
An overdetermined problem with non constant
boundary condition

Paolo Salani
Università di Firenze

joint work (in progress) with
Chiara Bianchini and Antoine Henrot

12th International Conference on
Free Boundary Problems

Theory & Applications
Frauenchiemsee, Germany, 11-15 June 2012

P. Salani (Università di Firenze) Overdetermined with non-constant gradient Frauenchiemsee, 14/06/2012 1 / 18



The original Serrin’s problem
J. Serrin, A symmetry problem in potential theory
Arch. Rat. Mech. Anal. 43 (1971), 304–318

If Ω is a smooth domain in Rn and there exists a regular solution of −∆u = 1 in Ω

u = 0 on ∂Ω

such that
|∇u| = C on ∂Ω

⇒

then Ω must be a ball and

u(x) =
r2 − |x |2

2n
for some r > 0 (up to translations).

Technique: MOVING PLANE METHOD!
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Non constant Neumann boundary condition

What happens if we allow the normal derivative of u to be not constant on
∂Ω?


−∆u = 1 in Ω

u = 0 on ∂Ω

|∇u| = something, but not constant on ∂Ω .

⇒ ???

Of course Ω is no more a ball!
Even though... it is known that if |∇u| ∼ Const, then Ω ∼ a ball.
See for instance [Aftalion-Busca-Reichel, Adv. Diff. Eq. 1999] and
[Brandolini-Nitsch-S.-Trombetti, JDE 2008].
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Our problem

Given g : Rn → [0,+∞), is it possible to find Ω such that a solution to the
following problem exists?


−∆u = 1 in Ω

u = 0 on ∂Ω

|∇u(x)| = g(x) on ∂Ω .

(0.1)

Questions: Existence, Uniqueness, Regularity....

How does the geometry of g influence the geometry of Ω?

Problem close to [Gustafsson-Shahgholian, J. Reine Angew. Math., 1996].
They study −∆u = f where f is a function (or a measure) whose positive
part f+ has compact support.
This makes a real difference as the radial case shows.
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The torsional rigidity
For any bounded open set Ω we denote by uΩ the solution of of the torsion
problem (uΩ is sometimes called the stress function of Ω){

−∆uΩ = 1 in Ω
uΩ = 0 on ∂Ω

(0.2)

or, in its weak form

uΩ ∈ H1
0 (Ω), ∀ v ∈ H1

0 (Ω),

∫
Ω

∇uΩ∇v =

∫
Ω

uΩ v . (0.3)

uΩ is characterized also as

uΩ = argmin{GΩ(v), v ∈ H1
0 (Ω)} where

GΩ(v) =
1
2
∫

Ω
|∇v |2 dx −

∫
Ω

v dx .
(0.4)

The Torsional Rigidity of Ω

τ(Ω) = −2GΩ(uΩ) =

∫
Ω

uΩdx =

∫
Ω

|∇uΩ|2dx .
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A shape optimization (and localization) problem

Problem
Maximize τ(Ω) with the constraint

∫
Ω

g(x)2dx ≤ 1.

It is a variant of the famous Saint-Venant’s problem (to maximize torsonial
rigidity among sets with given measure), connected to the Serrin’s problem.
Here we have a not uniform density, driven by the function g2.

EQUIVALENTLY: Define

J(Ω) = −1
2
τ(Ω) = −1

2

∫
Ω

|∇uΩ|2 dx (0.5)

and
φ(Ω) =

∫
Ω

g2(x) dx . (0.6)

(SOPb) min{J(Ω) : φ(Ω) ≤ 1} .
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Assumptions on g
In order to find a solution to the overdetermined pb (0.1), we will make the
following assumptions on the density g : Rn → [0,+∞):

Strong A


g Hölder continuous,

α-homogeneous, i.e. g(tx) = tαg(x) for every t > 0, for some 1 6= α > 0,

g > 0 outside 0.

Notice that, by homogeneity, g is completely determined by one of its level
sets, say G1 = {x ∈ Rn : g(x) ≤ 1} and the degree of homogeneity α.
In fact, to solve the shape optimization problem (SOPb), it is sufficient to
assume the following:

Weak A
g ∈ C(Rn) and lim|x|→∞ g(x) = +∞.
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From (SOPb) to the overdetermined problem (0.1)
The following will explain why we need assumption (Strong A) to solve (0.1).

