O

AVNER FRIEDMAN
THE OHIO STATE UNIVERSITY

fotlie) Department of
Saud Mathematics m bl




Table of Contents

‘Introduction
Tumor Growth (systems of PDE with free
boundary)

‘Wound Healing (systems of PDE with free
boundary)



Introduction

‘Recent years have seen a dramatic
increase in the number and variety of
new mathematical models of biological
processes that are formulated by
systems of PDEs.

| will describe such models, with free
boundary, state mathematical results,
and suggest open problems.



Tumor in porous-like tissue

Consider species p; (1 =i <= m)with velocities v, interacting with rates k,

Conservation Law:

op, =
Ly div(v,p) =2k, p,

ot
p, = density of proliferating cells (cancer cells)

p, = density of quiescent cells
p; = density of dead cells
k; =k;(c)

2p.(x,t) = const. =1

—

v, =v = -Vx Darcy's Law (7 = pressure)



Am = -2k, (c)p; in Q(¢)
7 =vk onI'(¢?)

c=conl(?) ['(z)
c(x,0) =c (x) on (0) _

pi(x> O) = p;, o1 Q(O)

Theorem 1. (X. Chen, Friedman) For smooth £, (c),I'(0) and ¢, (x), p,,(x),
there exists a unique smooth solution for small time interval.

Theorem 2. For radially symmetric data there exists a unique radially
symmetric solution with smooth free boundary r = R(t) for all t>o.



Questions

1.Does there exist a unique stationary radially
symmetric solution? Is it asymptotically stable?

2.Are there non-radially symmetric stationary

solutions?

Nearly complete answers are known only
in the special where p =1,p, =p, =0.



o = nutrient concentration

Tumor cells density is uniform.

Proliferation of tumor cells: u(c — ), 0 <& < 1.
Tumor cells move with velocity v.

divi = u(o — o) (conservation of mass)




1. Ot — Ao —|— c=20
Darcy’'s Law v = —Vp

2. Ap=—ulc—-0),0<o<1

By scaling, v = 1.
T




Stationary Spherical Solution

R sinhr _
o L ps(r) = C — pos(r) + Ear,

7s(") = Sinh Rs
where C = 1/Rs+ p— puodR%/6 and Rg is uniquely deter-

mined by the
Rscoth R; — 1
R
Let u be bifurcation parameter.

Theoremi(Reitich, Fontelos, Friedman)3 infinite number
of symmetry breaking bifurcation branches of solutions:

r = Rs + EYn,O(H) + 0(62)
1= pn + €pin1 + O(€?)
n[n(n + 1) — 2]1; 2(Rs)
2R313/2(Rs)Is/2(Rs)/I3/2(Rs) — Ing3/2(Rs)/Iny1/2(Rs)]

o
3

Hn —

and p,(Rs) < ppt1(Rs).




p = p2(e)

p = uz(e) p = pa(e)

aves

¢

dim?2 :

¢

(/M |

r = Ry 4 ecosnf + 0(&?)

1= pin + pne + 0(e?)




In addition to the branch of solutions with » = R, +

eY, ,(0)+--- there exist solutions

r=R_ + 8)7,1(0,,0,8),

Y.(6,p,¢) = ng Y a,,Y,,0,p)
=0 m=—n

where fn 1s invariant under a group of transformations
as reported in the book by M. Golubitsky, I. Stewart, D.G. Shaeffer:
"Singularities and Groups in Bifurcation Theory, Vol. II)."



n=>5 0(2),D3 (2<m<5)
n=7,11: 0(2),0,D%  (n/3 <m <n)

n=9,13,17,19,23,29:0(2),0,0,D%  (n/3 < m < n)

all other odd n: 0(2),0,0,[],Di  (n/3 <m < n)
n=2: O(2) ® Z5

n=4,8,14: 0(2) ® 75,0 @ Z5

all other even n: O(2)® 25,06 Z5,[) ® Z5.

For n = 2.Y, = Y,(0,¢) is the only solution, for n = 3
there are two more solutions, etc.



Proof of Bifurcation Branches
r = RS’ _l_ R(Ga 90)

solve all the PDE system except for the free boundary

—

condition v-n = 0.

Define

We need:
OF

A
This determines A = uy,

0

Tools:| Crandall-Rabinowitz Theorem




The spherical solution is unstable for u > u,.
But 1s 1t asymptotically stable for u < u, 2

Or does it lose stability at some u < u,.



unstable?
stable?

unstable

stable

H2 M3 Ha4

unstable?
stable?

pi = pi(Rs)
We begin with linear stability:

| Results|(joint with Bei Hu)

1. If Ry > R the sphere is stable for all u < u»

2. If R; < R the sphere becomes unstable at u%(R;)
N;(Rs) < H2.

R = 0.622207 ...




Proof of Linear Stability

e Linearize the system
e Develop the solution in terms of spherical harmonics
e [ake Laplace transform

e Solve for the Laplace transform of the free bound-
ary

p(s,0) = an(S)Yn,O(Q) :

kn(s)
hn(S, /J’)

pn(s) =

e Study the location of the zeros of h,(s, ).




