der-Waals pressure function is locally well-posed, provided one
imposes the Rankine-Hugoniot conditions and zero entropy dissipation at
the interface, i.e.

|7+ 3wt -0
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Surface quantities lead to more general jump conditions

Satz: Dreyer 03
[p(w, —w,)] =0,
Y

=1

[o(w — w,)(a —w) +vp(p) ] =0,

and satisfy
w2
+ ) [+ 25| <o
where . B
[all = a* = o™ {a}:= S

m u, normal velocity of the fluid,
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Jump conditions including surface quantities
Surface quantities lead to more general jump conditions
Satz: Dreyer '03
opr

[o(w —w,)]l = — 5 Pr (divp (we) — Kwy ),
—_

=1

[p(w = wy)(a—w) +vpp) ]| =0,

and satisfy

w0t Wi+ B <o,

where .
at +a”
[l i=a* ™, fa}i= Tb
m pr surface mass density, divp surface divergence,

m wy tangential velocity of the interface.
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Jump conditions including surface quantities
Surface quantities lead to more general jump conditions
Satz: Dreyer 03

opr .
Lp( = w )l = =25 — pr (divr(up) — wuy)
e t

=1

Lo — ) —w) + wp(p) || = — 2 pr + divr(err),

ot
and satisfy
w2
+ ) [+ 25| <o
where . B
[all = a* = o™ {a}:= S

m pr surface mass density,

m or the surface stress vector.
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Jump conditions including surface quantities

Surface quantities lead to more general jump conditions

Satz: Dreyer '03 5
(s, = w,)] = =<5 — pr (dive(wp) - ww,).
S— 13

=1

[p(uwy —wy)(u—w)+vplp) ]| = —%—‘:pr + divp(or),

and satisfy

oWrp

ot
lu—wl?

i {wo)+ B gy [ + 2] <o

— (v — Wr) (divr(we) — Kw,)

m Wt surface Helmholtz free energy density,

m 7 surface tension, given by o = r HGBHZ'
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Aim of Sl limit

m Derive S| limit fitting into this framework, i.e, determine conditions
for

[o(w, —w,)],
[p(u —w,)(u—w) +vp(p)],

[[W’(p) + W_QWQ]]

and determine parameters pr, or, v, Wr. Surface quantities
given in terms of the solutions to the “inner equation”.

m These jump conditions determine the energy dissipation.

m Sl -entropy inequality can be directly derived from the “continuous”
entropy inequality.
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Choose a scaling

We non-dimensionalise the equations and choose

-2 tpr 2
M =0(1), Re:=0(7), ¥ = O(e7).

!
Scaled version of the NSK system
pr+V-(pu) = 0,
(pu); +div(pu®u) + Vp(p) = £2div(S) +ve2pVAp,

which means that the magnitudes of viscosity and capillarity are of the
same (small) order.
For a low Mach number scaling, see Hermsdorfer, Kraus, Kroner '09.
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Decomposition, and coordiante change at the interface

Decomposition the problem into
m "outer problem” away from the interface,
m "inner problem"” inside the interfacial layer,

these are linked by "matching conditions”

New coordinates (z, s, 7) in the interfacial layer
(Xv t) = (I‘E(S, T) + 52”6(57 T)a T)7

where r(-, t) is a parametrization of the interface
Fs(t) = {X eR?: pe(xv t) = p*}7

where p,. € (0, b) such that p’(ps) < 0.
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Assumptions

Quantities in inner coordinates (denoted by capital letters):

o0

R.(7,s,2) = ZsiRi(T, s,z) and Ug(r,s,2) Za (1,8, 2)

=0 i=0

Quantities in outer coordinates

o0

pe(x,t) = Zsipi(x, t) and u.(x,t) Z e'uy(x, ).
i=0

Position of the interface I'.(t) := {x € R? : p.(x,t) = psx}

m .
= 2 e'ri(T, s).
i=0
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Inner equations: leading order

