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Problem background
• The problem on the motion of two fluids was first investigated by J. Hadamard and by V. Rybczynski
in 1911. They obtained an analytic expression for the solution of the Stokes system corresponding to
the axisymmetric fall of a spherical drop in another fluid with constant velocity.
• Stationary motion of two fluids with unknown closed interface between them was studied by

V. Ja. Rivkind (’77-’84) and by J. Bemelmans (’81). Unfortunately, both investigations have inac-
curacies. Later, V. A. So-lonnikov gave a correct proof of the solvability of the problem governing
stationary fall (or rise) of a drop in liquid medium (’96, ’99).
• V. Ja. Rivkind and N. Fridman proved the existence of a solution of a nonlinear nonstationary

problem with a given fixed interface between the fluids (’73).
• In complete statement, the problem on the motion of two fluids with and without surface ten-

sion taken into account on the unknown closed interface was first studied by I. V. Denisova. Using
V. A. Solonnikov’s technique developed for a single fluid in vacuum, she proved a local (in time)
existence theorem for the problem in Sobolev–Slobodetskiı̌ functional spaces (’89-’90).
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• Global (in time) solvability of the problem was studied by N. Tanaka who also used V. A. Solon-
nikov’s technique. But it is necessary to note that the demonstrations of existence theorem in his
paper of 1993 were not convincing.
• Results of Y. Giga and Sh. Takahashi (’94-’95) and of A. Nouri, F. Poupaud and Y. Demay

(’93-’97) concern the existence of global weak solutions for the Stokes and Navier-Stokes equations
describing the motion of two (or several) immiscible fluids with different densities and viscosities, in
the absence of surface tension.
• We proved a local (in time) existence theorem for the problem with surface tension in Hölder

spaces (’91-’95).
• I. V. Denisova obtained global solvability of the problem on two-phase fluid motion without taking

surface tension into account (2007). This result was proved in Hölder spaces.
• Now new researchers began to analyze the problem for two-phase flow. J. Prüss, G. Simonett

found conditions for solution analyticity for the nonlinear problem with an initial interface close to a
half-plane (’09). H. Abels studied the situation when only weak solutions to the problem existed, he
estimated the Hausdorff measure of the interface (’07).
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Abstract
•We deal with the motion of two incompressible fluids in a container.
• The liquids are separated by an unknown interface on which the surface tension is taken into

account.
• Global existence theorem is proved in anisotropic Hölder classes for a small initial velocity and

for a initial configuration of the inner drop close to a ball {|x| 6 R0} with drop volume [1].
•We show that fluid velocity ↓ exponentially as t→∞ and the interface between the liquids→ a

sphere S2
R0

(h∞) = {|x− h∞| = R0} with a center h∞ close to 0.
• The proof is based on a local existence theorem in Hölder spaces [2] and on an exponential

estimate of L2-norms of local solutions.
•We follow to V. A. Solonnikov’s scheme for proving global solvability of a problem on the motion

of a single drop with free surface [3].
1 Denisova I. V., Solonnikov V. A., Zap. nauchn. semin. POMI 397 (2011), 20–52. (English transl.

in J. Math. Sci. to appear).
2 Den., Sol. Algebra i Analiz, 7(1995), no.5, 101–142 (Russian) (English transl. in St. Petersburg

Math. J., 7 (1996), no.5, 755–786).
3 Solonnikov V. A., Lectures Notes in Maths., 1812, (2003), 123–175.
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1 Statement of the problem

t = 0 : Let a fluid with the viscosity ν+ > 0 and the density ρ+ > 0 occupy a bounded domain
Ω+

0 ⊂ R3; we denote ∂Ω+
0 by Γ. And let a fluid with the viscosity ν− > 0 and the density ρ− > 0

fill a domain Ω−0 surrounding Ω+
0 . The boundary S ≡ ∂(Ω+

0 ∪ Γ ∪ Ω−0 ) is a given closed surface,
S ∩ Γ = ∅.
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For t > 0 : Γt = ∂Ω+
t –?, velocity vector field v(x, t) = (v1, v2, v3)–? and the function p–? that

is the deviation from the hydrostatic pressure P0, which satisfy the following initial–boundary value
problem :

