An overdetermined problem with non constant boundary condition

Paolo Salani

Università di Firenze

joint work (in progress) with Chiara Bianchini and Antoine Henrot

12th International Conference on **Free Boundary Problems**

Theory & Applications Frauenchiemsee, Germany, 11-15 June 2012

J. Serrin, *A symmetry problem in potential theory* Arch. Rat. Mech. Anal. **43** (1971), 304–318

J. Serrin, *A symmetry problem in potential theory* Arch. Rat. Mech. Anal. **43** (1971), 304–318

If Ω is a smooth domain in \mathbb{R}^n and there exists a regular solution of

$$\begin{cases} -\Delta u = 1 & \text{ in } \Omega \\ u = 0 & \text{ on } \partial \Omega \end{cases}$$

such that

$$|\nabla u| = C$$
 on $\partial \Omega$

J. Serrin, *A symmetry problem in potential theory* Arch. Rat. Mech. Anal. **43** (1971), 304–318

If Ω is a smooth domain in \mathbb{R}^n and there exists a regular solution of

$$\begin{cases} -\Delta u = 1 & \text{ in } \Omega \\ u = 0 & \text{ on } \partial \Omega \end{cases}$$

such that

$$|\nabla u| = C$$
 on $\partial \Omega$

 \Rightarrow

then Ω must be a ball and

$$u(x)=\frac{r^2-|x|^2}{2n}$$

for some r > 0 (up to translations).

J. Serrin, *A symmetry problem in potential theory* Arch. Rat. Mech. Anal. **43** (1971), 304–318

If Ω is a smooth domain in \mathbb{R}^n and there exists a regular solution of

$$\begin{cases} -\Delta u = 1 & \text{ in } \Omega \\ u = 0 & \text{ on } \partial \Omega \end{cases}$$

such that

$$|\nabla u| = C$$
 on $\partial \Omega$

$$\Rightarrow$$

then Ω must be a ball and

$$u(x)=\frac{r^2-|x|^2}{2n}$$

for some r > 0 (up to translations).

Technique: MOVING PLANE METHOD!

What happens if we allow the normal derivative of *u* to be not constant on $\partial \Omega$?

What happens if we allow the normal derivative of *u* to be not constant on $\partial \Omega$?

$$\int -\Delta u = 1$$
 in Ω

$$u = 0$$
 on $\partial \Omega$

$$|\nabla u| =$$
 something, but not constant on $\partial \Omega$.

What happens if we allow the normal derivative of *u* to be not constant on $\partial \Omega$?

$$\int -\Delta u = 1 \qquad \text{in } \Omega$$

$$u = 0$$
 on $\partial \Omega$

$$|\nabla u| =$$
 something, but not constant on $\partial \Omega$.

 \Rightarrow ???

What happens if we allow the normal derivative of *u* to be not constant on $\partial \Omega$?

$$\int -\Delta u = 1 \qquad \text{in } \Omega$$

$$u = 0$$
 on $\partial \Omega$

$$|\nabla u| =$$
 something, but not constant on $\partial \Omega$.

 \Rightarrow ???

Of course Ω is no more a ball! Even though...

What happens if we allow the normal derivative of *u* to be not constant on $\partial \Omega$?

$$\int -\Delta u = 1$$
 in Ω

$$u = 0$$
 on $\partial \Omega$

$$|\nabla u| =$$
 something, but not constant on $\partial \Omega$.

 \Rightarrow ???

Of course Ω is no more a ball! Even though... it is known that if $|\nabla u| \sim \text{Const}$, then $\Omega \sim$ a ball. See for instance [Aftalion-Busca-Reichel, Adv. Diff. Eq. 1999] and [Brandolini-Nitsch-S.-Trombetti, JDE 2008].

Given $g : \mathbb{R}^n \to [0, +\infty)$, is it possible to find Ω such that a solution to the following problem exists?

Given $g : \mathbb{R}^n \to [0, +\infty)$, is it possible to find Ω such that a solution to the following problem exists?

$$\begin{pmatrix} -\Delta u = 1 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \\ |\nabla u(x)| = g(x) & \text{on } \partial \Omega . \end{cases}$$
 (0.1)

Given $g : \mathbb{R}^n \to [0, +\infty)$, is it possible to find Ω such that a solution to the following problem exists?

$$\begin{cases} -\Delta u = 1 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \\ |\nabla u(x)| = g(x) & \text{on } \partial \Omega . \end{cases}$$
(0.1)

Questions: Existence, Uniqueness, Regularity....

