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The original Serrin’s problem

J. Serrin, A symmetry problem in potential theory
Arch. Rat. Mech. Anal. 43 (1971), 304-318
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If Q is a smooth domain in R” and there exists a regular solution of
—Au=1 in Q
u=20 on 09

|Vu|=C on 09

such that
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If Q is a smooth domain in R” and there exists a regular solution of
—Au=1 in Q
u=20 on 09

|Vu|=C on 09

such that

then Q must be a ball and

for some r > 0 (up to translations).
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The original Serrin’s problem

J. Serrin, A symmetry problem in potential theory
Arch. Rat. Mech. Anal. 43 (1971), 304-318

If Q is a smooth domain in R” and there exists a regular solution of
—Au=1 in Q
u=20 on 09

|Vu|=C on 09

such that

then Q must be a ball and

for some r > 0 (up to translations).

Technique: MOVING PLANE METHOD!
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Non constant Neumann boundary condition

What happens if we allow the normal derivative of u to be not constant on
o?
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What happens if we allow the normal derivative of u to be not constant on
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—Au=1 in Q
u=2~0 on 00

|Vu| = something, but not constant on Q.

P. Salani (Universita di Firenze) Overdetermined with non-constant gradient Frauenchiemsee, 14/06/2012



Non constant Neumann boundary condition
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u=2~0 on 99

|Vu| = something, but not constant on Q.
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Non constant Neumann boundary condition

What happens if we allow the normal derivative of u to be not constant on
o?

—-Au=1 in Q
u=2~0 on 99

|Vu| = something, but not constant on Q.

- 272

Of course Q is no more a ball!
Even though...
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Non constant Neumann boundary condition

What happens if we allow the normal derivative of u to be not constant on
o?

—-Au=1 in Q
u=2~0 on 99

|Vu| = something, but not constant on Q.

= 777

Of course Q is no more a ball!

Even though... itis known that if |[Vu| ~ Const, then Q ~ a ball.
See for instance [Aftalion-Busca-Reichel, Adv. Diff. Eq. 1999] and
[Brandolini-Nitsch-S.-Trombetti, JDE 2008].
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Our problem

Given g : R" — [0, +00), is it possible to find Q2 such that a solution to the
following problem exists?
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Our problem

Given g : R" — [0, +00), is it possible to find Q2 such that a solution to the
following problem exists?

—-Au=1 in Q
u=20 on 90N (0.1)

[Vu(x)| = g(x) on 9.
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Given g : R" — [0, +00), is it possible to find Q2 such that a solution to the
following problem exists?

—-Au=1 in Q
u=20 on 90N (0.1)

[Vu(x)| = g(x) on 9.

Questions: Existence, Uniqueness, Regularity....
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Our problem

Given g : R" — [0, +00), is it possible to find Q2 such that a solution to the
following problem exists?

—Au=1 in Q
u=20 on 09 (0.1)

[Vu(x)| = g(x) on 9.

Questions: Existence, Uniqueness, Regularity....

How does the geometry of g influence the geometry of Q?
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Our problem

Given g : R" — [0, +00), is it possible to find Q2 such that a solution to the
following problem exists?

—Au=1 in Q
u=20 on 09 (0.1)
[Vu(x)| = g(x) on 9Q.
Questions: Existence, Uniqueness, Regularity....
How does the geometry of g influence the geometry of Q?
Problem close to [Gustafsson-Shahgholian, J. Reine Angew. Math., 1996].
They study —Au=1f where fis afunction (or a measure) whose positive

part f. has compact support.
This makes a real difference as the radial case shows.
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The torsional rigidity

For any bounded open set Q we denote by uq the solution of of the torsion
problem (uq is sometimes called the stress function of Q)

Aug=1 inQ
{ Up=0  onoQ 02)

or, in its weak form

Ug € HY(Q), Vv e H(Q / VugVv = / uq V. (0.3)
Uq is characterized also as

ug = argmin{Gq(v), v € H}(2)} where

1
Ga(v) = 5 JoIVV[2adx — [, vax.
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The torsional rigidity

For any bounded open set Q we denote by uq the solution of of the torsion
problem (uq is sometimes called the stress function of Q)

Aug=1 inQ
{ Up=0  onoQ 02)

or, in its weak form

Ug € HY(Q), Vv e H(Q / VugVv = / uq V. (0.3)
Uq is characterized also as

ug = argmin{Gq(v), v € H}(2)} where

1
Ga(v) = 5 JoIVV[2adx — [, vax.

The Torsional Rigidity of Q2
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A shape optimization (and localization) problem

Problem

Maximize 7(Q) with the constraint [, g(x)?dx < 1.