We insert the inner expansions into (NSK) and change the coordinates.
Collecting the terms of order ¢! yields

—wy Ry .+ (Rovo - Up), = 0, (IE)
((VO . UO - wu)VU . UO)Z + W/(RO)z = 7R0,22z~
The first equation implies that the zeroth order mass flux
jo := Ro(vo - Ug — wyo)
is constant with respect to z. Hence,

- I:[po(u,,() — wl,o)]] = O
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Inner equations: leading order

Theorem (Benzoni-Gavage, Danchin, Descombes, Jamet, '07):

For |jo| « 1 there exist pF (jo) > 0 such that

[ 3] - o

HP(PO)JFZ(?)H = 0.

Furthermore there exists a solution Ry(jp) of (IE) satisfying

. z—+ .
Ro(jo) “==" pgt (jo)-

The interfacial normal velocity w, o can be computed from mass flux and
density.
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Inner equations: leading order

Theorem (Benzoni-Gavage, Danchin, Descombes, Jamet, '07):

For |jo| « 1 there exist pi (jo) > 0 such that

[0+ w0 —wa?]| = o

I
=

[2(po) + po(wo — wi0)?]

Furthermore there exists a solution R(jy) of (IE) satisfying

z—1+00 +

Ro(jo) "—" p (Jo)-

The interfacial normal velocity w,o can be computed from mass flux and
density.
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Inner equations:

For jo + 0 (IE) also implies
[6o - up]] = 0.
So we can choose the parameterisation of the interface such that
Wy = Ugo-

The O(e) order of the inner equations yields an inhomogeneous, linear
ODE system for Ry, U;.

By the Fredholm Alternative we find solvability conditions, which yield
the O(e) order of the jump conditions.
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Jump Conditions up to O(e) |

Theorem (Dreyer, Giesselmann, Kraus, Rohde, '10):

Under standard assumptions for asymptotic analysis the outer quantities
are subject to the following interface conditions

() — ()e)] = =22 — pr (dive o) — rotweo) + O,

where pr is the mass attributed to the interface and divr is the surface
divergence:

o 0
pr EJ Ro—pardz—i—ej Ry — pg dz,
=@

0

diVF(wgo) (HOOHU/oo)s-
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Jump Conditions up to O(e) Il

Theorem: continued

_dwo

[pe((w)e — (wi)e)(ue — We) +vep(pe)]l = aTOPF+diVF(0'F>+O(52)a

. . j 6 .
where o is the surface stress vector given by o}, = ’YFW with

(i g 2 (B 3
Yy = af (———-I—vRO’)dz—f—EJ <———_+7R
0 Ry PSF - — Ry Po

2
0,z

) dz.

When (7r)s = 0 = Young-Laplace like law
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Jump Conditions up to O(e) Il

Theorem: continued

1 Q0
[|2|uE —w|? + W’(pa)]] = —EJO vo - (Ug—ug). dz

0
—sj vy (Ug—uy),dz
—Q0

o[ ((2)) e

+0(e?).

A, v are bulk and shear viscosity parameters.
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Jump Conditions up to O(e) Il

Theorem: continued

1 Q0
[|2|uE —w|? + W’(pa)]] = —EJO vo - (Ug—ug). dz

0
—sj vy (Ug—uy),dz
—Q0

o[ ((2)) e

+0(e?).

A, v are bulk and shear viscosity parameters.