Given $g : \mathbb{R}^n \to [0, +\infty)$, is it possible to find Ω such that a solution to the following problem exists?

$$\begin{cases} -\Delta u = 1 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \\ |\nabla u(x)| = g(x) & \text{on } \partial \Omega . \end{cases}$$
(0.1)

Questions: Existence, Uniqueness, Regularity....

How does the geometry of g influence the geometry of Ω ?

Given $g : \mathbb{R}^n \to [0, +\infty)$, is it possible to find Ω such that a solution to the following problem exists?

$$\begin{cases} -\Delta u = 1 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \\ |\nabla u(x)| = g(x) & \text{on } \partial \Omega . \end{cases}$$
(0.1)

Questions: Existence, Uniqueness, Regularity....

How does the geometry of g influence the geometry of Ω ?

Problem close to [Gustafsson-Shahgholian, J. Reine Angew. Math., 1996]. They study $-\Delta u = f$ where *f* is a function (or a measure) whose positive part *f*₊ has compact support. This makes a real difference as the radial case shows.

P. Salani (Università di Firenze)

The torsional rigidity

For any bounded open set Ω we denote by u_{Ω} the solution of the *torsion* problem (u_{Ω} is sometimes called the *stress* function of Ω)

$$\begin{pmatrix} -\Delta u_{\Omega} = 1 & \text{in } \Omega \\ u_{\Omega} = 0 & \text{on } \partial \Omega \end{pmatrix}$$
 (0.2)

or, in its weak form

$$u_{\Omega} \in H_0^1(\Omega), \ \forall v \in H_0^1(\Omega), \ \int_{\Omega} \nabla u_{\Omega} \nabla v = \int_{\Omega} u_{\Omega} v.$$
 (0.3)

 u_{Ω} is characterized also as

$$egin{aligned} u_\Omega &= ext{argmin} \{ G_\Omega(v), v \in H^1_0(\Omega) \} ext{ where} \ &G_\Omega(v) &= rac{1}{2} \int_\Omega |
abla v|^2 \, dx - \int_\Omega v \, dx \,. \end{aligned}$$

The torsional rigidity

For any bounded open set Ω we denote by u_{Ω} the solution of the *torsion* problem (u_{Ω} is sometimes called the *stress* function of Ω)

$$\begin{pmatrix} -\Delta u_{\Omega} = 1 & \text{in } \Omega \\ u_{\Omega} = 0 & \text{on } \partial \Omega \end{pmatrix}$$
 (0.2)

or, in its weak form

$$u_{\Omega} \in H_0^1(\Omega), \ \forall v \in H_0^1(\Omega), \ \int_{\Omega} \nabla u_{\Omega} \nabla v = \int_{\Omega} u_{\Omega} v.$$
 (0.3)

 u_{Ω} is characterized also as

$$egin{aligned} & u_\Omega = ext{argmin} \{ G_\Omega(v), v \in H^1_0(\Omega) \} ext{ where} \ & G_\Omega(v) = rac{1}{2} \int_\Omega |
abla v|^2 \, dx - \int_\Omega v \, dx \,. \end{aligned}$$

The Torsional Rigidity of Ω

$$au(\Omega) = -2G_{\Omega}(u_{\Omega}) = \int_{\Omega} u_{\Omega} dx = \int_{\Omega} |\nabla u_{\Omega}|^2 dx$$

P. Salani (Università di Firenze)

A shape optimization (and localization) problem

Problem

Maximize $\tau(\Omega)$ with the constraint $\int_{\Omega} g(x)^2 dx \leq 1$.

It is a variant of the famous Saint-Venant's problem (to maximize torsonial rigidity among sets with given measure), connected to the Serrin's problem. Here we have a not uniform density, driven by the function g^2 .

A shape optimization (and localization) problem

Problem

Maximize $\tau(\Omega)$ with the constraint $\int_{\Omega} g(x)^2 dx \leq 1$.