R, > R linearly

unstable
linearly
stable unstable
U2
linearly
= stable
R, < R
linearly
Hopf unstable
bifurcatiax J/
*k
stable Mo o

At p = p5 every solution of the linearized problem is
asymptotically convergent to a periodic solution.



Nonlinear stability|is hard, because the problem is invari-

ant under translation. We need to use the contraction
fixed point theorem, but at each iteration step we need
to move the coordinate system using another fixed point
theorem:

Theorem.| Let (X,|| -||) be a Banach space and let
Bg(a) denote the closed ball in X with center a and
radius K. Let F be a mapping from Bg(a) into X such
that

(i) its Frechét derivative F7(x) exists,
(ii) the operator F'r(a) is invertible, and

(iii) there exists a positive constant 8 < 1 such that

15
O = i@y
16} _
1FH@) = F@)| < Tl for @ € Bic(a),

where ||A|| denotes the norm of a linear operator A
from X to X. Then the equation F(x) = O has a
unique solution = in Bg(a).



Tumor in fluid-like tissue

The growth of a tumor depends on the tissue
constituency in the environment.

For some tumor it is reasonable to replace Darcy’s Law
v = —Vp by Stoke's equation

1



Model Equations
or—DNo+o=0, z€Q1),t>0
o=1 x&€I'(¢),t>0

—AT+Vp=£4V(e—-7), € Q),t>0

divi = pu(oc — ), € Qt),t>0 (6 <1)

To(¥,p) = (VO)T + VT — pI

T(¥,p) = To(¥,p) — 5u(1 —G)




Multiscale model

Cell cycle is divided into 4 stages

DNA is replicated in S phase (S for synthesis).
Chromosomes condense and segregate in M phase (M
for mitosis). Gap phases G7 and G2 separate S and M
phases.

R, check
point

o

G1
9 hrs

R, check
point




Op; . Opi

4+ 4+ div(p®) = X\(w)p; for 0 < s; < A; (1 =0,1,2,3),
ot 882'
Opa . —
E—I-dzv(pw) = pap1(x,t, A1) Fpopa(z,t, A2)—Aapa for 0 < s4 < Ay
pl(CIJ,t,O) — p3($,t,A3),
p2(x7t7 O) — p]_(CU,t,A]_)[l - K(w('m?t)a Q(w)t)) - ,UJl] —I_pO(:E)ta AO)7
p3($,t, O) — (1 - AUJQ)p2($)taA2)7
po(CU,t,O) — p]_(a’),t,Al)K(’LU(CB,t),Q(ZE,t)).

K(w,Q) +p1 <1,
Kw, Q)T ifw ], orQT.




Ai
Qi =fE(x9t9Si)dSi
0

Q=in‘

S Lt a0 = T A0 - 10,

4
Assume = const. =1 and use Darcy's Law
5 y

The above system has a local in-time solution, and, in the radially symmetric case,
the solution 1s global in time with free boundary » = R(¢)
If mutations occur such that
K(w,Q) = const.=0
then R(t) > ast— o ifd >, (cancer)
R(t)—=0ast—>if § > 4..
If however K = K(Q) can control Q ,
then R(¢) remains bounded, and R(¢) R(0). [A. Friedman, B. Hu, C.Y. Kao]



Wound Healing

P
isotropic
pressure
in €2(¢)

w(t)

£2(1)

L)

N 9 (dv, dv, oP
S\ ox. o,

l l

axj

ox, Ox,

=— 1n Q(?)

3 0V,
En(av’ +— )ni = Pv, onT'(¢)
=

P 2
X +x, =L



P = P(p) = const. F(

9P

ot

+div(vp) =

kw

w+k

Po

|

£

o

p max

)—Ap




The free boundary o (#, x) = O satisfies
o,+n-Veg =0 or I'(?)

Theorem (A. Friedman, B. Hu, C. Xue, 2011)
There exists a unique solution for small time
interval.

Step 1. Given f, w, prove existence and
estimates for the coupled conservation law for p,
and the elliptic free boundary system.

Step 2. Include f, w and several other variables
(satisfying PDEs) and use a fixed point theorem.




Open problems:

Global existence
Properties of the wound’s boundary

Recent results in the radially symmetric 2-d case
(Friedman, B. Hu, C. Xue 2011),

(1—a)(w—w0)+aa—w=0
on



* The free boundary 1s » = R(?) 1s decreasing in t

* If o 1s near 1 (not much oxygen inflow) then
R(t) = const. >0 for all ¢ large (¢ > ¢,)

“Ischemic wounds do not heal”



Experiments Conducted in the
Comprehensive Wound Center at OSU




Model Simulations and Experimental Results
C. Xue, A. Friedman, C. Sen (PNAS, 2010)
141
9 Macrophage density at the wound edge
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5_
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Back to the 3-d wound.

Problem.
Give conditions on P and '(0) so that the wound
will begin to close.

For example, in the axially symmetric case, if

1
A = {x, =z(t,n)}, r=(x} +x})?,
for which P(x,0) and A(0)

f)

Zt |t=0>0 *
1
. — — sl 2\2
i.e. vz -v,<0 vV, =(v,tV;)

This is an elliptic problem in a fixed domain!