Dtv + (v · ∇)v − ν±∇2v +
1

ρ±
∇p = 0, ∇ · v = 0 in Ω±t , t > 0,

v|t=0 = v0 in Ω−0 ∪ Ω+
0 , v|S = 0, (1)

[v]|Γt ≡ lim
x→x0∈Γt,

x∈Ω+
t

v(x)− lim
x→x0∈Γt,

x∈Ω−
t

v(x) = 0, [T(v, p)n]|Γt = σHn on Γt.

Here Dt = ∂
∂t

, ∇ = ( ∂
∂x1
, ∂
∂x2
, ∂
∂x3

), ν±, ρ± are the step functions of viscosity and density, re-
spectively, v0 is the initial distribution of the velocity, T(v, p) is the stress tensor with the elements
Tik = −δki p + µ±(∂vi/∂xk + ∂vk/∂xi), i, k = 1, 2, 3; µ± = ν±ρ±, δki is the Kronecker symbol,
σ > 0 is surface tension coefficient, n is the outward normal to Ω+

t , H(x, t) is twice the mean cur-
vature of Γt (H < 0 at the points where Γt is convex towards Ω−t ). We suppose that a Cartesian
coordinate system {x} is introduced in R3. The centered dot denotes the Cartesian scalar product.

We imply the summation from 1 to 3 with respect to repeated indexes. We mark the vectors and the
vector spaces by boldface letters.
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We suppose the inner domain Ω+
0 is close to a ball of its volume. ⇒We introduce a new pressure

function p1 = p in Ω+ and p1 = p+ σ 2
R0

in Ω−. Then the last boundary condition in (1) changes:

Dtv + (v · ∇)v − ν±∇2v +
1

ρ±
∇p1 = 0, ∇ · v = 0 in Ω±t , t > 0,

v|t=0 = v0 in Ω−0 ∪ Ω+
0 , v|S = 0, (2)

[v]|Γt = 0, [T(v, p1)n]|Γt = σ
(
H +

2

R0

)
n on Γt.

We assume the liquids to be immiscible⇒A condition excluding the mass transportation through
Γt. ⇔ Γt consists of the points x(ξ, t) whose radius vector x(ξ, t) is a solution of the Cauchy problem

Dtx = v(x(ξ, t), t), x(ξ, 0) = ξ, ξ ∈ Γ, t > 0, (3)

where Γ ≡ Γ0 = ∂Ω+
0 is a surface given at the initial moment. Hence, Ω±t = {x = x(ξ, t)|ξ ∈ Ω±0 }.

Condition (3) completes system (2).
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Transformation into the Lagrangian coordinates
We transform the Eulerian coordinates {x} into the Lagrangian ones {ξ} by the formula

x(ξ, t) = ξ +

t∫
0

u(ξ, τ)dτ ≡Xu(ξ, t), (4)

where u(ξ, t) is velocity vector field in the Lagrangian coordinates.
We apply the well known relation for twice the mean curvature:

Hn = ∆(t)x = ∆(t)Xu,

where ∆(t) is the Beltrami–Laplace operator on Γt.
We separate the boundary condition for the stress tensor in (2) onto the tangential and normal

components. Let n0 be the outward normal to Γ.
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2 Problem in the Lagrangian coordinates
⇒ We arrive at the problem for u and q = p1(Xu, t) with the given interface Γ. If n · n0 > 0 this
system is equivalent to the following one:

Dtu− ν±∇2
uu+

1

ρ±
∇uq = 0, ∇u · u = 0 in Q±T = Ω± × (0, T ), Ω± ≡ Ω±0 ,

u|t=0 = v0 in Ω− ∪ Ω+, (5)
[u]|GT = 0, u|S = 0, [Π0ΠTu(u)n]|GT = 0,

[n0 · Tu(u, q)n]|GT − σn0 ·∆(t)Xu|GT = σ
2

R0

n0 · n.