It is a variant of the famous Saint-Venant's problem (to maximize torsonial rigidity among sets with given measure), connected to the Serrin's problem. Here we have a not uniform density, driven by the function g^2 . **EQUIVALENTLY:** Define

$$J(\Omega) = -\frac{1}{2}\tau(\Omega) = -\frac{1}{2}\int_{\Omega} |\nabla u_{\Omega}|^2 dx \qquad (0.5)$$

and

$$\phi(\Omega) = \int_{\Omega} g^2(x) \, dx. \tag{0.6}$$

A shape optimization (and localization) problem

Problem

Maximize $\tau(\Omega)$ with the constraint $\int_{\Omega} g(x)^2 dx \leq 1$.

It is a variant of the famous Saint-Venant's problem (to maximize torsonial rigidity among sets with given measure), connected to the Serrin's problem. Here we have a not uniform density, driven by the function g^2 . **EQUIVALENTLY:** Define

$$J(\Omega) = -\frac{1}{2}\tau(\Omega) = -\frac{1}{2}\int_{\Omega} |\nabla u_{\Omega}|^2 dx \qquad (0.5)$$

and

$$\phi(\Omega) = \int_{\Omega} g^2(x) \, dx. \tag{0.6}$$

$$(SOPb) \quad \min\{J(\Omega) : \phi(\Omega) \leq 1\}.$$

In order to find a solution to the overdetermined pb (0.1), we will make the following assumptions on the density $g : \mathbb{R}^n \to [0, +\infty)$:

In order to find a solution to the overdetermined pb (0.1), we will make the following assumptions on the density $g : \mathbb{R}^n \to [0, +\infty)$:

Strong A

```
g Hölder continuous,
```

 α -homogeneous, i.e. $g(tx) = t^{\alpha}g(x)$ for every t > 0, for some $1 \neq \alpha > 0$,

g > 0 outside 0.

In order to find a solution to the overdetermined pb (0.1), we will make the following assumptions on the density $g : \mathbb{R}^n \to [0, +\infty)$:

Strong A

g Hölder continuous,

 α -homogeneous, i.e. $g(tx) = t^{\alpha}g(x)$ for every t > 0, for some $1 \neq \alpha > 0$,

g > 0 outside 0.

Notice that, by homogeneity, g is completely determined by one of its level sets, say $G_1 = \{x \in \mathbb{R}^n : g(x) \le 1\}$ and the degree of homogeneity α .

In order to find a solution to the overdetermined pb (0.1), we will make the following assumptions on the density $g : \mathbb{R}^n \to [0, +\infty)$:

Strong A

g Hölder continuous,

```
\alpha-homogeneous, i.e. g(tx) = t^{\alpha}g(x) for every t > 0, for some 1 \neq \alpha > 0,
```

```
g > 0 outside 0.
```

Notice that, by homogeneity, g is completely determined by one of its level sets, say $G_1 = \{x \in \mathbb{R}^n : g(x) \le 1\}$ and the degree of homogeneity α . In fact, to solve the shape optimization problem (SOPb), it is sufficient to assume the following:

Weak A

$$g\in \mathcal{C}(\mathbb{R}^n)$$
 and $\lim_{|x| o\infty}g(x)=+\infty.$

The following will explain why we need assumption (Strong A) to solve (0.1).

The following will explain why we need assumption (Strong A) to solve (0.1).

Once we have a (sufficiently regular) solution Ω of the (SOPb), we can use the classical shape derivative to get that \exists a Lagrange multiplier λ such that

 $|\nabla u_{\Omega}(x)| = \lambda g(x) \text{ on } \partial \Omega.$

The following will explain why we need assumption (Strong A) to solve (0.1).

Once we have a (sufficiently regular) solution Ω of the (SOPb), we can use the classical shape derivative to get that \exists a Lagrange multiplier λ such that

 $|\nabla u_{\Omega}(x)| = \lambda g(x) \text{ on } \partial \Omega.$

Then (0.1) is solved if $\lambda = 1$,

The following will explain why we need assumption (Strong A) to solve (0.1).

Once we have a (sufficiently regular) solution Ω of the (SOPb), we can use the classical shape derivative to get that \exists a Lagrange multiplier λ such that

 $|\nabla u_{\Omega}(x)| = \lambda g(x) \text{ on } \partial \Omega.$

Then (0.1) is solved if $\lambda = 1$, but in general we cannot control λ

The following will explain why we need assumption (Strong A) to solve (0.1).