It is a variant of the famous Saint-Venant’s problem (to maximize torsonial
rigidity among sets with given measure), connected to the Serrin’s problem.
Here we have a not uniform density, driven by the function g2.
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A shape optimization (and localization) problem

Problem
Maximize 7(Q) with the constraint [, g(x)?dx < 1.

It is a variant of the famous Saint-Venant’s problem (to maximize torsonial
rigidity among sets with given measure), connected to the Serrin’s problem.
Here we have a not uniform density, driven by the function g?.
EQUIVALENTLY: Define

J(Q) = —%T(Q) - —%/Q|Vu9|2dx (0.5)
and
o) = [ Fiax (0.6)
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A shape optimization (and localization) problem

Problem
Maximize 7(Q) with the constraint [, g(x)?dx < 1.

It is a variant of the famous Saint-Venant’s problem (to maximize torsonial
rigidity among sets with given measure), connected to the Serrin’s problem.
Here we have a not uniform density, driven by the function g?.
EQUIVALENTLY: Define

J(Q) = —%T(Q) _ —%/Q|VUQ|2dX (0.5)

and
0@ = [ o (0.6)
(SOPb) min{J(Q) : ¢(Q) < 1}. J
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Assumptions on g

In order to find a solution to the overdetermined pb (0.1), we will make the
following assumptions on the density g : R" — [0, 4+00):
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Assumptions on g

In order to find a solution to the overdetermined pb (0.1), we will make the
following assumptions on the density g : R" — [0, 4+00):

Strong A

g Holder continuous,

a-homogeneous, i.e. g(tx) = t*g(x) for every t > 0, for some 1 # a > 0,

g > 0 outside 0.
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g Holder continuous,

a-homogeneous, i.e. g(tx) = t*g(x) for every t > 0, for some 1 # a > 0,

g > 0 outside 0.

Notice that, by homogeneity, g is completely determined by one of its level
sets, say G1 = {x € R" : g(x) < 1} and the degree of homogeneity «.
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Assumptions on g

In order to find a solution to the overdetermined pb (0.1), we will make the
following assumptions on the density g : R" — [0, 4+00):

Strong A

g Holder continuous,

a-homogeneous, i.e. g(tx) = t*g(x) for every t > 0, for some 1 # a > 0,

g > 0 outside 0.

Notice that, by homogeneity, g is completely determined by one of its level
sets, say G1 = {x € R" : g(x) < 1} and the degree of homogeneity «.

In fact, to solve the shape optimization problem (SOPb), it is sufficient to
assume the following:

g € C(R") and limy o g(x) = +o0.
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From (SOPb) to the overdetermined problem (0.1)

The following will explain why we need assumption (Strong A) to solve (0.1).

P. Salani (Universita di Firenze) Overdetermined with non-constant gradient Frauenchiemsee, 14/06/2012 8/18



From (SOPb) to the overdetermined problem (0.1)

The following will explain why we need assumption (Strong A) to solve (0.1).

Once we have a (sufficiently regular) solution Q2 of the (SOPb), we can use the
classical shape derivative to get that 3 a Lagrange multiplier A such that

|[Vua(x)| = Ag(x) onoQ.
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From (SOPb) to the overdetermined problem (0.1)

The following will explain why we need assumption (Strong A) to solve (0.1).

Once we have a (sufficiently regular) solution Q2 of the (SOPb), we can use the
classical shape derivative to get that 3 a Lagrange multiplier A such that

|[Vua(x)| = Ag(x) onoQ.
Then (0.1) is solved if A =1,
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Once we have a (sufficiently regular) solution Q2 of the (SOPb), we can use the
classical shape derivative to get that 3 a Lagrange multiplier A such that

|[Vua(x)| = Ag(x) onoQ.

Then (0.1) is solved if A =1, but in general we cannot control A....

P. Salani (Universita di Firenze) Overdetermined with non-constant gradient Frauenchiemsee, 14/06/2012 8/18



From (SOPb) to the overdetermined problem (0.1)

The following will explain why we need assumption (Strong A) to solve (0.1).