The notation: ∇u = A∇, A is the matrix of cofactors Aij to the elements aij(ξ, t) = δji +
∫ t

0
∂ui
∂ξj

dt′

of the Jacobian matrix of (4), the vector n is connected with n0 by the relation n = An0/|An0|;
Πω = ω − n(n · ω), Π0ω = ω − n0(n0 · ω) are the projections of a vector ω onto the tangent
planes to Γt and to Γ, respectively. The tensor Tu(w, q) has the elements

(Tu(w, q))ij = −δijq + µ±(Ajk∂wi/∂ξk + Aik∂wj/∂ξk),

H0(ξ) = n0 ·∆(0)ξ is twice the mean curvature of Γ.
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We denote: Q±T ≡ Ω±0 × (0, T ), DT ≡ Q+
T ∪Q

−
T , GT ≡ Γ× (0, T ), ST ≡ S × (0, T ).

6t

Q+
T

Q−T

GT

Γ

ST

S
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We remind the definition of Hölder functional spaces. Let Ω be a domain in Rn, n ∈ N; for T > 0
we put ΩT = Ω × (0, T ); finally, let α ∈ (0, 1). By Cα,α/2(ΩT ) we denote the set of functions f in
ΩT having norm

|f |(α,α/2)
ΩT

= |f |ΩT + 〈f〉(α,α/2)
ΩT

,

where
|f |ΩT = sup

t∈(0,T )

sup
x∈Ω
|f(x, t)|, 〈f〉(α,α/2)

ΩT
= 〈f〉(α)

x,ΩT
+ 〈f〉(α/2)

t,ΩT
,

〈f〉(α)
x,ΩT

= sup
t∈(0,T )

sup
x,y∈Ω

|f(x, t)− f(y, t)||x− y|−α,

〈f〉(µ)
t,ΩT

= sup
x∈Ω

sup
t,τ∈(0,T )

|f(x, t)− f(x, τ)||t− τ |−µ, µ ∈ (0, 1).

We introduce the following notation:

Dr
x = ∂|r|/∂xr11 . . . ∂xrnn , r = (r1, . . . rn), ri > 0, |r| = r1 + · · ·+ rn,

Dst = ∂s/∂ts, s ∈ N ∪ {0}.
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Let k ∈ N. By definition, the space Ck+α,(k+α)/2(ΩT ) consists of functions f with finite norm

|f |(k+α, k+α
2

)

ΩT
=

∑
|r|+2s6k

|Dr
xDstf |ΩT + 〈f〉(k+α, k+α

2
)

ΩT
,

where
〈f〉(k+α, k+α

2
)

ΩT
=

∑
|r|+2s=k

〈Dr
xDstf〉

(α,α
2

)

ΩT
+

∑
|r|+2s=k−1

〈Dr
xDstf〉

( 1+α
2

)

t,ΩT
.

The symbol C
k+α, k+α

2
0 (ΩT ) denotes the subspace of Ck+α, k+α

2 (ΩT ) whose elements f has the prop-
erty: Ditf

∣∣
t=0

= 0, i = 0, ...,
[
k+α

2

]
.

We define Ck+α(Ω), k ∈ N ∪ {0}, as the space of functions f(x), x ∈ Ω, with the norm

|f |(k+α)
Ω =

∑
|r|6k

|Dr
xf |Ω + 〈f〉(k+α)

Ω .

Here
〈f〉(k+α)

Ω =
∑
|r|=k

〈Dr
xf〉

(α)
Ω =

∑
|r|=k

sup
x,y∈Ω

|Dr
xf(x)−Dr

yf(y)||x− y|−α.