Once we have a (sufficiently regular) solution Ω of the (SOPb), we can use the classical shape derivative to get that \exists a Lagrange multiplier λ such that

 $|\nabla u_{\Omega}(x)| = \lambda g(x) \text{ on } \partial \Omega.$

Then (0.1) is solved if $\lambda = 1$, but in general we cannot control λ On the other hand, if we consider the set $t\Omega$, for t > 0, we get

$$u_{t\Omega}(x) = t^2 u_{\Omega}\left(\frac{x}{t}\right) \quad x \in t\Omega,$$

The following will explain why we need assumption (Strong A) to solve (0.1).

Once we have a (sufficiently regular) solution Ω of the (SOPb), we can use the classical shape derivative to get that \exists a Lagrange multiplier λ such that

$$|\nabla u_{\Omega}(x)| = \lambda g(x) \text{ on } \partial \Omega.$$

Then (0.1) is solved if $\lambda = 1$, but in general we cannot control λ On the other hand, if we consider the set $t\Omega$, for t > 0, we get

$$u_{t\Omega}(x) = t^2 u_{\Omega}\left(\frac{x}{t}\right) \quad x \in t\Omega,$$

whence

$$|
abla u_{t\Omega}(x)| = t |
abla u_{\Omega}(rac{x}{t})| = t \lambda g(rac{x}{t}) \quad ext{on } \partial(t\Omega) \,.$$

The following will explain why we need assumption (Strong A) to solve (0.1).

Once we have a (sufficiently regular) solution Ω of the (SOPb), we can use the classical shape derivative to get that \exists a Lagrange multiplier λ such that

$$|\nabla u_{\Omega}(x)| = \lambda g(x) \text{ on } \partial \Omega.$$

Then (0.1) is solved if $\lambda = 1$, but in general we cannot control λ On the other hand, if we consider the set $t\Omega$, for t > 0, we get

$$u_{t\Omega}(x) = t^2 u_{\Omega}\left(\frac{x}{t}\right) \quad x \in t\Omega,$$

whence

$$|\nabla u_{t\Omega}(x)| = t |\nabla u_{\Omega}(\frac{x}{t})| = t \lambda g(\frac{x}{t}) \quad \text{on } \partial(t\Omega).$$

Then, thanks to the homogeneity of g, we have

$$|\nabla u_{t\Omega}(x)| = t^{1-\alpha} \lambda g(x)$$

and the overdetermined problem (0.1) is solved by $t\Omega$ where $t = \lambda^{1/(\alpha-1)}$ if $\alpha \neq 1$.

P. Salani (Università di Firenze)

P. Salani (Università di Firenze)

< □ > < @

æ

Two remarks

The case $\alpha = 1$ is really special. As we can see explicitly in the radially symmetric case, it is possible to have no solution or an infinite number of solutions. Indeed, let g(x) = a|x|: as it is easily proved by Schwarz symmetrization, the solution has to be a ball. Now, looking for a ball of radius R solving (0.1) is equivalent to solve g(R) = R/N (because $u_{B_R} = (R^2 - |x|^2)/2N$) and the result follows according to the value of a.

Two remarks

The case $\alpha = 1$ is really special. As we can see explicitly in the radially symmetric case, it is possible to have no solution or an infinite number of solutions. Indeed, let g(x) = a|x|: as it is easily proved by Schwarz symmetrization, the solution has to be a ball. Now, looking for a ball of radius R solving (0.1) is equivalent to solve g(R) = R/N (because $u_{B_R} = (R^2 - |x|^2)/2N$) and the result follows according to the value of a.

A possible different approach is to consider the following penalized minimization problem (instead that the constrained one):

$$\min\{F(\Omega) = J(\Omega) + \frac{1}{2}\phi(\Omega)\}$$

as in [Gustafsson-Shahgholian 1996] or [Alt-Caffarelli 1981]. But an inspection of the radial case again shows that F may be unbounded and

$$\inf F(\Omega) = -\infty$$
.

In particulat this happens when g is α -homogeneous with $\alpha < 1$.

Preliminar observations

P. Salani (Università di Firenze)

Preliminar observations

1. First of all notice that, as torsional rigidity is increasing with respect to sets inclusion, *J* is decreasing, i.e.

 $J(\Omega_1) \geq J(\Omega_2)$ if $\Omega_1 \subseteq \Omega_2$.

