Macroscopic electrodynamics of hard superconductors

Graziano Crasta

Univ. Roma I
FBP2012, June 11, 2012

Outline

Superconductivity
Introduction
Anisotropic Bean's model
Macroscopic electrodynamics

Quasistatic evolution
Variational formulation
Magnetic and electric field

Type-II superconductors

The behavior (at $T<T_{c}$) of a superconducting sample in an external magnetic field \vec{H}_{S} is characterized by the Ginzburg-Landau parameter κ of the material.

H_{c} : critical field (type-I)

$H_{c_{1}}, H_{c_{2}}$: critical fields (type-II)

- Superconducting phase: thin layer (20-50 nm); no magnetic field in the bulk of the superconductor.
- Mixed state: partial penetration in the bulk.
- Normal conducting phase: full penetration in the bulk.

Bean's model

Bean's model (C.P. Bean, 1962): critical state model for the description of macroscopic electrodynamics for type-II hard superconductors.
Main assumption: there exists a critical current J_{c} such that:

- $|\vec{J}|=J_{c}$ in the region penetrated by the magnetic field;
- $\vec{\jmath}=0$ otherwise.

Anisotropy of J_{c}, due to $\mathrm{Cu}-\mathrm{O}$ planes, structure of defects, etc: exists $\Delta \subset \mathbb{R}^{3}$ compact convex containing a neighborhood of 0 s.t.

- $\vec{\jmath} \in \partial \Delta$, in the region penetrated by the magnetic field;
- $\vec{\jmath}=0$ otherwise.

Macroscopic electrodynamics

PROBLEM: given a superconductor $Q \subset \mathbb{R}^{3}$ in an external field $\vec{H}_{S}(t)$, find the internal magnetic field $\vec{H}(x, t)$ and the electric field $\vec{E}(x, t)$.

- Faraday's law: curl $\vec{E}=-\mu_{0} \frac{\partial \vec{H}}{\partial t}$
- Ampère's law: $\vec{J}=\operatorname{curl} \vec{H}$
- (Modified) Ohm's law: $\vec{E}=\vec{E}(\vec{J})$

Examples of material laws (Ohm's law):

- isotropic conductor: $\vec{E}(\vec{J})=r \vec{J}, r=$ resistivity
- anisotropic conductor: $\vec{E}(\vec{J})=A \vec{J}, A=$ resistivity tensor
- isotropic power-law: $\vec{E}(\vec{J})=c\left(\frac{|\vec{J}|}{J_{c}}\right)^{p} \vec{J}$
(\vec{E} and \vec{J} have the same direction).

Problem: dependence $\vec{E}=\vec{E}(\vec{J})$ in the Bean's anisotropic model.
In the isotropic case, the constraint $|\vec{J}| \leq J_{c}$ can be described by a vertical $\vec{E}-\vec{J}$ relation:

...that can be approximated by a power-law relation

$$
|\vec{E}(\vec{J})|=c\left(\frac{|\vec{J}|}{J_{c}}\right)^{p}
$$

The electric field is determined using the additional condition $\vec{E} \| \vec{J}$.

Problem: dependence $\vec{E}=\vec{E}(\vec{J})$ in the Bean's anisotropic model.

- Start from an anisotropic power law approximation for the dissipation $\vec{E} \cdot \vec{J}$:

$$
\vec{E}(\vec{J}) \cdot \vec{J}=\frac{c}{p}\left(\rho_{\Delta}(\vec{J})\right)^{p}
$$

($\rho_{\Delta}=$ gauge function of Δ).

- Deduce the dependence $\vec{E}(\vec{J})=\frac{c}{p}\left(\rho_{\Delta}(\vec{J})\right)^{p-1} D \rho_{\Delta}(\vec{J})$.
- In the limit as $p \rightarrow \infty: \vec{E}(\vec{\jmath}) \in \partial I_{\Delta}(\vec{\jmath})$

$$
\partial I_{\Delta}(\vec{J})= \begin{cases}\{0\}, & \text { if } \vec{J} \in \text { inter } \\ \left\{\lambda D \rho_{\Delta}(\vec{J}) ; \lambda \geq 0\right\}, & \text { if } \vec{J} \in \partial \Delta, \\ \emptyset, & \text { if } \vec{J} \notin \Delta\end{cases}
$$

subdifferential of the indicator function of Δ.
\Longrightarrow gives the constraint $\vec{J} \in \Delta$.

