An overdetermined problem with non constant boundary condition

Paolo Salani
Università di Firenze

joint work (in progress) with
Chiara Bianchini and Antoine Henrot

$12^{\text {th }}$ International Conference on
Free Boundary Problems

Theory \& Applications
Frauenchiemsee, Germany, 11-15 June 2012

The original Serrin's problem

J. Serrin, A symmetry problem in potential theory Arch. Rat. Mech. Anal. 43 (1971), 304-318

The original Serrin's problem

J. Serrin, A symmetry problem in potential theory

Arch. Rat. Mech. Anal. 43 (1971), 304-318
If Ω is a smooth domain in \mathbb{R}^{n} and there exists a regular solution of

$$
\begin{cases}-\Delta u=1 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

such that

$$
|\nabla u|=C \quad \text { on } \partial \Omega
$$

The original Serrin's problem

J. Serrin, A symmetry problem in potential theory

Arch. Rat. Mech. Anal. 43 (1971), 304-318
If Ω is a smooth domain in \mathbb{R}^{n} and there exists a regular solution of

$$
\begin{cases}-\Delta u=1 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

such that

$$
|\nabla u|=C \quad \text { on } \partial \Omega
$$

$$
\Rightarrow
$$

then Ω must be a ball and

$$
u(x)=\frac{r^{2}-|x|^{2}}{2 n}
$$

for some $r>0$ (up to translations).

The original Serrin's problem

J. Serrin, A symmetry problem in potential theory

Arch. Rat. Mech. Anal. 43 (1971), 304-318
If Ω is a smooth domain in \mathbb{R}^{n} and there exists a regular solution of

$$
\begin{cases}-\Delta u=1 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

such that

$$
|\nabla u|=C \quad \text { on } \partial \Omega
$$

$$
\Rightarrow
$$

then Ω must be a ball and

$$
u(x)=\frac{r^{2}-|x|^{2}}{2 n}
$$

for some $r>0$ (up to translations).
Technique: MOVING PLANE METHOD!

Non constant Neumann boundary condition

What happens if we allow the normal derivative of u to be not constant on $\partial \Omega$?

Non constant Neumann boundary condition

What happens if we allow the normal derivative of u to be not constant on $\partial \Omega$?

$$
\begin{cases}-\Delta u=1 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega \\ |\nabla u|=\text { something, but not constant } & \text { on } \partial \Omega\end{cases}
$$

Non constant Neumann boundary condition

What happens if we allow the normal derivative of u to be not constant on $\partial \Omega$?

$$
\begin{cases}-\Delta u=1 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega \\ |\nabla u|=\text { something, but not constant } & \text { on } \partial \Omega . \\ \Rightarrow ? ? ? & \end{cases}
$$

Non constant Neumann boundary condition

What happens if we allow the normal derivative of u to be not constant on $\partial \Omega$?

$$
\begin{cases}-\Delta u=1 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega \\ |\nabla u|=\text { something, but not constant } & \text { on } \partial \Omega . \\ \Rightarrow ? ? ? & \end{cases}
$$

Of course Ω is no more a ball!

Even though...

Non constant Neumann boundary condition

What happens if we allow the normal derivative of u to be not constant on $\partial \Omega$?

$$
\begin{cases}-\Delta u=1 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega \\ |\nabla u|=\text { something, but not constant } & \text { on } \partial \Omega . \\ \Rightarrow ? ? ? & \end{cases}
$$

Of course Ω is no more a ball!
Even though... it is known that if $|\nabla u| \sim$ Const, then $\Omega \sim$ a ball. See for instance [Aftalion-Busca-Reichel, Adv. Diff. Eq. 1999] and [Brandolini-Nitsch-S.-Trombetti, JDE 2008].

Our problem

Given $g: \mathbb{R}^{n} \rightarrow[0,+\infty)$, is it possible to find Ω such that a solution to the following problem exists?