Preliminar observations

1. First of all notice that, as torsional rigidity is increasing with respect to sets inclusion, *J* is decreasing, i.e.

$$J(\Omega_1) \geq J(\Omega_2)$$
 if $\Omega_1 \subseteq \Omega_2$.

This implies that the constraint $\phi(\Omega) \leq 1$ must be *saturated* and, if convenient, we can consider only sets Ω such that

$$\phi(\Omega) = 1$$
.

Preliminar observations

1. First of all notice that, as torsional rigidity is increasing with respect to sets inclusion, *J* is decreasing, i.e.

$$J(\Omega_1) \geq J(\Omega_2)$$
 if $\Omega_1 \subseteq \Omega_2$.

This implies that the constraint $\phi(\Omega) \leq 1$ must be *saturated* and, if convenient, we can consider only sets Ω such that

$$\phi(\Omega)=1.$$

2. *J* is homogeneous of degree n + 2, i.e.

 $J(t\Omega) = t^{n+2}J(\Omega)$ for every $t \ge 0$.

Preliminar observations

1. First of all notice that, as torsional rigidity is increasing with respect to sets inclusion, *J* is decreasing, i.e.

$$J(\Omega_1) \geq J(\Omega_2)$$
 if $\Omega_1 \subseteq \Omega_2$.

This implies that the constraint $\phi(\Omega) \leq 1$ must be *saturated* and, if convenient, we can consider only sets Ω such that

$$\phi(\Omega)=1.$$

2. *J* is homogeneous of degree n + 2, i.e.

$$J(t\Omega) = t^{n+2}J(\Omega)$$
 for every $t \ge 0$.

3. If *g* is α -homogeneous, then ϕ is homogeneous of degree $n + 2\alpha$, i.e.

$$\phi(t\Omega) = t^{n+2\alpha}\phi(\Omega)$$
 for every $t \ge 0$.

P. Salani (Università di Firenze)

 By assumption (Weak A), it follows that there exist a ball B_R such that g ≥ 1 in ℝⁿ \ B_R. Then the constraint φ(Ω) ≤ 1 implies an uniform bound for the measures of the admissible sets:

$$|\Omega| \le \omega_n R^n + 1. \tag{0.7}$$

 By assumption (Weak A), it follows that there exist a ball B_R such that g ≥ 1 in ℝⁿ \ B_R. Then the constraint φ(Ω) ≤ 1 implies an uniform bound for the measures of the admissible sets:

$$|\Omega| \le \omega_n R^n + 1. \tag{0.7}$$

5. In turn the latter implies a lower bound for $J(\Omega)$; indeed, the solution of the Saint-Venant's problem tells us that the ball maximizes torsional rigidity among sets with given measure, then

$$J(\Omega) \ge J(B_r) = -rac{1}{2} au(B_r) \quad ext{where } r = (R^n + \omega_n^{-1})^{1/n} \,.$$

Assume (Weak A).

Assume (Weak A). Thanks to the uniform bound on the measures of the competing sets, we can use the *Concentration-Compactness* argument by *D. Bucur* [C.R. Acad. Sci. Paris., 1998], [JDE, 2000].

Assume (Weak A). Thanks to the uniform bound on the measures of the competing sets, we can use the *Concentration-Compactness* argument by *D. Bucur* [C.R. Acad. Sci. Paris., 1998], [JDE, 2000].

In particular, we can avoid the dicotomy for $g(x) \to +\infty$ as $|x| \to \infty$.

Assume (Weak A).

Thanks to the uniform bound on the measures of the competing sets, we can use the *Concentration-Compactness* argument by *D. Bucur* [C.R. Acad. Sci. Paris., 1998], [JDE, 2000].

In particular, we can avoid the dicotomy for $g(x) \to +\infty$ as $|x| \to \infty$.

Then we are in the compactness situation and from any minimizing sequence we can extract a subsequence converging to some Ω , up to translations, that is there exists a minimizing sequence Ω_n and a sequence of translations $y_n \in \mathbb{R}^n$, such that $\Omega_n + y_n \gamma$ -converge to $\tilde{\Omega}$.

Assume (Weak A).