Cylindrical symmetry

- $Q=\Omega \times \mathbb{R}$, cylinder with cross-section $\Omega \subset \mathbb{R}^{2}$, smooth, simply connected;
- $\vec{H}_{S}(t)=\left(0,0, h_{S}(t)\right)$ directed along the axis of the cylinder.
\Longrightarrow By symmetry: $\vec{H}(x, t)=\left(0,0, h\left(x_{1}, x_{2}, t\right)\right)$
$\Longrightarrow \vec{J}=\operatorname{curl} \vec{H}=\left(\partial_{x_{2}} h,-\partial_{x_{1}} h, 0\right)$
Remark: $\vec{J} \in \Delta \Longleftrightarrow D h \in K$, where $K \subset \mathbb{R}^{2}$ is the rotation of the section $z=0$ of Δ.

Quasistatic evolution

Time discretization in $[0, T]: \delta t=T / n, t_{i}=i \delta t$,
$\vec{H}_{i}=\left(0,0, h_{i}\right)=\vec{H}\left(t_{i}\right), \vec{E}_{i}=\vec{E}\left(t_{i}\right)$.
Goal: obtain the variational formulation of the anisotropic Bean's model proposed by Badía - López using 「-convergence of the power law approximation.
Power law for dissipation: $\vec{E}(\vec{J}) \cdot \vec{J}=\frac{c}{p}\left(\rho_{\Delta}(\vec{J})\right)^{p}$
Discretized Faraday's law: curl $\vec{E}_{i+1}=-\mu_{0} \frac{\vec{H}_{i+1}-\vec{H}_{i}}{\delta t}$
\Longrightarrow admits the variational formulation
$J_{p}(h)=\int_{\Omega} \frac{1}{p}[\rho(D h)]^{p}+\frac{\mu_{0}}{2 c \delta t}\left(h-h_{i}\right)^{2}, \quad h \in h_{s}\left(t_{i+1}\right)+W_{0}^{1, p}(\Omega)$
i.e., h_{i+1} is the unique minimum point of J_{p} in $h_{s}\left(t_{i+1}\right)+W_{0}^{1, p}(\Omega)$.
$\rho=\rho_{K}=$ gauge function of $K \subset \mathbb{R}^{2}$.

Convergence

Theorem (G.C. - A. Malusa)
$u_{p} \in h_{s}\left(t_{i+1}\right)+W_{0}^{1, p}(\Omega)$: unique minimum point of $J_{p}, p \geq 1$.
$h_{i+1} \in h_{s}\left(t_{i+1}\right)+W_{0}^{1,1}(\Omega)$: unique minimum point of

$$
J(u)=\int_{\Omega} I_{K}(D u)+\left(u-h_{i}\right)^{2}, \quad u \in h_{s}\left(t_{i+1}\right)+W_{0}^{1,1}(\Omega)
$$

Then, for every $q>1,\left(u_{p}\right)$ converges to h_{i+1} in weak- $W^{1, q}$.
Conclusion: the variational formulation of Bean's law is based on functional J. Given h_{i}, we have $h_{i+1}=$ unique minimum point of J.
Remark: variational formulation proposed by Badía-López (2002) starting from physical considerations.

Candidate solution

h_{i+1} : unique minimum point of

$$
J(u)=\int_{\Omega} I_{K}(D u)+\left(u-h_{i}\right)^{2}, \quad u \in h_{s}\left(t_{i+1}\right)+W_{0}^{1,1}(\Omega) .
$$

Minkowski distance w.r.t. K : $d(x)=\min _{y \in \partial \Omega} \rho_{K}^{0}(x-y)$
($\rho_{K}^{0}=$ polar of the gauge function of K)
\Longrightarrow viscosity solution of $\rho(D u)=1$ in $\Omega, u=0$ on $\partial \Omega$.
Minkowski distance w.r.t. $-K$:
$d^{-}(x)=\min _{y \in \partial \Omega} \rho_{-K}^{0}(x-y)=\min _{y \in \partial \Omega} \rho_{K}^{0}(y-x)$
\Longrightarrow viscosity solution of $-\rho(D u)=-1$ in $\Omega, u=0$ on $\partial \Omega$.