Our problem

Given $g: \mathbb{R}^{n} \rightarrow[0,+\infty)$, is it possible to find Ω such that a solution to the following problem exists?

$$
\begin{cases}-\Delta u=1 & \text { in } \Omega \tag{0.1}\\ u=0 & \text { on } \partial \Omega \\ |\nabla u(x)|=g(x) & \text { on } \partial \Omega\end{cases}
$$

Our problem

Given $g: \mathbb{R}^{n} \rightarrow[0,+\infty)$, is it possible to find Ω such that a solution to the following problem exists?

$$
\begin{cases}-\Delta u=1 & \text { in } \Omega \tag{0.1}\\ u=0 & \text { on } \partial \Omega \\ |\nabla u(x)|=g(x) & \text { on } \partial \Omega\end{cases}
$$

Questions: Existence, Uniqueness, Regularity....

Our problem

Given $g: \mathbb{R}^{n} \rightarrow[0,+\infty)$, is it possible to find Ω such that a solution to the following problem exists?

$$
\begin{cases}-\Delta u=1 & \text { in } \Omega \tag{0.1}\\ u=0 & \text { on } \partial \Omega \\ |\nabla u(x)|=g(x) & \text { on } \partial \Omega\end{cases}
$$

Questions: Existence, Uniqueness, Regularity....
How does the geometry of g influence the geometry of Ω ?

Our problem

Given $g: \mathbb{R}^{n} \rightarrow[0,+\infty)$, is it possible to find Ω such that a solution to the following problem exists?

$$
\begin{cases}-\Delta u=1 & \text { in } \Omega \tag{0.1}\\ u=0 & \text { on } \partial \Omega \\ |\nabla u(x)|=g(x) & \text { on } \partial \Omega\end{cases}
$$

Questions: Existence, Uniqueness, Regularity.... How does the geometry of g influence the geometry of Ω ?

Problem close to [Gustafsson-Shahgholian, J. Reine Angew. Math., 1996]. They study $\quad-\Delta u=f \quad$ where f is a function (or a measure) whose positive part f_{+}has compact support.
This makes a real difference as the radial case shows.

The torsional rigidity

For any bounded open set Ω we denote by u_{Ω} the solution of of the torsion problem (u_{Ω} is sometimes called the stress function of Ω)

$$
\left\{\begin{array}{cc}
-\Delta u_{\Omega}=1 & \text { in } \Omega \tag{0.2}\\
u_{\Omega}=0 & \text { on } \partial \Omega
\end{array}\right.
$$

or, in its weak form

$$
\begin{equation*}
u_{\Omega} \in H_{0}^{1}(\Omega), \quad \forall v \in H_{0}^{1}(\Omega), \quad \int_{\Omega} \nabla u_{\Omega} \nabla v=\int_{\Omega} u_{\Omega} v \tag{0.3}
\end{equation*}
$$

u_{Ω} is characterized also as

$$
\begin{gather*}
u_{\Omega}=\operatorname{argmin}\left\{G_{\Omega}(v), v \in H_{0}^{1}(\Omega)\right\} \text { where } \\
G_{\Omega}(v)=\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\int_{\Omega} v d x \tag{0.4}
\end{gather*}
$$

The torsional rigidity

For any bounded open set Ω we denote by u_{Ω} the solution of of the torsion problem (u_{Ω} is sometimes called the stress function of Ω)

$$
\left\{\begin{array}{cc}
-\Delta u_{\Omega}=1 & \text { in } \Omega \tag{0.2}\\
u_{\Omega}=0 & \text { on } \partial \Omega
\end{array}\right.
$$

or, in its weak form

$$
\begin{equation*}
u_{\Omega} \in H_{0}^{1}(\Omega), \quad \forall v \in H_{0}^{1}(\Omega), \int_{\Omega} \nabla u_{\Omega} \nabla v=\int_{\Omega} u_{\Omega} v \tag{0.3}
\end{equation*}
$$

u_{Ω} is characterized also as

$$
\begin{gather*}
u_{\Omega}=\operatorname{argmin}\left\{G_{\Omega}(v), v \in H_{0}^{1}(\Omega)\right\} \text { where } \\
G_{\Omega}(v)=\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\int_{\Omega} v d x \tag{0.4}
\end{gather*}
$$

The Torsional Rigidity of Ω

$$
\tau(\Omega)=-2 G_{\Omega}\left(u_{\Omega}\right)=\int_{\Omega} u_{\Omega} d x=\int_{\Omega}\left|\nabla u_{\Omega}\right|^{2} d x
$$

A shape optimization (and localization) problem

Problem

$$
\text { Maximize } \tau(\Omega) \text { with the constraint } \int_{\Omega} g(x)^{2} d x \leq 1 \text {. }
$$

It is a variant of the famous Saint-Venant's problem (to maximize torsonial rigidity among sets with given measure), connected to the Serrin's problem. Here we have a not uniform density, driven by the function g^{2}.