We also need the following semi-norm with α, γ ∈ (0, 1):

|||||||||f|||||||||(γ,1+α)
ΩT

= 〈〈〈〈〈〈〈〈〈f〉〉〉〉〉〉〉〉〉(γ,1+α)
ΩT

+ 〈f〉(
1+α−γ

2
)

t,ΩT
,
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where

〈〈〈〈〈〈〈〈〈f〉〉〉〉〉〉〉〉〉(γ,1+α)
ΩT

= max
t,τ∈(0,T )

max
x,y∈Ω

|f(x, t)− f(y, t)− f(x, τ) + f(y, τ)|
|x− y|γ|t− τ |(1+α−γ)/2

.

It is known the estimate
〈〈〈〈〈〈〈〈〈f〉〉〉〉〉〉〉〉〉(γ,1+α)

ΩT
6 c1〈f〉

(1+α, 1+α
2

)

ΩT
.

We consider that f ∈ C(γ,1+α)(ΩT ) if |f |ΩT + |f |(γ,1+α)
ΩT

<∞.
Finally, if a function f has finite norm

|f |(γ,µ)
ΩT
≡ 〈f〉(γ)

x,ΩT
+ |f |(µ)

t,ΩT
, γ ∈ (0, 1), µ ∈ [0, 1),

where

|f |(µ)
t,ΩT

=

{
|f |ΩT + 〈f〉(µ)

t,ΩT
if µ > 0,

|f |ΩT if µ = 0,

then it belongs to the Hölder space Cγ,µ(ΩT ).
Let us set ∪Q±T = Q−T ∪Q

+
T and

|f |(k+α)

Q±
T

= |f |(k+α)

Q−
T

+ |f |(k+α)

Q+
T

,

|f |(k+α)

∪Ω± = |f |(k+α)

Ω− + |f |k+α)

Ω+ .
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Theorem 2.1. (Global existence theorem) Suppose that Γ ∈ C3+α, v0 ∈ C2+α(Ω−0 ∪ Ω+
0 ), σ ∈

C3+α(R+), σ > 0, S ∈ C2+α with some α ∈ (0, 1). Assume also the compatibility conditions
hold:

∇ · v0 = 0, v0|S = 0, [v0]|Γ = 0,

[µ±Π0S(v0)n0]
∣∣
Γ

= 0, [Π0(ν±∇2v0 −
1

ρ±
∇q0)]

∣∣
Γ

= 0, (6)(
ΠS(ν−∇2v0 −

1

ρ−
∇q0)

)∣∣∣
S

= 0,

where q0(ξ) ≡ p1(ξ, 0) is a solution of the diffraction problem

1

ρ±
∇2q0(ξ) = −∇ · DtB∗

∣∣
t=0
v0(ξ), ξ ∈ Ω−0 ∪ Ω+

0 ,

[q0]|Γ =
[
2µ±

∂v0

∂n0

· n0

]∣∣∣
Γ
− σ

(
H0(ξ) +

2

R0

)
, ξ ∈ Γ, (7)[ 1

ρ±
∂q0

∂n0

]∣∣∣
Γ

=
[
ν±n0 · ∇2v0

]∣∣
Γ
,

1

ρ−
∂q0

∂nS

∣∣∣
S

= ν−nS · ∇2v0

∣∣
S
.

Here B = A − I, I is the identity matrix, B∗ is the transpose to B, nS is the outward normal to S,
ΠSω ≡ ω − nS(nS · ω), ∂

∂n0
= n0 · ∇, ∂

∂nS
= nS · ∇, H0(ξ) = n0 · ∆(0)ξ

∣∣
Γ

is twice the mean
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curvature of Γ.