Thanks to the uniform bound on the measures of the competing sets, we can use the *Concentration-Compactness* argument by *D. Bucur* [C.R. Acad. Sci. Paris., 1998], [JDE, 2000].

In particular, we can avoid the dicotomy for $g(x) \to +\infty$ as $|x| \to \infty$.

Then we are in the compactness situation and from any minimizing sequence we can extract a subsequence converging to some Ω , up to translations, that is there exists a minimizing sequence Ω_n and a sequence of translations $y_n \in \mathbb{R}^n$, such that $\Omega_n + y_n \gamma$ -converge to $\tilde{\Omega}$.

Thanks again to the behaviour of g at ∞ , we can argue as in [Bucur-Buttazzo-Velichkov, 2011] to get that y_n is bounded (then it converges to som y_0 up to a subsequence) and to finally obtain a minimizing sequence Ω_n converging (with no translation) to $\Omega = \tilde{\Omega} - y_0$.

Regularity

Assume (Weak A) and g > 0 outside 0.

Regularity (outside 0) goes as in [Briancon-Hayouni-Pierre 2005], [Briancon, 2004], [Gustafsson-Shahgholian, 1996], [Alt-Caffarelli, 1981].

Then we have $C^{1,\beta}$ regularity in dimension 2 (in \mathbb{R}^n with $n \ge 3$ we have the same for the reduced boundary, which coincides with $\partial \Omega$ up to a set of zero \mathbb{H}^{n-1} measure).

Regularity

Assume (Weak A) and g > 0 outside 0.

Regularity (outside 0) goes as in [Briancon-Hayouni-Pierre 2005], [Briancon, 2004], [Gustafsson-Shahgholian, 1996], [Alt-Caffarelli, 1981].

Then we have $C^{1,\beta}$ regularity in dimension 2 (in \mathbb{R}^n with $n \ge 3$ we have the same for the reduced boundary, which coincides with $\partial \Omega$ up to a set of zero \mathbb{H}^{n-1} measure).

$\mathbf{0}\in\Omega$

If we assume (*Strong A*) with $\alpha > 1$, we can prove that 0 is in the interior of Ω and in dimension 2 we have $C^{1,\beta}$ regularity for the whole $\partial\Omega$.

Proposition

Assume (*Strong A*) with $\alpha > 1$. Then there exists at most one bounded solution Ω of the overdetermined problem (0.1).

Proof. By contradiction
$$\Omega_1 \neq \Omega_2$$
.
 $t = \sup\{s : s\Omega_1 \subseteq \Omega_2\}, 0 < t < 1$
 $t\Omega_1 \subset \Omega_2, \bar{x} \in \partial\Omega_2 \cap \partial(t\Omega_1) \neq \emptyset$
 $u_{t\Omega_1}(x) = t^2 u_{\Omega_1}(x/t),$
 $|\nabla u_{t\Omega_1}(\bar{x})| = t |\nabla u_{\Omega_1}(x/t)| = tg(\bar{x}/t)$

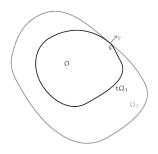


FIGURE 2. $t\Omega_1 \subseteq \Omega_2$ with $\bar{x} \in \partial(t\Omega_1) \cap \partial\Omega_2$

By comparison $u_{\Omega_2} \ge u_{t\Omega_1}$ in $t\overline{\Omega}_1$, while $u_{\Omega_2}(\overline{x}) = u_{t\Omega_1}\overline{x}$, then

$$g(\bar{x}) = |\nabla u_{\Omega_2}(\bar{x})| \ge |\nabla u_{t\Omega_1}(\bar{x})| = t^{1-\alpha}g(\bar{x})$$

which is impossible if $\alpha > 1$ since t < 1.

Geometric Properties

Starshape

Assume (*Strong A*) with $\alpha > 1$. Then Ω is stashaped with respect to 0.

Geometric Properties

Starshape

Assume (*Strong A*) with $\alpha > 1$. Then Ω is stashaped with respect to 0.

Convexity

Assume (*Strong A*) with $\alpha \ge 2$ and assume G_1 is convex (equivalently $g^{1/\alpha}$ is convex). Then Ω is convex.

Geometric Properties

Starshape

Assume (*Strong A*) with $\alpha > 1$. Then Ω is stashaped with respect to 0.