A shape optimization (and localization) problem

Problem

$$
\text { Maximize } \tau(\Omega) \text { with the constraint } \int_{\Omega} g(x)^{2} d x \leq 1 \text {. }
$$

It is a variant of the famous Saint-Venant's problem (to maximize torsonial rigidity among sets with given measure), connected to the Serrin's problem. Here we have a not uniform density, driven by the function g^{2}. EQUIVALENTLY: Define

$$
\begin{equation*}
J(\Omega)=-\frac{1}{2} \tau(\Omega)=-\frac{1}{2} \int_{\Omega}\left|\nabla u_{\Omega}\right|^{2} d x \tag{0.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi(\Omega)=\int_{\Omega} g^{2}(x) d x \tag{0.6}
\end{equation*}
$$

A shape optimization (and localization) problem

Problem

$$
\text { Maximize } \tau(\Omega) \text { with the constraint } \int_{\Omega} g(x)^{2} d x \leq 1 \text {. }
$$

It is a variant of the famous Saint-Venant's problem (to maximize torsonial rigidity among sets with given measure), connected to the Serrin's problem. Here we have a not uniform density, driven by the function g^{2}. EQUIVALENTLY: Define

$$
\begin{equation*}
J(\Omega)=-\frac{1}{2} \tau(\Omega)=-\frac{1}{2} \int_{\Omega}\left|\nabla u_{\Omega}\right|^{2} d x \tag{0.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi(\Omega)=\int_{\Omega} g^{2}(x) d x \tag{0.6}
\end{equation*}
$$

$(S O P b) \quad \min \{J(\Omega): \phi(\Omega) \leq 1\}$.

Assumptions on g

In order to find a solution to the overdetermined $\mathrm{pb}(0.1)$, we will make the following assumptions on the density $g: \mathbb{R}^{n} \rightarrow[0,+\infty)$:

Assumptions on g

In order to find a solution to the overdetermined $\mathrm{pb}(0.1)$, we will make the following assumptions on the density $g: \mathbb{R}^{n} \rightarrow[0,+\infty)$:

Strong A

```
( \(g\) Hölder continuous,
    \(\alpha\)-homogeneous, i.e. \(g(t x)=t^{\alpha} g(x)\) for every \(t>0\), for some \(1 \neq \alpha>0\),
    \(g>0\) outside 0.
```


Assumptions on g

In order to find a solution to the overdetermined $\mathrm{pb}(0.1)$, we will make the following assumptions on the density $g: \mathbb{R}^{n} \rightarrow[0,+\infty)$:

Strong A

```
\(g\) Hölder continuous,
    \(\alpha\)-homogeneous, i.e. \(g(t x)=t^{\alpha} g(x)\) for every \(t>0\), for some \(1 \neq \alpha>0\),
    \(g>0\) outside 0.
```

Notice that, by homogeneity, g is completely determined by one of its level sets, say $G_{1}=\left\{x \in \mathbb{R}^{n}: g(x) \leq 1\right\}$ and the degree of homogeneity α.

Assumptions on g

In order to find a solution to the overdetermined $\mathrm{pb}(0.1)$, we will make the following assumptions on the density $g: \mathbb{R}^{n} \rightarrow[0,+\infty)$:

Strong A

```
\(g\) Hölder continuous,
    \(\alpha\)-homogeneous, i.e. \(g(t x)=t^{\alpha} g(x)\) for every \(t>0\), for some \(1 \neq \alpha>0\),
    \(g>0\) outside 0.
```

Notice that, by homogeneity, g is completely determined by one of its level sets, say $G_{1}=\left\{x \in \mathbb{R}^{n}: g(x) \leq 1\right\}$ and the degree of homogeneity α. In fact, to solve the shape optimization problem (SOPb), it is sufficient to assume the following:

Weak A

$g \in C\left(\mathbb{R}^{n}\right)$ and $\lim _{|x| \rightarrow \infty} g(x)=+\infty$.