Solution of the minimum problem:

$$
h_{i+1}(x)= \begin{cases}d(x)+h_{s}\left(t_{i+1}\right), & \text { if } x \in \Omega^{+}=\left\{h_{i}>d\right\}, \\ -d^{-}(x)+h_{s}\left(t_{i+1}\right), & \text { if } x \in \Omega^{-}=\left\{h_{i}<-d^{-}\right\}, \\ h_{i}(x), & \text { if } x \in \Omega^{0}=\Omega \backslash\left(\Omega^{+} \cup \Omega^{-}\right) .\end{cases}
$$

1D heuristics
$K=[-1,2]$
$J(h)=\int_{\Omega}\left|h-h_{i}\right|^{2}+I_{K}(D h)$
$h=0$ on $\partial \Omega$

Decomposition of Ω in transport rays

Ω can be decomposed in transport rays (paths of minimal distance from the boundary): two possible decompositions, one for d and one for d^{-}.
Example: $h_{i}(y)>0$.

$\nu(y)=$ inward Euclidean normal of $\partial \Omega$ at y
$I(y)=$ length of the transport ray
\Longrightarrow on each transport ray apply the 1D-heuristics.

Electric field

The variational formulation of the problem permits the computation of the main variable \vec{H}. Unfortunately, in the critical state model the electric field \vec{E} cannot be computed using the current-voltage relation.

How to compute \vec{E} for parallel geometry:

- Badía-López: compute \vec{E} along paths of vortex penetration
- Barrett-Prigozhin: solve a dual variational problem for \vec{E}
- G.C.-Malusa (and also Cannarsa-Cardaliaguet): solve a mass transport problem of Monge-Kantorovich type

Electric field - mass transport approach

Theorem (Dual function)

\exists a non-negative continuous function v_{i} such that

$$
-\operatorname{div}\left(v_{i} D \rho\left(D h_{i}\right)\right)=h_{i-1}-h_{i} \quad \text { in } \Omega
$$

Interpretation: $w_{i}=v_{i} / \delta t$ is the (discretized) dissipated power density, and $E_{i}=w_{i} D \rho\left(D h_{i}\right)$ is the (discretized) electric field. If $\Omega \in C^{2}, v_{i}$ has an explicit representation in terms of the anisotropic principal curvatures of $\partial \Omega$ and the normal distance from cut locus.

Techniques developed in G.C., Malusa: Trans. Amer. Math. Soc. 2007, Arch. Rational Mech. Anal. 2009, Calc. Var. 2012
Isotropic case ($K=$ ball):
Cannarsa, Cardaliaguet, G.C., Giorgieri: Calc. Var. 2005

Selected references

- Badía, López, Phys. Rev. B 2002, J. Low Temp. Phys. 2003, J. Appl. Phys. 2004: anisotropic Bean's model
- Barrett, Prigozhin, Nonlinear Anal. 2000, Interf. Free Boundaries 2006, M3AS 2010: isotropic Bean's model, variational inequalities
- Brandt et al., Phys. Rev. B 1996 and 2000: numerical and experimental data

Proof of the minimality of $h=h_{i+1}$

$$
\begin{aligned}
& \partial I_{K}(\xi)= \begin{cases}\{0\}, & \text { if } \xi \in \text { int } K \\
\{t D \rho(\xi) ; t \geq 0\}, & \text { if } \xi \in \partial K \\
\emptyset, & \text { if } \xi \notin K\end{cases} \\
& v_{i} \geq 0, v_{i}=0 \text { in } \Omega^{0} \Longrightarrow 2 v_{i}(x) D \rho(D h(x)) \in \partial I_{K}(D h(x))
\end{aligned}
$$

For every $w \in h_{s}\left(t_{i+1}\right)+W_{0}^{1,1}(\Omega)$:
$I_{K}(D w(x))-I_{K}(D h(x)) \geq 2 v_{i}(x)\langle D \rho(D h(x)), D w(x)-D h(x)\rangle$

$$
\begin{aligned}
J(w)-J(h) \geq & \int_{\Omega} 2 v_{i}(x)\langle D \rho(D h(x)), D w(x)-D h(x)\rangle \\
& +\int_{\Omega}\left(w-h_{i}\right)^{2}-\left(h-h_{i}\right)^{2}
\end{aligned}
$$

$$
[\text { Nec. cond. }]=\int_{\Omega} 2(w-h)\left(h_{i}-h\right)+\left(w-h_{i}\right)^{2}-\left(h-h_{i}\right)^{2}
$$