Convexity

Assume (*Strong A*) with $\alpha \ge 2$ and assume G_1 is convex (equivalently $g^{1/\alpha}$ is convex). Then Ω is convex.

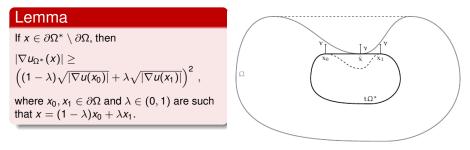


Figure 4. $t = \sup\{s \in [0, 1] \ s\Omega^* \subseteq \Omega\}.$

If G_1 is a ball, that is if g is radial, it is easily seen (by a Schwarz rearrangement) that Ω must be a ball.

Then the solution Ω has the same shape of the level sets of *g*.

Notice that Ω is a level set of *g* if and only if radial situation (by Serrin)

If G_1 is a ball, that is if g is radial, it is easily seen (by a Schwarz rearrangement) that Ω must be a ball.

Then the solution Ω has the same shape of the level sets of *g*.

Notice that Ω is a level set of g if and only if radial situation (by Serrin)

Question:

Is there any relation in general between the optimal shape Ω and the shape dictated by g?

If G_1 is a ball, that is if g is radial, it is easily seen (by a Schwarz rearrangement) that Ω must be a ball.

Then the solution Ω has the same shape of the level sets of *g*.

Notice that Ω is a level set of g if and only if radial situation (by Serrin)

Question:

Is there any relation in general between the optimal shape Ω and the shape dictated by g?

To give an answer, let us introduce some notation. Denote by v the stress function of G_1 , i.e.

$$\left(\begin{array}{cc} -\Delta v = 1 & \text{in } G_1 = \{x : g(x) < 1\}, \\ u = 0 & \text{on } \partial G_1 = \{x : g(x) = 1\}. \end{array} \right)$$

Set

$$A = \min_{\partial G_1} |\nabla v|, \qquad B = \max_{\partial G_1} |\nabla v|.$$

Notice that $A \leq B$ and in fact A < B unless G_1 is a ball (again Serrin).

Theorem

Assume (Strong A) with $\alpha > 1$. Then

$$A^{1/(lpha-1)}G_1\subseteq\Omega\subseteq B^{1/(lpha-1)}G_1$$
 .

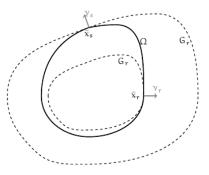


Figure 1. $G_r \subseteq \Omega \subseteq G_s$

Stability of the radial symmetry

We can use the previous theorem to investigate the stability of the radial symmetry.

The idea is very simple: g is close to be radial if G_1 is close to be a ball; then the previous result tells us that Ω is close to be a ball, provided we can give some bound about A and B.

Stability of the radial symmetry

We can use the previous theorem to investigate the stability of the radial symmetry.

The idea is very simple: g is close to be radial if G_1 is close to be a ball; then the previous result tells us that Ω is close to be a ball, provided we can give some bound about A and B.

Then we will assume G_1 close to a ball in a C^2 -sense and we prove that Ω is close to a ball.

Stability of the radial symmetry

We can use the previous theorem to investigate the stability of the radial symmetry.

The idea is very simple: g is close to be radial if G_1 is close to be a ball; then the previous result tells us that Ω is close to be a ball, provided we can give some bound about A and B.

Then we will assume G_1 close to a ball in a C^2 -sense and we prove that Ω is close to a ball.

Stability

Let $\alpha > 1$ and G_1 be a C^2 convex set and assume that there exists R > 0 and (a small enough) $\epsilon > 0$ such that

$$R - \epsilon \leq r_1(x) \leq \cdots \leq r_{n-1}(x) \leq R + \epsilon$$
 for every $x \in \partial G_1$, (0.8)

where $r_1(x), \ldots, r_n(x)$ denote the principal radii of curvature of ∂G_1 at x. Then

$$d_{\mathcal{H}}(\Omega, B) \leq \frac{\alpha}{\alpha - 1} \left(\frac{R}{n}\right)^{1/(\alpha - 1)} \epsilon.$$

where *B* denotes the ball centered at 0 with radius $r = R^{\alpha/(\alpha-1)}$.

P. Salani (Università di Firenze)