From (SOPb) to the overdetermined problem (0.1)

The following will explain why we need assumption (Strong A) to solve (0.1).

From (SOPb) to the overdetermined problem (0.1)

The following will explain why we need assumption (Strong A) to solve (0.1).
Once we have a (sufficiently regular) solution Ω of the (SOPb), we can use the classical shape derivative to get that \exists a Lagrange multiplier λ such that

$$
\left|\nabla u_{\Omega}(x)\right|=\lambda g(x) \quad \text { on } \partial \Omega .
$$

From (SOPb) to the overdetermined problem (0.1)

The following will explain why we need assumption (Strong A) to solve (0.1).
Once we have a (sufficiently regular) solution Ω of the (SOPb), we can use the classical shape derivative to get that \exists a Lagrange multiplier λ such that

$$
\left|\nabla u_{\Omega}(x)\right|=\lambda g(x) \quad \text { on } \partial \Omega .
$$

Then (0.1) is solved if $\lambda=1$,

From (SOPb) to the overdetermined problem (0.1)

The following will explain why we need assumption (Strong A) to solve (0.1).
Once we have a (sufficiently regular) solution Ω of the (SOPb), we can use the classical shape derivative to get that \exists a Lagrange multiplier λ such that

$$
\left|\nabla u_{\Omega}(x)\right|=\lambda g(x) \quad \text { on } \partial \Omega .
$$

Then (0.1) is solved if $\lambda=1$, but in general we cannot control $\lambda \ldots$.

From (SOPb) to the overdetermined problem (0.1)

The following will explain why we need assumption (Strong A) to solve (0.1).
Once we have a (sufficiently regular) solution Ω of the (SOPb), we can use the classical shape derivative to get that \exists a Lagrange multiplier λ such that

$$
\left|\nabla u_{\Omega}(x)\right|=\lambda g(x) \quad \text { on } \partial \Omega .
$$

Then (0.1) is solved if $\lambda=1$, but in general we cannot control $\lambda \ldots$... On the other hand, if we consider the set $t \Omega$, for $t>0$, we get

$$
u_{t \Omega}(x)=t^{2} u_{\Omega}\left(\frac{x}{t}\right) \quad x \in t \Omega
$$

From (SOPb) to the overdetermined problem (0.1)

The following will explain why we need assumption (Strong A) to solve (0.1).
Once we have a (sufficiently regular) solution Ω of the (SOPb), we can use the classical shape derivative to get that \exists a Lagrange multiplier λ such that

$$
\left|\nabla u_{\Omega}(x)\right|=\lambda g(x) \quad \text { on } \partial \Omega .
$$

Then (0.1) is solved if $\lambda=1$, but in general we cannot control $\lambda \ldots$... On the other hand, if we consider the set $t \Omega$, for $t>0$, we get

$$
u_{t \Omega}(x)=t^{2} u_{\Omega}\left(\frac{x}{t}\right) \quad x \in t \Omega
$$

whence

$$
\left|\nabla u_{t \Omega}(x)\right|=t\left|\nabla u_{\Omega}\left(\frac{x}{t}\right)\right|=t \lambda g\left(\frac{x}{t}\right) \quad \text { on } \partial(t \Omega) .
$$

From (SOPb) to the overdetermined problem (0.1)

The following will explain why we need assumption (Strong A) to solve (0.1).
Once we have a (sufficiently regular) solution Ω of the (SOPb), we can use the classical shape derivative to get that \exists a Lagrange multiplier λ such that

$$
\left|\nabla u_{\Omega}(x)\right|=\lambda g(x) \quad \text { on } \partial \Omega
$$

Then (0.1) is solved if $\lambda=1$, but in general we cannot control $\lambda \ldots$... On the other hand, if we consider the set $t \Omega$, for $t>0$, we get

$$
u_{t \Omega}(x)=t^{2} u_{\Omega}\left(\frac{x}{t}\right) \quad x \in t \Omega
$$

whence

$$
\left|\nabla u_{t \Omega}(x)\right|=t\left|\nabla u_{\Omega}\left(\frac{x}{t}\right)\right|=t \lambda g\left(\frac{x}{t}\right) \quad \text { on } \partial(t \Omega)
$$

Then, thanks to the homogeneity of g, we have

$$
\left|\nabla u_{t \Omega}(x)\right|=t^{1-\alpha} \lambda g(x)
$$

and the overdetermined problem (0.1) is solved by $t \Omega$ where $t=\lambda^{1 /(\alpha-1)}$ if $\alpha \neq 1$.