Is this a reasonable condition?
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Entropy dissipation at the interface

Theorem (Dreyer, Giesselmann, Kraus, Rohde, '10):

For ¢ sufficiently small the above jump conditions imply

,_?L Q0 1 2
0 > —5()\+2u)j§f ((R) > dz + O(e2)
—59 0/,

= I W (dive((we).) — Re ()2

o7
+ L { Wi + e
+{j:} HW’(,OE) + W]] |

the jump conditions are compatible with the 2nd law of Thermodynamics.
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Entropy dissipation at the interface

Theorem: continued

0 1 2 1 2
Wi =€J (W(Ro) — W)+ By ;Raz) dz

0 2 Ry 2pg
0 ) .2
N 2)
FE W(Ro) — W =t === g IR, ) dz
[ (Wi - wiag) + 5 2 ]

PR ) © (& _ &
’YFZEJ <+7R >dz+sJ (_+’yR
0 Ry P(T 0 —w \ o Po

87Z> dz

Gibbs adsorption law

A straightforward computation shows

1/ 5\
Wr —r = pr <9(P§)+2(9_r> >
Po

which is a special case of the Gibbs adsorption law.
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A different way to determine energy dissipation:

Apply coordinate change and inner expansion to the scaled entropy
equality:

2 2
e . €
(W(p) + g|u|2 + 2|Vp2> + div <<W(p) + §|u|2 + ”2|vp2> u>
t

+div ((p(p) — e®ons — e%ox) u+ ypVp(V - u))
= —c?ops : (Vu).

Then gathering O(c7!) terms gives

R
0= — wo (W(Ro> By ”(Ro,»?)

z

+ <<W(R0) + —|U 1> + (RO,Z)2) Ug’)

z

(PRS2 (Roeo = 5o WS + v Rofa U3 )

z
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A different way to determine energy dissipation:

This equation can directly be integrated and due to the matching
conditions we obtain

[[(W(/)o) + %luo\Q) (0 — wyo) + P(/)o)uuo]] =0
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A different way to determine energy dissipation:

This equation can directly be integrated and due to the matching
conditions we obtain

[ (W o0) + 2 1uol?) (o — w0) + ploo)uo ]| = 0

[ (W(o0) + plpo) + B0 = wol?) (o — wno) | =0

Use [po (w0 — wu0)] = 0, [po(uo — wi0)® + p(po)] = 0 and ugo = weo.
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A different way to determine energy dissipation:

This equation can directly be integrated and due to the matching
conditions we obtain

[ (Wo0) + 52 1u0[2) (w0 = w0) + ploo)uso || = 0
[[(W(Po) + p(po) + %Oluo - WoIQ) (uyo — wyo)]] =0

[ (0 " (00) + 221110 — wo ) (s — wno) | = 0

Use W(po) + p(po) = po W' (po).
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A different way to determine energy dissipation:

This equation can directly be integrated and due to the matching
conditions we obtain

[ (Wo0) + 52 1u0f2) (w0 = ws0) + ploo) o || = 0

[ (W 00) + plp0) + 52110 = wol?) (o — w0)]| =0

[[(Po W'(po) + %hlo - W0|2) (o — U/yo)]] =0

1
[[P()(Uuo — wyo) (W/(P()) + 5|U0 - Wo|2)1 =0

i.e. there is no zeroth order entropy dissipation at the interface.
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A different way to determine energy dissipation:
Similarly applying the coordinate change and inner expansion to the
entropy equality and gathering the O(c”) terms, gives an equation, which
(using a lot of technicalities) can be integrated and implies

oo il () ) oo
=2 (or = W) dive(wn)e) — re)2)

+ |:|:p€((uy)€ — (wy)e) (W/(PE) + ue_QWEP)H ’

with
0 1 j2 1 j2 v 0
WF=5J (W(RO)—W(p+)+O—0+R2Z) dz—i—sf
0 0 2Ry 2p5 2 > —0
. Jg ]g 2 0
")TIEJ <+7R Z) dz+5f
0 Ro :05r 0 —0
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Summary
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m For NSK an entropy inequality for the Sl limit can be derived using
the energy equality for the diffuse model.

m In fact it even gives the dissipation rate.

m The kinetic relation has to be in agreement with the entropy
inequality.

m If the kinetic relation is derived via a sharp interface limit, the
kinetic relation has to be compatible with the condition from the
energy equality.

m For mixtures without viscosity the situation is more involved
-> Talk of Clemens Guhlke.
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