Once we have a (sufficiently regular) solution Ω of the (SOPb), we can use the
classical shape derivative to get that ∃ a Lagrange multiplier λ such that

|∇uΩ(x)| = λg(x) on ∂Ω.

Then (0.1) is solved if λ = 1, but in general we cannot control λ....
On the other hand, if we consider the set tΩ, for t > 0, we get

utΩ(x) = t2uΩ

(x
t
)

x ∈ tΩ ,

whence
|∇utΩ(x)| = t |∇uΩ

(x
t
)
| = tλg

(x
t
)

on ∂(tΩ) .

Then, thanks to the homogeneity of g, we have

|∇utΩ(x)| = t1−αλg(x)

and the overdetermined problem (0.1) is solved by tΩ where
t = λ1/(α−1) if α 6= 1.
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Two remarks

The case α = 1 is really special. As we can see explicitly in the radially
symmetric case, it is possible to have no solution or an infinite number of
solutions. Indeed, let g(x) = a|x |: as it is easily proved by Schwarz
symmetrization, the solution has to be a ball. Now, looking for a ball of radius
R solving (0.1) is equivalent to solve g(R) = R/N (because
uBR = (R2 − |x |2)/2N) and the result follows according to the value of a.

A possible different approach is to consider the following penalized
minimization problem (instead that the constrained one):

min{F (Ω) = J(Ω) +
1
2
φ(Ω)}

as in [Gustafsson-Shahgholian 1996] or [Alt-Caffarelli 1981].
But an inspection of the radial case again shows that F may be unbounded
and

inf F (Ω) = −∞ .

In particulat this happens when g is α-homogeneous with α < 1.
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Preliminar observations

1. First of all notice that, as torsional rigidity is increasing with respect to
sets inclusion, J is decreasing, i.e.

J(Ω1) ≥ J(Ω2) if Ω1 ⊆ Ω2 .

This implies that the constraint φ(Ω) ≤ 1 must be saturated and, if
convenient, we can consider only sets Ω such that

φ(Ω) = 1 .

2. J is homogeneous of degree n + 2, i.e.

J(tΩ) = tn+2J(Ω) for every t ≥ 0.

3. If g is α-homogeneous, then φ is homogeneous of degree n + 2α, i.e.

φ(tΩ) = tn+2αφ(Ω) for every t ≥ 0.
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Preliminary observations

4. By assumption (Weak A), it follows that there exist a ball BR such that
g ≥ 1 in Rn \ BR . Then the constraint φ(Ω) ≤ 1 implies an uniform bound
for the measures of the admissible sets:

|Ω| ≤ ωnRn + 1 . (0.7)

5. In turn the latter implies a lower bound for J(Ω); indeed, the solution of
the Saint-Venant’s problem tells us that the ball maximizes torsional
rigidity among sets with given measure, then

J(Ω) ≥ J(Br ) = −1
2
τ(Br ) where r = (Rn + ω−1

n )1/n .
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Existence and regularity

Existence
Assume (Weak A).

Thanks to the uniform bound on the measures of the competing sets, we can
use the Concentration-Compactness argument by D. Bucur [C.R. Acad. Sci.
Paris., 1998], [JDE, 2000].

In particular, we can avoid the dicotomy for g(x)→ +∞ as |x | → ∞.

Then we are in the compactness situation and from any minimizing sequence
we can extract a subsequence converging to some Ω, up to translations, that
is there exists a minimizing sequence Ωn and a sequence of translations
yn ∈ Rn, such that Ωn + yn γ-converge to Ω̃.

Thanks again to the behaviour of g at∞, we can argue as in
[Bucur-Buttazzo-Velichkov, 2011] to get that yn is bounded (then it converges
to som y0 up to a subsequence) and to finally obtain a minimizing sequence
Ωn converging (with no translation) to Ω = Ω̃− y0.