Two remarks

Two remarks

The case $\alpha=1$ is really special. As we can see explicitly in the radially symmetric case, it is possible to have no solution or an infinite number of solutions. Indeed, let $g(x)=a|x|$: as it is easily proved by Schwarz symmetrization, the solution has to be a ball. Now, looking for a ball of radius R solving (0.1) is equivalent to solve $g(R)=R / N$ (because $\left.u_{B_{R}}=\left(R^{2}-|x|^{2}\right) / 2 N\right)$ and the result follows according to the value of a.

Two remarks

The case $\alpha=1$ is really special. As we can see explicitly in the radially symmetric case, it is possible to have no solution or an infinite number of solutions. Indeed, let $g(x)=a|x|$: as it is easily proved by Schwarz symmetrization, the solution has to be a ball. Now, looking for a ball of radius R solving (0.1) is equivalent to solve $g(R)=R / N$ (because $\left.u_{B_{R}}=\left(R^{2}-|x|^{2}\right) / 2 N\right)$ and the result follows according to the value of a.

A possible different approach is to consider the following penalized minimization problem (instead that the constrained one):

$$
\min \left\{F(\Omega)=J(\Omega)+\frac{1}{2} \phi(\Omega)\right\}
$$

as in [Gustafsson-Shahgholian 1996] or [Alt-Caffarelli 1981].
But an inspection of the radial case again shows that F may be unbounded and

$$
\inf F(\Omega)=-\infty
$$

In particulat this happens when g is α-homogeneous with $\alpha<1$.

Preliminar observations

Preliminar observations

1. First of all notice that, as torsional rigidity is increasing with respect to sets inclusion, J is decreasing, i.e.

$$
J\left(\Omega_{1}\right) \geq J\left(\Omega_{2}\right) \quad \text { if } \Omega_{1} \subseteq \Omega_{2} .
$$

Preliminar observations

1. First of all notice that, as torsional rigidity is increasing with respect to sets inclusion, J is decreasing, i.e.

$$
J\left(\Omega_{1}\right) \geq J\left(\Omega_{2}\right) \quad \text { if } \Omega_{1} \subseteq \Omega_{2}
$$

This implies that the constraint $\phi(\Omega) \leq 1$ must be saturated and, if convenient, we can consider only sets Ω such that

$$
\phi(\Omega)=1 .
$$

Preliminar observations

1. First of all notice that, as torsional rigidity is increasing with respect to sets inclusion, J is decreasing, i.e.

$$
J\left(\Omega_{1}\right) \geq J\left(\Omega_{2}\right) \quad \text { if } \Omega_{1} \subseteq \Omega_{2}
$$

This implies that the constraint $\phi(\Omega) \leq 1$ must be saturated and, if convenient, we can consider only sets Ω such that

$$
\phi(\Omega)=1 .
$$

2. J is homogeneous of degree $n+2$, i.e.

$$
J(t \Omega)=t^{n+2} J(\Omega) \quad \text { for every } t \geq 0
$$

Preliminar observations

1. First of all notice that, as torsional rigidity is increasing with respect to sets inclusion, J is decreasing, i.e.

$$
J\left(\Omega_{1}\right) \geq J\left(\Omega_{2}\right) \quad \text { if } \Omega_{1} \subseteq \Omega_{2}
$$

This implies that the constraint $\phi(\Omega) \leq 1$ must be saturated and, if convenient, we can consider only sets Ω such that

$$
\phi(\Omega)=1 .
$$

2. J is homogeneous of degree $n+2$, i.e.

$$
J(t \Omega)=t^{n+2} J(\Omega) \quad \text { for every } t \geq 0
$$

3. If g is α-homogeneous, then ϕ is homogeneous of degree $n+2 \alpha$, i.e.

$$
\phi(t \Omega)=t^{n+2 \alpha} \phi(\Omega) \quad \text { for every } t \geq 0
$$