Once we have a (sufficiently regular) solution Q2 of the (SOPb), we can use the
classical shape derivative to get that 3 a Lagrange multiplier A such that

|[Vua(x)| = Ag(x) onoQ.

Then (0.1) is solved if A =1, but in general we cannot control A....
On the other hand, if we consider the set tQ, for t > 0, we get

ura(x) = t2u9(§) X e tQ,
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From (SOPb) to the overdetermined problem (0.1)

The following will explain why we need assumption (Strong A) to solve (0.1).

Once we have a (sufficiently regular) solution Q2 of the (SOPb), we can use the
classical shape derivative to get that 3 a Lagrange multiplier A such that

|[Vua(x)| = Ag(x) onoQ.

Then (0.1) is solved if A =1, but in general we cannot control A....
On the other hand, if we consider the set tQ, for t > 0, we get

ura(x) = t2u9(§) X e tQ,

whence o \
[Vua(x)| = tlVua ()1 = thg(3) on a(tQ).
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From (SOPb) to the overdetermined problem (0.1)

The following will explain why we need assumption (Strong A) to solve (0.1).

Once we have a (sufficiently regular) solution Q2 of the (SOPb), we can use the
classical shape derivative to get that 3 a Lagrange multiplier A such that

|[Vua(x)| = Ag(x) onoQ.

Then (0.1) is solved if A =1, but in general we cannot control A....
On the other hand, if we consider the set tQ, for t > 0, we get

ura(x) = t2u9(§) X e tQ,
whence o \
[Vua(x)| = tlVua ()1 = thg(3) on a(tQ).
Then, thanks to the homogeneity of g, we have
[V (x)] = t' =1 g(x)

and the overdetermined problem (0.1) is solved by Q where
t= X/ o £1,
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Two remarks
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Two remarks

The case o = 1 is really special. As we can see explicitly in the radially
symmetric case, it is possible to have no solution or an infinite number of
solutions. Indeed, let g(x) = a|x|: as it is easily proved by Schwarz
symmetrization, the solution has to be a ball. Now, looking for a ball of radius
R solving (0.1) is equivalent to solve g(R) = R/N (because

us, = (R? — |x|2)/2N) and the result follows according to the value of a.
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Two remarks

The case o = 1 is really special. As we can see explicitly in the radially
symmetric case, it is possible to have no solution or an infinite number of
solutions. Indeed, let g(x) = a|x|: as it is easily proved by Schwarz
symmetrization, the solution has to be a ball. Now, looking for a ball of radius
R solving (0.1) is equivalent to solve g(R) = R/N (because

us, = (R? — |x|2)/2N) and the result follows according to the value of a.

A possible different approach is to consider the following penalized
minimization problem (instead that the constrained one):

min{F(Q) = J(Q) + %¢>(9)}

as in [Gustafsson-Shahgholian 1996] or [Alt-Caffarelli 1981].

But an inspection of the radial case again shows that F may be unbounded
and

inf F(Q) = —cc.

In particulat this happens when g is a-homogeneous with o < 1.
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Preliminar observations
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Preliminar observations

1. First of all notice that, as torsional rigidity is increasing with respect to
sets inclusion, J is decreasing, i.e.

J( Q1) = J(22) if Q2 C Q.
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Preliminar observations

1. First of all notice that, as torsional rigidity is increasing with respect to
sets inclusion, J is decreasing, i.e.

J( Q1) = J(22) if Q2 C Q.

This implies that the constraint ¢(Q2) < 1 must be saturated and, if
convenient, we can consider only sets Q such that

P(Q)=1.
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Preliminar observations

1. First of all notice that, as torsional rigidity is increasing with respect to
sets inclusion, J is decreasing, i.e.

J( Q1) = J(22) if Q2 C Q.

This implies that the constraint ¢(Q2) < 1 must be saturated and, if
convenient, we can consider only sets Q such that

P(Q)=1.

2. Jis homogeneous of degree n+ 2, i.e.

J(tQ) = t"2J(Q) for every t > 0.
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Preliminar observations

1. First of all notice that, as torsional rigidity is increasing with respect to
sets inclusion, J is decreasing, i.e.

J( Q1) = J(22) if Q2 C Q.

This implies that the constraint ¢(Q2) < 1 must be saturated and, if
convenient, we can consider only sets Q such that

P(2)=1.