Moreover, let for t = 0 Γ is given by the equation |x| = R
(
x
|x| , 0

)
on the unit sphere S1 and the

initial data are small enough, i.e.

|v0|(2+α)

∪Ω±
0

+ |r0|(3+α)
S1

6 ε� 1, (8)

where r0(x) = R(x, 0)−R0, R0 is the radius of the ball BR0: |Ω+
0 | = 4πR3

0/3.
⇒ Problem (2), (3) is uniquely solvable on the whole positive half-axis t > 0, and the solution

(v, p1) has the properties: v ∈ C2+α,1+α/2, p1 ∈ C(γ,1+α), ∇p1 ∈ Cα,α/2, the function p1 being
defined up to a bounded time dependent function. The interface Γt is given for every t by a function
of C3+α: |x − h(t)| = R

(
x−h
|x−h| , t

)
, it tends to a sphere of the radius R0 with the center in some

point h∞. It means that for arbitrary t0 ∈ (0,∞) the solution (u, q) and its derivative in Lagrangian
coordinates are in the corresponding functional spaces over D(t0,t0+τ) ≡ ∪Q±(t0,t0+τ) for a sufficiently
small time interval (t0, t0 + τ). In addition, it holds the estimate

N(t0,t0+τ)[v, p1, r] ≡ |u|(2+α,1+α/2)
D(t0,t0+τ)

+ |∇q|(α,α/2)
D(t0,t0+τ)

+ |||||||||q|||||||||(γ,1+α)
D(t0,t0+τ)

+ sup
t∈(t0,t0+τ)

|r(·, t)|(3+α)
S1

6 ce−bt0
{
|v0|(2+α)

∪Ω±
0

+ |r0|(3+α)
S1

}
, (9)

where r(ω, t) = R(ω, t)−R0.
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3 Auxiliary propositions
Theorem 3.1. (Local existence theorem.) Let the hypotheses of Theorem 2.1 be satisfied.
⇒ For an arbitrary T > 2 there exists a such ε(T ) that problem (5) has a unique solution (u, q)

with the properties: u ∈ C2+α,1+α/2(DST ), q ∈ C(γ,1+α)(DST ), ∇q ∈ Cα,α/2(DST ) provided that

|v0|(2+α)

∪Ω±
0

+ |H0 +
2

R0

|(1+α)
Γ 6 ε(T ). (10)

The interface Γt is a surface of C3+α–class and it is given by

x = h(t) + y +N (y)r
( y
|y|
, t
)
, y ∈ SR0 = {|y| = R0},

where N(y) = y/|y|, h(t) = 1
|Ω+
t |

t∫
0

∫
Ω+
t

u(ξ, τ) dξ dτ is the barycenter of Ω+
t . Moreover, there holds

the estimate

N(0,T )[v, p1, r] 6 c
{
|v0|(2+α)

∪Ω±
0

+ |H0 +
2

R0

|(1+α)
Γ

}
(11)

6 c
{
|v0|(2+α)

∪Ω±
0

+ |r0|(3+α)
S1

}
.
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Proposition 3.1. Solution of problem (5) satisfies the inequality

N(t−1,t)[v, p1, r] 6 c
{∫ t

t−2

‖v(·, τ)‖L2(Ω) dτ +

∫ t

t−2

‖r(·, τ)‖W 1
2 (S1) dτ

}
, (12)

∀t ∈ (2, T ]. In addition, for ∀t ∈ (0, T ], the estimate

‖v(·, t)‖L2(Ω) + ‖r(·, t)‖W 1
2 (S1) 6 c1 e−bt

{
‖v0‖2

L2(Ω) + ‖r0‖2
W 1

2 (S1)

}
(13)

holds. Here Ω = Ω+
t ∪ Ω−t .

Corollary 3.1. For an arbitrary t > 2 we have

N(t−1,t)[v, p1, r] 6 c e−bt
{
‖v0‖2

L2(Ω) + ‖r0‖2
W 1

2 (S1)

}
. (14)

Corollary 3.2. The coordinates of the barycenter of Ω+
t satisfy the inequality

|h(t)| 6 1

|Ω+
t |1/2

t∫
0

‖v(·, τ)‖L2(Ω) dτ 6 c
{
‖v0‖L2(Ω) + ‖r0‖W 1

2 (S1)

}
, t ∈ (0, T ].
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3.1 Main steps of the proof of Prop. 3.1
First we prove the exponential estimate. Multiplying the first equation in (2) by ρ±v and integrating
by parts over Ω−t ∪ Ω+

t , obtain

1

2

d

dt
‖ρ±v‖2

2,Ω +
µ+

2
‖S(v)‖2

2,Ω+
t

+
µ−

2
‖S(v)‖2

2,Ω−
t

= σ

∫
Γt

(
H +

2

R0

)
n · v dΓ.