Preliminary observations

Preliminary observations

4. By assumption (Weak A), it follows that there exist a ball B_{R} such that $g \geq 1$ in $\mathbb{R}^{n} \backslash B_{R}$. Then the constraint $\phi(\Omega) \leq 1$ implies an uniform bound for the measures of the admissible sets:

$$
\begin{equation*}
|\Omega| \leq \omega_{n} R^{n}+1 \tag{0.7}
\end{equation*}
$$

Preliminary observations

4. By assumption (Weak A), it follows that there exist a ball B_{R} such that $g \geq 1$ in $\mathbb{R}^{n} \backslash B_{R}$. Then the constraint $\phi(\Omega) \leq 1$ implies an uniform bound for the measures of the admissible sets:

$$
\begin{equation*}
|\Omega| \leq \omega_{n} R^{n}+1 \tag{0.7}
\end{equation*}
$$

5. In turn the latter implies a lower bound for $J(\Omega)$; indeed, the solution of the Saint-Venant's problem tells us that the ball maximizes torsional rigidity among sets with given measure, then

$$
J(\Omega) \geq J\left(B_{r}\right)=-\frac{1}{2} \tau\left(B_{r}\right) \quad \text { where } r=\left(R^{n}+\omega_{n}^{-1}\right)^{1 / n}
$$

Existence and regularity

Existence

Assume (Weak A).

Existence and regularity

Existence

Assume (Weak A).
Thanks to the uniform bound on the measures of the competing sets, we can use the Concentration-Compactness argument by D. Bucur [C.R. Acad. Sci. Paris., 1998], [JDE, 2000].

Existence and regularity

Existence

Assume (Weak A).
Thanks to the uniform bound on the measures of the competing sets, we can use the Concentration-Compactness argument by D. Bucur [C.R. Acad. Sci. Paris., 1998], [JDE, 2000].

In particular, we can avoid the dicotomy for $g(x) \rightarrow+\infty$ as $|x| \rightarrow \infty$.

Existence and regularity

Existence

Assume (Weak A).
Thanks to the uniform bound on the measures of the competing sets, we can use the Concentration-Compactness argument by D. Bucur [C.R. Acad. Sci. Paris., 1998], [JDE, 2000].

In particular, we can avoid the dicotomy for $g(x) \rightarrow+\infty$ as $|x| \rightarrow \infty$.
Then we are in the compactness situation and from any minimizing sequence we can extract a subsequence converging to some Ω, up to translations, that is there exists a minimizing sequence Ω_{n} and a sequence of translations $y_{n} \in \mathbb{R}^{n}$, such that $\Omega_{n}+y_{n} \gamma$-converge to $\tilde{\Omega}$.

Existence and regularity

Existence

Assume (Weak A).
Thanks to the uniform bound on the measures of the competing sets, we can use the Concentration-Compactness argument by D. Bucur [C.R. Acad. Sci. Paris., 1998], [JDE, 2000].

In particular, we can avoid the dicotomy for $g(x) \rightarrow+\infty$ as $|x| \rightarrow \infty$.
Then we are in the compactness situation and from any minimizing sequence we can extract a subsequence converging to some Ω, up to translations, that is there exists a minimizing sequence Ω_{n} and a sequence of translations $y_{n} \in \mathbb{R}^{n}$, such that $\Omega_{n}+y_{n} \gamma$-converge to $\tilde{\Omega}$.

Thanks again to the behaviour of g at ∞, we can argue as in [Bucur-Buttazzo-Velichkov, 2011] to get that y_{n} is bounded (then it converges to som y_{0} up to a subsequence) and to finally obtain a minimizing sequence Ω_{n} converging (with no translation) to $\Omega=\tilde{\Omega}-y_{0}$.

Existence and regularity

Regularity

Assume (Weak A) and $g>0$ outside 0 .
Regularity (outside 0) goes as in [Briancọn-Hayouni-Pierre 2005], [Briancọn, 2004], [Gustafsson-Shahgholian, 1996], [Alt-Caffarelli, 1981].
Then we have $C^{1, \beta}$ regularity in dimension 2 (in \mathbb{R}^{n} with $n \geq 3$ we have the same for the reduced boundary, which coincides with $\partial \Omega$ up to a set of zero \mathbb{H}^{n-1} measure).