$$
=\int_{\Omega}(h-w)^{2}
$$

Quasistatic evolution

- Start with $h(x, 0)=h_{0}(x) \in \operatorname{Lip}_{K}(\Omega), h_{0}=h_{S}(0)$ on $\partial \Omega$.
- $h_{i+1}=$ internal magnetic field at time t_{i+1}
\Longrightarrow solution of the minimization problem $\min \left\{\int_{\Omega} \frac{\mu_{0}}{2}\left|h-h_{i}\right|^{2}+\delta t I_{K}(D h) ; h \in h_{S}\left(t_{i+1}\right)+W_{0}^{1,1}(\Omega)\right\}$
- By the existence and uniqueness theorem, $h_{i+1}(x)=\left[h_{i}(x) \vee\left(h_{S}\left(t_{i+1}\right)-d^{-}(x)\right)\right] \wedge\left(h_{S}\left(t_{i+1}\right)+d(x)\right)$
- Explicit formula for monotone external field:

1. h_{S} monotone increasing in $[0, T]$:

$$
h_{i}(x)=h_{0}(x) \vee\left(h_{S}\left(t_{i}\right)-d^{-}(x)\right)
$$

2. h_{S} monotone decreasing in $[0, T]$:

$$
h_{i}(x)=h_{0}(x) \wedge\left(h_{S}\left(t_{i}\right)+d(x)\right)
$$

The limit $\delta t \rightarrow 0$

For $\delta t=T / n, n \in \mathbb{N}^{+}$, construct h_{i} as above and define $h^{n}(x, t)=h_{i}(x)$, for $t \in\left[t_{i}, t_{i+1}\right)$

Assume monotone external field; as $n \rightarrow \infty(\delta t \rightarrow 0)$

- h_{S} increasing: $h^{n}(x, t) \rightarrow h(x, t)=h_{0}(x) \vee\left(h_{S}(t)-d^{-}(x)\right)$
- h_{S} decreasing: $h^{n}(x, t) \rightarrow h(x, t)=h_{0}(x) \wedge\left(h_{S}(t)+d(x)\right)$
\Longrightarrow the internal magnetic field can be explicitly computed if h_{S} is piecewise monotone.

In a similar way construct the approximated power dissipation $w^{n}(x, t)$, which converges pointwise to a function $w(x, t)$
\Longrightarrow electric field: $\vec{E}(x, t)=w(x, t) D \rho(D h(x, t))$.
Convergence: $h^{n} \rightarrow h$ uniformly in $\bar{\Omega} \times[0, T]$ $w^{n}(t) \rightarrow w(t)$ in $L^{p}(\Omega), p \geq 1$, uniformly in $[0, T]$.

Example

The section Ω, the constraints set K; Level sets and 3D-plot of the distance d.

Example: plot of h

Hysteresis loop

Hysteresis loop: magnetization $\vec{M}=\langle\vec{H}\rangle-\vec{H}_{S}$ versus external field \vec{H}_{S}.

The electric field

$$
\vec{E} \in \partial I_{K}(\vec{J}) \Longrightarrow \exists w(x, t) \geq 0 \text { s.t. } \vec{E}(x, t)=w(x, t) D \rho(D h(x, t)) .
$$

Meaning of $w(x, t)$: the power dissipation density of the sample is

$$
\begin{aligned}
\vec{E} \cdot \vec{J} & =w(x, t)\langle D \rho(D h(x, t)), D h(x, t)\rangle \\
& =w(x, t) \rho(D h(x, t))=w(x, t)
\end{aligned}
$$

Construction of w: in the discretized setting, from the necessary conditions we have unique functions v_{i} (with explicit integral representation) such that
$-\operatorname{div}\left(\frac{v_{i+1}}{\delta t} D \rho\left(D h_{i+1}\right)\right)=-\frac{h_{i+1}-h_{i}}{\delta t}$
Set $w_{i}=v_{i} / \delta t$ and $w^{n}(x, t)=w_{i}(x)$ for $t \in\left[t_{i}, t_{i+1}\right)$.
Then $w^{n} \rightarrow w$, and $\vec{E}=w D \rho(D h)$ satisfies Faraday's law.

Example: plot of w

Conclusion and outlook

What we have done...

- Strong mathematical justification of the anisotropic variational formulation of Bean's law suggested by Badía and López.
- Explicit form of both magnetic field and electric field inside the superconductor; explicit computation of the dissipated power density (very important for the stability analysis of the superconducting phase).
...and what remains to do:
- Nonhomogeneous samples (general Finsler metric instead of Minkowski); quasivariational approach by Barrett-Prigozhin 2010, Miranda-Rodrigues-Santos 2012, Rodrigues-Santos 2012.
- True 3D analysis (no cylindrical symmetry); samples with cavities