Use the formula
Hn = ∆Γtx,

here ∆Γt is the Beltrami–Laplace operator on Γt, and

σ

∫
Γt

(
H +

2

R0

)
n · v dΓ = σ

∫
Γt

v ·∆(t)x dΓ = −σ d

dt
|Γt|.

⇒
d

dt

{1

2
‖ρ±v‖2

2,Ω + σ
(
|Γt| − 4πR2

0

)}
+
µ+

2
‖S(v)‖2

2,Ω+
t

+
µ−

2
‖S(v)‖2

2,Ω−
t

= 0.
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Since v
∣∣
S

= 0, the Korn inequality holds:

‖v‖W 1
2 (Ω) 6 c0‖S(v)‖2,Ω. (15)

⇒ d

dt

{1

2
‖ρ±v‖2

2,Ω + σ
(
|Γt| − 4πR2

0

)}
+ c1‖v‖2

W 1
2 (Ω) 6 0. (16)

Multiply the first equation in problem (2) by ρ±W , where W is a solenoidal smooth function
satisfying special estimates, and integrate by parts:

d

dt

∫
Ω

ρ±v ·W dx +

∫
Ω

ρ±v · (DtW + (v · ∇)W )dx+

∫
Ω

µ±

2
S(v) : S(W ) dx

−σ
∫

Γt

(
H +

2

R0

)
n ·W dΓ = 0. (17)

Add equality (17) multiplied by small γ to inequality (16). ⇒

d

dt

{1

2
‖ρ±v‖2

2,Ω + γ

∫
Ω

ρ±v ·W dx+ σ
(
|Γt| − 4πR2

0

)}
+ γ

∫
Ω

µ±

2
S(v) : S(W ) dx

+c1‖v‖2
W 1

2 (Ω) − γ

∫
Ω

ρ±v · (DtW + (v · ∇)W ) dx+ γσ

∫
SR0

(H +
2

R0

)r̃ dSR0 6 0.
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We set the generalized energy as follows

E(t) =
1

2
‖ρ±v‖2

2,Ω + γ

∫
Ω

ρ±v ·W dx+ σ{|Γt| − 4πR2
0}.

We also put

E1(t) = c1‖v‖2
W 1

2 (Ω) − γ

∫
Ω

ρ±v · (DtW + (v · ∇)W ) dx

+ γ

∫
Ω

µ±

2
S(v) : S(W ) dx− γσ

∫
SR0

(H +
2

R0

)r̃ dSR0 .

We construct such a functionW that

E1(t) > bE(t).

⇒
d

dt
E(t) + bE(t) 6 0

from which it follows the exponential estimate due to the Gronwall lemma.
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4 The main steps of the proof of global existence Theorem 2.1

4.1 First step
By local existence theorem (Th. 3.1), ∃ a solution (v, p1) on (0, T0]. The magnitude of T0 depends on
the norms of the initial data ∼ ε.

N(0,T0)[v, p1] 6 c
(
|v0|(2+α)

∪Ω±
0

+ |H0 +
2

R0

|(1+α)
Γ

)
6 cε. (18)

We can take T > 2 if ε is sufficiently small.
Remind: Ω = Ω+

t ∪ Ω−t , |Ω| is the measure of Ω. Prop. 3.1 (the exp. estimate)⇒ for ∀t0 ∈ (2, T ]

N(t0−1,t0)[v, p1, r] 6 c6 e−bt0
{
‖v0‖2,Ω + ‖r0‖W 1

2 (S1)

}
6 c6 e−bt0

(
|Ω|

1
2 |v0|(2+α)

∪Ω±
0

+ 2π
1
2 |r0|(3+α)

S1

)
.