2. Jis homogeneous of degree n+ 2, i.e.

J(tQ) = t"2J(Q) for every t > 0.

3. If g is a-homogeneous, then ¢ is homogeneous of degree n + 2a, i.e.

(1) = t"24(Q) for every t > 0.

P. Salani (Universita di Firenze) Overdetermined with non-constant gradient Frauenchiemsee, 14/06/2012



Preliminary observations
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Preliminary observations

4. By assumption (Weak A), it follows that there exist a ball Bg such that
g > 1inR"\ Bg. Then the constraint ¢(2) < 1 implies an uniform bound
for the measures of the admissible sets:

Q] < w,R" +1. (0.7)
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Preliminary observations

4. By assumption (Weak A), it follows that there exist a ball Bg such that
g > 1inR"\ Bg. Then the constraint ¢(2) < 1 implies an uniform bound
for the measures of the admissible sets:

Q] < w,R" +1. (0.7)

5. In turn the latter implies a lower bound for J(€2); indeed, the solution of
the Saint-Venant’s problem tells us that the ball maximizes torsional
rigidity among sets with given measure, then

J(Q) > J(B) = f%T(B,) where r = (R" +w;, )"/,
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Existence and regularity

Existence

Assume (Weak A).
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Existence and regularity

Existence

Assume (Weak A).
Thanks to the uniform bound on the measures of the competing sets, we can

use the Concentration-Compactness argument by D. Bucur [C.R. Acad. Sci.
Paris., 1998], [UDE, 2000].
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Existence and regularity

Existence

Assume (Weak A).
Thanks to the uniform bound on the measures of the competing sets, we can

use the Concentration-Compactness argument by D. Bucur [C.R. Acad. Sci.
Paris., 1998], [UDE, 2000].

In particular, we can avoid the dicotomy for g(x) — +o0 as |x| — oc.
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Existence and regularity

Existence

Assume (Weak A).

Thanks to the uniform bound on the measures of the competing sets, we can
use the Concentration-Compactness argument by D. Bucur [C.R. Acad. Sci.
Paris., 1998], [JDE, 2000].

In particular, we can avoid the dicotomy for g(x) — +o0 as |x| — oc.

Then we are in the compactness situation and from any minimizing sequence
we can extract a subsequence converging to some €2, up to translations, that
is there exists a minimizing sequence 2, and a sequence of translations

¥n € R", such that Q,, + y, v-converge to .
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Existence and regularity

Existence

Assume (Weak A).

Thanks to the uniform bound on the measures of the competing sets, we can
use the Concentration-Compactness argument by D. Bucur [C.R. Acad. Sci.
Paris., 1998], [JDE, 2000].

In particular, we can avoid the dicotomy for g(x) — +o0 as |x| — oc.

Then we are in the compactness situation and from any minimizing sequence
we can extract a subsequence converging to some €2, up to translations, that
is there exists a minimizing sequence 2, and a sequence of translations

¥n € R", such that Q,, + y, v-converge to .

Thanks again to the behaviour of g at co, we can argue as in
[Bucur-Buttazzo-Velichkov, 2011] to get that y, is bounded (then it converges
to som y, up to a subsequence) and to finally obtain a minimizing sequence
Q, converging (with no translation) to Q = Q — y,.
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Existence and regularity

Regularity
Assume (Weak A) and g > 0 outside 0.

Regularity (outside 0) goes as in [Briancgn-Hayouni-Pierre 2005], [Briancgn,
2004], [Gustafsson-Shahgholian, 1996], [Alt-Caffarelli, 1981].

Then we have C'# regularity in dimension 2 (in R” with n > 3 we have the
same for the reduced boundary, which coincides with 9Q up to a set of zero
H"-' measure).
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Existence and regularity

Regularity
Assume (Weak A) and g > 0 outside 0.

Regularity (outside 0) goes as in [Briancgn-Hayouni-Pierre 2005], [Briancgn,
2004], [Gustafsson-Shahgholian, 1996], [Alt-Caffarelli, 1981].

Then we have C'# regularity in dimension 2 (in R” with n > 3 we have the
same for the reduced boundary, which coincides with 9Q up to a set of zero
H"-' measure).

If we assume (Strong A) with o > 1, we can prove that 0 is in the interior of Q
and in dimension 2 we have C'? regularity for the whole 9.
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Uniqueness

Proposition

Assume (Strong A) with « > 1.
Then there exists at most one
bounded solution 2 of the
overdetermined problem (0.1).