Existence and regularity

Regularity

Assume (Weak A) and $g>0$ outside 0 .
Regularity (outside 0) goes as in [Briancọn-Hayouni-Pierre 2005], [Brianco̧n, 2004], [Gustafsson-Shahgholian, 1996], [Alt-Caffarelli, 1981].
Then we have $C^{1, \beta}$ regularity in dimension 2 (in \mathbb{R}^{n} with $n \geq 3$ we have the same for the reduced boundary, which coincides with $\partial \Omega$ up to a set of zero \mathbb{H}^{n-1} measure).

$0 \in \Omega$

If we assume (Strong A) with $\alpha>1$, we can prove that 0 is in the interior of Ω and in dimension 2 we have $C^{1, \beta}$ regularity for the whole $\partial \Omega$.

Uniqueness

Proposition

Assume (Strong A) with $\alpha>1$. Then there exists at most one bounded solution Ω of the overdetermined problem (0.1).

Proof. By contradiction $\Omega_{1} \neq \Omega_{2}$.

$$
\begin{aligned}
& t=\sup \left\{s: s \Omega_{1} \subseteq \Omega_{2}\right\}, 0<t<1 \\
& t \Omega_{1} \subset \Omega_{2}, \bar{x} \in \partial \Omega_{2} \cap \partial\left(t \Omega_{1}\right) \neq \emptyset \\
& u_{t \Omega_{1}}(x)=t^{2} u_{\Omega_{1}}(x / t), \\
& \left|\nabla u_{t \Omega_{1}}(\bar{x})\right|=t\left|\nabla u_{\Omega_{1}}(x / t)\right|=\operatorname{tg}(\bar{x} / t)
\end{aligned}
$$

Figure 2. $\mathrm{t} \Omega_{1} \subseteq \Omega_{2}$ with $\overline{\mathrm{x}} \in \partial\left(\mathrm{t} \Omega_{1}\right) \cap \partial \Omega_{2}$

By comparison $u_{\Omega_{2}} \geq u_{t \Omega_{1}}$ in $t \bar{\Omega}_{1}$, while $u_{\Omega_{2}}(\bar{x})=u_{t \Omega_{1}} \bar{x}$, then

$$
g(\bar{x})=\left|\nabla u_{\Omega_{2}}(\bar{x})\right| \geq\left|\nabla u_{t \Omega_{1}}(\bar{x})\right|=t^{1-\alpha} g(\bar{x})
$$

which is impossible if $\alpha>1$ since $t<1$.

Geometric Properties

Starshape

Assume (Strong A) with $\alpha>1$. Then Ω is stashaped with respect to 0 .

Geometric Properties

Starshape

Assume (Strong A) with $\alpha>1$. Then Ω is stashaped with respect to 0 .

Convexity

Assume (Strong A) with $\alpha \geq 2$ and assume G_{1} is convex (equivalently $g^{1 / \alpha}$ is convex). Then Ω is convex.

Geometric Properties

Starshape

Assume (Strong A) with $\alpha>1$. Then Ω is stashaped with respect to 0 .

Convexity

Assume (Strong A) with $\alpha \geq 2$ and assume G_{1} is convex (equivalently $g^{1 / \alpha}$ is convex). Then Ω is convex.

Lemma

If $x \in \partial \Omega^{*} \backslash \partial \Omega$, then
$\left|\nabla u_{\Omega^{*}}(x)\right| \geq$
$\left((1-\lambda) \sqrt{\left|\nabla u\left(x_{0}\right)\right|}+\lambda \sqrt{\left|\nabla u\left(x_{1}\right)\right|}\right)^{2}$,
where $x_{0}, x_{1} \in \partial \Omega$ and $\lambda \in(0,1)$ are such that $x=(1-\lambda) x_{0}+\lambda x_{1}$.

Figure 4. $\mathrm{t}=\sup \left\{\mathrm{s} \in[0,1] \mathrm{s} \Omega^{*} \subseteq \Omega\right\}$.