P. Salani (Università di Firenze) Overdetermined with non-constant gradient Frauenchiemsee, 14/06/2012 12 / 18



Existence and regularity

Existence
Assume (Weak A).
Thanks to the uniform bound on the measures of the competing sets, we can
use the Concentration-Compactness argument by D. Bucur [C.R. Acad. Sci.
Paris., 1998], [JDE, 2000].

In particular, we can avoid the dicotomy for g(x)→ +∞ as |x | → ∞.

Then we are in the compactness situation and from any minimizing sequence
we can extract a subsequence converging to some Ω, up to translations, that
is there exists a minimizing sequence Ωn and a sequence of translations
yn ∈ Rn, such that Ωn + yn γ-converge to Ω̃.

Thanks again to the behaviour of g at∞, we can argue as in
[Bucur-Buttazzo-Velichkov, 2011] to get that yn is bounded (then it converges
to som y0 up to a subsequence) and to finally obtain a minimizing sequence
Ωn converging (with no translation) to Ω = Ω̃− y0.

P. Salani (Università di Firenze) Overdetermined with non-constant gradient Frauenchiemsee, 14/06/2012 12 / 18



Existence and regularity

Existence
Assume (Weak A).
Thanks to the uniform bound on the measures of the competing sets, we can
use the Concentration-Compactness argument by D. Bucur [C.R. Acad. Sci.
Paris., 1998], [JDE, 2000].

In particular, we can avoid the dicotomy for g(x)→ +∞ as |x | → ∞.

Then we are in the compactness situation and from any minimizing sequence
we can extract a subsequence converging to some Ω, up to translations, that
is there exists a minimizing sequence Ωn and a sequence of translations
yn ∈ Rn, such that Ωn + yn γ-converge to Ω̃.

Thanks again to the behaviour of g at∞, we can argue as in
[Bucur-Buttazzo-Velichkov, 2011] to get that yn is bounded (then it converges
to som y0 up to a subsequence) and to finally obtain a minimizing sequence
Ωn converging (with no translation) to Ω = Ω̃− y0.

P. Salani (Università di Firenze) Overdetermined with non-constant gradient Frauenchiemsee, 14/06/2012 12 / 18



Existence and regularity

Existence
Assume (Weak A).
Thanks to the uniform bound on the measures of the competing sets, we can
use the Concentration-Compactness argument by D. Bucur [C.R. Acad. Sci.
Paris., 1998], [JDE, 2000].

In particular, we can avoid the dicotomy for g(x)→ +∞ as |x | → ∞.

Then we are in the compactness situation and from any minimizing sequence
we can extract a subsequence converging to some Ω, up to translations, that
is there exists a minimizing sequence Ωn and a sequence of translations
yn ∈ Rn, such that Ωn + yn γ-converge to Ω̃.

Thanks again to the behaviour of g at∞, we can argue as in
[Bucur-Buttazzo-Velichkov, 2011] to get that yn is bounded (then it converges
to som y0 up to a subsequence) and to finally obtain a minimizing sequence
Ωn converging (with no translation) to Ω = Ω̃− y0.

P. Salani (Università di Firenze) Overdetermined with non-constant gradient Frauenchiemsee, 14/06/2012 12 / 18



Existence and regularity

Existence
Assume (Weak A).
Thanks to the uniform bound on the measures of the competing sets, we can
use the Concentration-Compactness argument by D. Bucur [C.R. Acad. Sci.
Paris., 1998], [JDE, 2000].

In particular, we can avoid the dicotomy for g(x)→ +∞ as |x | → ∞.

Then we are in the compactness situation and from any minimizing sequence
we can extract a subsequence converging to some Ω, up to translations, that
is there exists a minimizing sequence Ωn and a sequence of translations
yn ∈ Rn, such that Ωn + yn γ-converge to Ω̃.

Thanks again to the behaviour of g at∞, we can argue as in
[Bucur-Buttazzo-Velichkov, 2011] to get that yn is bounded (then it converges
to som y0 up to a subsequence) and to finally obtain a minimizing sequence
Ωn converging (with no translation) to Ω = Ω̃− y0.

P. Salani (Università di Firenze) Overdetermined with non-constant gradient Frauenchiemsee, 14/06/2012 12 / 18



Existence and regularity

Regularity
Assume (Weak A) and g > 0 outside 0.