Proof. By contradiction Q4 # Q.

t=sup{s: s CQ},0<t<

tQ1 C Qo, X € 00 NA(tQ41) £ 0

U, (x) = r? Ug, (x/t), FIGURE 2. 1Q C O with % € 3(t01) N30,
Vg, (X)| = t|Vug, (x/t)| = t9(X/1)

By comparison uq, > U, in tQ4, while ug,(X) = U, X, then

9(X) = [Vug,(X)| > [Vurg, (X)| = t'~*g(X)

which is impossible if & > 1 since t < 1.
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Geometric Properties

Starshape
Assume (Strong A) with o > 1. Then Q is stashaped with respect to 0.
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Geometric Properties

Starshape
Assume (Strong A) with o > 1. Then Q is stashaped with respect to 0.

Assume (Strong A) with o > 2 and assume G; is convex (equivalently g'/* is
convex). Then € is convex.
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Geometric Properties

Starshape
Assume (Strong A) with o > 1. Then Q is stashaped with respect to 0.

Assume (Strong A) with o > 2 and assume G; is convex (equivalently g'/* is
convex). Then € is convex.

Lemma

If x € 6Q* \ 8L, then
|VUQ* (X)' 2 ,
((1 = NVIVUGO)] + A/IVaGn])

where xg, x; € Q and X\ € (0, 1) are such
that x = (1 — A\)Xxo + Axq.

FIGURE 4. t =supfs € [0, 1] sQ* c Q).
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Relation between 2 and G;

If Gy is a ball, that is if g is radial, it is easily seen (by a Schwarz
rearrangement) that Q must be a ball.

Then the solution Q has the same shape of the level sets of g.

Notice that  is a level set of g if and only if radial situation (by Serrin)
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Notice that  is a level set of g if and only if radial situation (by Serrin)

Is there any relation in general between the optimal shape Q2 and the shape
dictated by g?
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Relation between 2 and G;

If Gy is a ball, that is if g is radial, it is easily seen (by a Schwarz
rearrangement) that Q must be a ball.

Then the solution Q has the same shape of the level sets of g.

Notice that  is a level set of g if and only if radial situation (by Serrin)

Is there any relation in general between the optimal shape Q2 and the shape
dictated by g?

To give an answer, let us introduce some notation.
Denote by v the stress function of Gj, i.e.

{—Av:1 inGy ={x:g(x)<1},

u=0 on oGy ={x : g(x)=1}.

Set
A=min|Vv|, B =max|Vy|.
861 3G1

Notice that A < B and in fact A < B unless G; is a ball (again Serrin).
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Relation between 2 and G;

Assume (Strong A) with oo > 1. Then

A1/(°‘*1)G1 cQc B1/(“*1)G1 )

G, CQCGs &)

G ={g<r} :
r = Aa/(a=1) , :,
Gs ={g < s} ‘- -’
S = Ba/(a—1)

FIGUREL. G, CQC G,
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Stability of the radial symmetry

We can use the previous theorem to investigate the stability of the radial
symmetry.

The idea is very simple: g is close to be radial if G; is close to be a ball; then
the previous result tells us that Q is close to be a ball, provided we can give
some bound about A and B.
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We can use the previous theorem to investigate the stability of the radial
symmetry.

The idea is very simple: g is close to be radial if G; is close to be a ball; then
the previous result tells us that Q is close to be a ball, provided we can give
some bound about A and B.

Then we will assume Gy close to a ball in a C?-sense and we prove that Q is
close to a ball.
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Stability of the radial symmetry

We can use the previous theorem to investigate the stability of the radial
symmetry.

The idea is very simple: g is close to be radial if G; is close to be a ball; then
the previous result tells us that Q is close to be a ball, provided we can give
some bound about A and B.

Then we will assume Gy close to a ball in a C?-sense and we prove that Q is
close to a ball.

Stability

Let & > 1 and G; be a C? convex set and assume that there exists R > 0 and
(a small enough) ¢ > 0 such that

R—e<n(x)<---<r_41(x) <R+e forevery x € 0Gy, (0.8)

where ri(x), ..., (x) denote the principal radii of curvature of 9G; at x. Then

@ R 1/(a—1)
< — .
dH(Q’B)*a—1 (n) €

where B denotes the ball centered at 0 with radius r = R*/(e—1),
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