Relation between Ω and G_{1}

If G_{1} is a ball, that is if g is radial, it is easily seen (by a Schwarz rearrangement) that Ω must be a ball.

Then the solution Ω has the same shape of the level sets of g.
Notice that Ω is a level set of g if and only if radial situation (by Serrin)

Relation between Ω and G_{1}

If G_{1} is a ball, that is if g is radial, it is easily seen (by a Schwarz rearrangement) that Ω must be a ball.

Then the solution Ω has the same shape of the level sets of g.
Notice that Ω is a level set of g if and only if radial situation (by Serrin)

Question:

Is there any relation in general between the optimal shape Ω and the shape dictated by g ?

Relation between Ω and G_{1}

If G_{1} is a ball, that is if g is radial, it is easily seen (by a Schwarz rearrangement) that Ω must be a ball.

Then the solution Ω has the same shape of the level sets of g.
Notice that Ω is a level set of g if and only if radial situation (by Serrin)

Question:

Is there any relation in general between the optimal shape Ω and the shape dictated by g ?

To give an answer, let us introduce some notation.
Denote by v the stress function of G_{1}, i.e.

$$
\begin{cases}-\Delta v=1 & \text { in } G_{1}=\{x: g(x)<1\} \\ u=0 & \text { on } \partial G_{1}=\{x: g(x)=1\}\end{cases}
$$

Set

$$
A=\min _{\partial G_{1}}|\nabla v|, \quad B=\max _{\partial G_{1}}|\nabla v|
$$

Notice that $A \leq B$ and in fact $A<B$ unless G_{1} is a ball (again Serrin).

Relation between Ω and G_{1}

Theorem

Assume (Strong A) with $\alpha>1$. Then

$$
A^{1 /(\alpha-1)} G_{1} \subseteq \Omega \subseteq B^{1 /(\alpha-1)} G_{1} .
$$

$$
\begin{aligned}
& G_{r} \subseteq \Omega \subseteq G_{s} \\
& G_{r}=\{g \leq r\} \\
& r=A^{\alpha /(\alpha-1)} \\
& G_{s}=\{g \leq s\} \\
& s=B^{\alpha /(\alpha-1)}
\end{aligned}
$$

Figure 1. $\mathrm{G}_{\mathrm{r}} \subseteq \Omega \subseteq \mathrm{G}_{\mathrm{s}}$

Stability of the radial symmetry

We can use the previous theorem to investigate the stability of the radial symmetry.
The idea is very simple: g is close to be radial if G_{1} is close to be a ball; then the previous result tells us that Ω is close to be a ball, provided we can give some bound about A and B.

Stability of the radial symmetry

We can use the previous theorem to investigate the stability of the radial symmetry.
The idea is very simple: g is close to be radial if G_{1} is close to be a ball; then the previous result tells us that Ω is close to be a ball, provided we can give some bound about A and B.
Then we will assume G_{1} close to a ball in a C^{2}-sense and we prove that Ω is close to a ball.

Stability of the radial symmetry

We can use the previous theorem to investigate the stability of the radial symmetry.
The idea is very simple: g is close to be radial if G_{1} is close to be a ball; then the previous result tells us that Ω is close to be a ball, provided we can give some bound about A and B.
Then we will assume G_{1} close to a ball in a C^{2}-sense and we prove that Ω is close to a ball.

Stability

Let $\alpha>1$ and G_{1} be a C^{2} convex set and assume that there exists $R>0$ and (a small enough) $\epsilon>0$ such that

$$
\begin{equation*}
R-\epsilon \leq r_{1}(x) \leq \cdots \leq r_{n-1}(x) \leq R+\epsilon \quad \text { for every } x \in \partial G_{1}, \tag{0.8}
\end{equation*}
$$

where $r_{1}(x), \ldots, r_{n}(x)$ denote the principal radii of curvature of ∂G_{1} at x. Then

$$
d_{H}(\Omega, B) \leq \frac{\alpha}{\alpha-1}\left(\frac{R}{n}\right)^{1 /(\alpha-1)} \epsilon
$$

where B denotes the ball centered at 0 with radius $r=R^{\alpha /(\alpha-1)}$.