Regularity (outside 0) goes as in [Brianco̧n-Hayouni-Pierre 2005], [Brianco̧n,
2004], [Gustafsson-Shahgholian, 1996], [Alt-Caffarelli, 1981].

Then we have C1,β regularity in dimension 2 (in Rn with n ≥ 3 we have the
same for the reduced boundary, which coincides with ∂Ω up to a set of zero
Hn−1 measure).

0 ∈ Ω

If we assume (Strong A) with α > 1, we can prove that 0 is in the interior of Ω
and in dimension 2 we have C1,β regularity for the whole ∂Ω.
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Uniqueness

Proposition
Assume (Strong A) with α > 1.
Then there exists at most one
bounded solution Ω of the
overdetermined problem (0.1).

Proof. By contradiction Ω1 6= Ω2.
t = sup{s : sΩ1 ⊆ Ω2}, 0 < t < 1
tΩ1 ⊂ Ω2, x̄ ∈ ∂Ω2 ∩ ∂(tΩ1) 6= ∅
utΩ1 (x) = t2uΩ1 (x/t),
|∇utΩ1 (x̄)| = t |∇uΩ1 (x/t)| = tg(x̄/t)

By comparison uΩ2 ≥ utΩ1 in tΩ1, while uΩ2 (x̄) = utΩ1 x̄ , then

g(x̄) = |∇uΩ2 (x̄)| ≥ |∇utΩ1 (x̄)| = t1−αg(x̄)

which is impossible if α > 1 since t < 1.
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Geometric Properties

Starshape
Assume (Strong A) with α > 1. Then Ω is stashaped with respect to 0.

Convexity
Assume (Strong A) with α ≥ 2 and assume G1 is convex (equivalently g1/α is
convex). Then Ω is convex.

Lemma
If x ∈ ∂Ω∗ \ ∂Ω, then

|∇uΩ∗ (x)| ≥(
(1− λ)

√
|∇u(x0)|+ λ

√
|∇u(x1)|

)2
,

where x0, x1 ∈ ∂Ω and λ ∈ (0, 1) are such
that x = (1− λ)x0 + λx1.
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Relation between Ω and G1

If G1 is a ball, that is if g is radial, it is easily seen (by a Schwarz
rearrangement) that Ω must be a ball.

Then the solution Ω has the same shape of the level sets of g.

Notice that Ω is a level set of g if and only if radial situation (by Serrin)

Question:
Is there any relation in general between the optimal shape Ω and the shape
dictated by g?

To give an answer, let us introduce some notation.
Denote by v the stress function of G1, i.e.{

−∆v = 1 in G1 = {x : g(x) < 1} ,
u = 0 on ∂G1 = {x : g(x) = 1} .

Set
A = min

∂G1

|∇v | , B = max
∂G1

|∇v | .

Notice that A ≤ B and in fact A < B unless G1 is a ball (again Serrin).
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Relation between Ω and G1

Theorem
Assume (Strong A) with α > 1. Then

A1/(α−1)G1 ⊆ Ω ⊆ B1/(α−1)G1 .

Gr ⊆ Ω ⊆ Gs

Gr = {g ≤ r}
r = Aα/(α−1)

Gs = {g ≤ s}
s = Bα/(α−1)
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Stability of the radial symmetry
We can use the previous theorem to investigate the stability of the radial
symmetry.
The idea is very simple: g is close to be radial if G1 is close to be a ball; then
the previous result tells us that Ω is close to be a ball, provided we can give
some bound about A and B.

Then we will assume G1 close to a ball in a C2-sense and we prove that Ω is
close to a ball.

Stability
Let α > 1 and G1 be a C2 convex set and assume that there exists R > 0 and
(a small enough) ε > 0 such that

R − ε ≤ r1(x) ≤ · · · ≤ rn−1(x) ≤ R + ε for every x ∈ ∂G1 , (0.8)

where r1(x), . . . , rn(x) denote the principal radii of curvature of ∂G1 at x . Then

dH(Ω,B) ≤ α

α− 1

(
R
n

)1/(α−1)

ε .

where B denotes the ball centered at 0 with radius r = Rα/(α−1).
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