⇒|u(·, T )|(2+α)

∪Ω±
T

+ |r(·, T )|(3+α)
S1

6
1

2

{
|v0|(2+α)

∪Ω±
0

+ |r0|(3+α)
S1

}
,

|h(t)| 6 a, t 6 T,

where a = c1
|Ω+

0 |1/2

∞∫
0

e−bt dt
{
‖v0‖L2(Ω) + ‖r0‖W 1

2 (S1)

}
6 c2ε.
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So, the barycenter of Ω+
t tends to a point h∞ which is moved by not more than the distance a, it

being small as small ε. Hence, we can extend the solution on (T, 2T ).

4.2 Second step
We repeat our arguments. Then we have

|u(·, 2T )|(2+α)

∪Ω±
2T

+ |r(·, 2T )|(3+α)
S1

6
1

2

{
|u(·, T )|(2+α)

∪Ω±
T

+ |r(·, T )|(3+α)
S1

}
6

1

4

{
|v0|(2+α)

∪Ω±
0

+ |r0|(3+α)
S1

}
,

and for the barycenter of the internal fluid

|h(t)| 6 |h(T )|+ 1

|Ω+
0 |1/2

t∫
T

‖u(ξ(1), τ)‖L2(Ω) dτ

6
1

|Ω+
0 |1/2

{ T∫
0

‖u(ξ, τ)‖L2(Ω) dτ +

t∫
T

‖u(ξ(1), τ)‖L2(Ω) dτ
}
6 a,

t ∈ (T, 2T ). And so on.
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4.3 Transform into the Lagrangian coordinates

Now we transform the Eulerian coordinates {x} into the Lagrangian ones {ξ(1)} by a new formula

X = ξ(1) +

∫ t

T

u(ξ(1), τ) dτ, ξ(1) ∈ ∪Ω±T , t ∈ (T, 2T ), (19)

but really formula (1) is the same as earlier one:

X(ξ, t) = ξ +

∫ T

0

u(ξ, τ)dτ +

∫ t

T

u(ξ, τ)dτ, ξ ∈ ∪Ω±0 , t ∈ (T, 2T ).

The same remark applies to the barycenter of the internal fluid, since the volume of the fluid is
conserved:

h(t) = h(T0) +

t∫
T0

1

|Ω+
t |

∫
Ω+
t

v(x, τ) dx dτ =
3

4πR3
0

t∫
0

∫
Ω+
t

v(x, τ) dx dτ.

Thus, we can extend the solution on an infinite interval.
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4.4 Limiting position of the barycenter of the internal fluid
The limiting position of the barycenter is estimated from the inequality

|h∞| 6 a 6 c9

{
‖v0‖2,Ω + ‖r0‖W 1

2 (S1)

}
6 c10

(
|v0|(2+α)

∪Ω±
0

+ |r0|(3+α)
S1

)
6 c10ε. (20)

Hence the initial distance between the surfaces Γ and S should be strictly larger than c10

(
|v0|(2+α)

∪Ω±
0

+

|r0|(3+α)
S1

)
+ δ1R0, in order that the intersection of these surfaces in the future would be excluded.

Finally, using estimates obtained we prove solution uniqueness.
Theorem 2.1 is proved.
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Conclusions.
• Unsteady motion of a drop in another incompressible fluid bounded by a rigid surface is consid-

ered.
• Global existence theorem for the problem is proved in Hölder classes of functions provided that

the initial velocity of the liquids has small norm and the initial configuration of the drop is close to a
ball with center in drop’s barycenter.
• It is shown that velocity vector field decays exponentially as t → ∞ and the interface between

the liquids tends to a sphere {|x− h∞| = R0} with a center h∞ ∈ R3 close to drop’s barycenter.
• If initial data are small enough, the inner liquid will remain inside the other one during all the

time.
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