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One of the biggest issue in restorative dentistry
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Applications:
- Porosimetry test
- Demineralized dentin
infiltration

 Lack of durability -> due to insufficient impregnation of the
fibrous tissue

 The fibrous tissue -> a collagen fiber network revealed by
demineralization

Porosimetry tests
(MIP) and SEM

observation

Modeling the fibrous tissue infiltration

Data for the model

Comparison

Model validation and
porosimetry test better
understanding

1
3

Infiltration model:
- Vertical fibers
- General fibrous tissue

2
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Porosimetry tests1

• Principle
 Dry sample
 Sample chamber : filled with mercury
 Incremental pressure pHg  : applied to

mercury
 Measuring the mercury volume that entered

the pores of the sample at each pressure
increment pHg

 Volume versus pore diameter D
 Porosity, pores sizes and their distribution

Jurin-Laplace

Sample chamber

Capillary

• MIP
 Porosity quantification
 Detection of pore sizes between 10nm and 100µm
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Porosimetry tests

• Demineralized and freeze dried dentin

1

Vennat et al. (2009)
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Porosimetry tests

• Demineralized and freeze dried dentin

- Tubules and microtubules

0,9µm

1

Vennat et al. (2009)
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Porosimetry tests

• Demineralized and freeze dried dentin

- Tubules and microtubules

  1µm

- Interfibrillar spaces

1

Vennat et al. (2009)
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Porosimetry tests

• Demineralized and freeze dried dentin

60-90%

 Bimodal distribution :
• Tubules and microtubules
• Interfibrillar spaces

- Tubules and microtubules

 1µm

- Interfibrillar spaces
In good agreement with
Driessens et Verbeeck (1990)

1

Vennat et al. (2009)
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Porosimetry tests

• Data deduced from MIP
• Demineralized dentin mean porosity : 70%
• Fiber network porosity : 55%
• Limitations : drying (artifacts), overestimation of small porosities,

cylinder geometry hypothesis

1

2 Infiltration model in the fibrous network
• The question : how the resin is infiltrating the fibrous
network?

2.1 Capillary rise in vertical cylinder arrays
2.2 Capillary rise in the demineralized dentin
collagen fiber network

Finite element modeling with special care of 
surface tension effects
Level set method to track the front

3 Applications
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• Generalized Laplace’s equation (Vennat et al., 2010 and
Finn, 2001)

Capillary rise in a vertical cylinder array2.1

S0

Z(x,y)

S

θ

νS0

n

S0

Boundary conditions
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• Boundary conditions

Capillary rise in a vertical cylinder array2.1

S0

0
This external boundary is chosen to be sufficiently far from
the cylinders to have no influence on the height of rise

θ

νS0

n

S0
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• Generalized Laplace’s equation
• Two touching cylinders

• Theoretical height of rise h : « infinity »

• Diverging computational height of rise h : OK

Capillary rise in a vertical cylinder array2.1
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• Generalized Laplace’s equation
• Comparison with the theoretical study of Princen (1969)

• In agreement with Princen (1969)
• No hypothesis on Z2

Capillary rise in a vertical cylinder array2.1

Capillary rise between
two identical cylinders

Princen’s hypothesis Z2>>r
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• Generalized Laplace’s equation
• Comparison with the study of Liu et al. (2007)

• No agreement because of a doubtful geometrical hypothesis
• Agreement between numerical and theoretical  study if this

hypothesis is replaced by

Capillary rise in a vertical cylinder array2.1

Additional geometrical condition
to the theoretical study

Z Isovalues between cylinders of different
diameters obtained numerically
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• Solving the generalized Laplace’s equation allows:
• To overcome the limitation Z2>>r
• To consider any cylinder cross section (not only

circular)

Capillary rise in a vertical cylinder array2.1

Example of capillary
rise in a ellipse
based cylinder array
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• An original experimental set up

Capillary rise in a vertical cylinder array2.1

Micro-drilled basis Rods of known diameter

Silicon oil

Geometry verification using an optical microscope

Capillary rise observation

Comparison with the model
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Level Set Method to track the
front defined as an isovalue of

Navier Stokes equation
 Capillarity give rise to a new term

Capillary front

Fluid 2

Surface tension term

Fluid 1

Coupling
through v

• Modified Navier-Stokes equations and Level Set Method
coupling

Brackbill (1992)

Capillary front in a more complex geometry2

Sethian (1996)

2.2
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2.2

hypothesisCapillary membrane
(front)

Fluid 2

Fluid 1

• Virtual power principle Surface term taking into
account capillary effects

Capillary front in a more complex geometry

Vennat et al. (2010)
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?

Triple line
n
nwν

θ<π/2

S

Wetting fluid
example: dental resin

Non-wetting fluid
example: mercury

θ>π/2

• Boundary condition on the triple line
• Fixed contact angle θ

• Thus the capillary membrane is pulled down or up
depending on ν

Vennat et al. (2010)

ν

ν

2.2 Capillary front in a more complex geometry
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2.2 Capillary front in a more complex geometry

• Previous equations allow to compute the capillary front:
• In any complex geometry
• Capillarity is taken into account (additional term in Navier

Stokes equations)
• Either wetting or non-wetting fluid can be considered

• Equations solved using FE method (Comsol)
• 3.1 Validation through porosimetry test modeling
• 3.2 Practical conclusion in the restorative dentistry field

3
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Demineralized dentin modeling

• FE modeling using COMSOL
• Geometrical modeling of demineralized dentin

 Collagen fibers: cylinders (diameter 100nm)
 Isotropic fiber distribution
 Fiber network porosity: 55%
 Materialization of the fibers using their characteristic function H

and specific boundary conditions on the triple line

3

E. Vennat         FBP 2012 24

• FE modeling using COMSOL
• Geometrical modeling of demineralized dentin

 Materialization of the fibers using their characteristic function H
and the boundary conditions on the triple line

Capillary membrane surface
defined by the isovalue of

Triple line

3 Demineralized dentin modeling

Second part of weak formulation presented slide 15

Burchard et al. (2001)

Osher. (2004)
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Porosimetry test modeling

Mercury ⇒ Successive pressure 
increments Δp

Mercury
Fixed contact
angle

No slip

Initial position of the front

• Qualitative simulation of the porosimetry test
• Thin 3D model

3.1

N/m0.485γm

rad6π/8ϑ0

UnityValueParameter
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• Qualitative simulation of the porosimetry test

2
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Tubule

Low fibrillar
density area

1

Area filled by mercury

Porosimetry test modeling3.1
V

ennat et al., accepted in C
M

B
B

E
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• Relevant qualitative simulation

 Large pores are infiltrated first:
• Tubules
• Large interfibrillar spaces non-separated by a throat

 Porosimetry limitation illustrated :
• Small pores are overestimated

Porosimetry test modeling3.1
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• Three dimensional modeling

Mercury
front

Applied pressure to
the mercury

Quarter of a tubule

Fibrous tissue made of
collagen fibers

Porosimetry test modeling3.1
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• Three dimension modeling
• 0,3MPa (D=2microns) : tubule penetration
• 3MPa (200nm) - 10MPa (70nm) : fibrous tissue penetration

• Visual analysis satisfactory
• Pore sizes not so easy to distinguish

Porosimetry test modeling3.1
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≈ Water

• Geometry in accordance with
SEM images

• Wetting liquid penetration in demineralized dentin

Water

Initial front position
Fixed
contact
angle

Hydrostatic
pressure

No pressure

No slip

Wetting fluid infiltration3.2

N/m0.073γm

rad3π/8ϑ0

UnityValueParameter
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•  Geometry in accordance with
SEM images

• interfibrillar spaces infiltration
• Then tubule penetration

• Wetting liquid penetration in demineralized dentin

Wetting fluid infiltration3.2

≈ Water

N/m0.073γm

rad3π/8ϑ0

UnityValueParameter
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• Wetting liquid penetration in demineralized dentin

Wetting fluid infiltration3.2
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• Wetting liquid penetration in demineralized dentin

Wetting fluid infiltration3.2
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• Wetting liquid penetration in demineralized dentin

Wetting fluid infiltration3.2
V

ennat et al., accepted in C
M

B
B

E
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• Wetting liquid penetration in demineralized dentin

Wetting fluid infiltration3.2

No need to increase the
resin application time to

have a better impregnation
of the network
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Conclusion

Data for the model :
Total porosity 70%
Fiber network porosity 55%
Two distinct pore sizes

1µm 50nm

Contribution:
Educational tool
3D simulation

Comparison
Pore sizes OK
But hard to distinguish
on a graph

Porosimetry tests and
SEM observation

Infiltration model:
- vertical fibers
- general fibrous tissue

Applications:
- Porosimetry test
- Demineralized dentin
infiltration

Model validation and
porosimetry test better
understanding

1

2

3
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Future work

• Taking into account fiber deformation : elasto-capillarity
• Experimental and computational studies


