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Type-II superconductors
The behavior (at T < Tc) of a superconducting sample in an
external magnetic field ~HS is characterized by the Ginzburg-Landau
parameter κ of the material.
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I Superconducting phase: thin layer (20-50
nm); no magnetic field in the bulk of the
superconductor.

I Mixed state: partial penetration in the
bulk.

I Normal conducting phase: full penetration
in the bulk.



Bean’s model

Bean’s model (C.P. Bean, 1962): critical state model for the
description of macroscopic electrodynamics for type-II hard
superconductors.
Main assumption: there exists a critical current Jc such that:

I |~J| = Jc in the region penetrated by the magnetic field;

I ~J = 0 otherwise.

Anisotropy of Jc , due to Cu-O planes, structure of defects, etc:
exists ∆ ⊂ R3 compact convex containing a neighborhood of 0 s.t.

I ~J ∈ ∂∆, in the region penetrated by the magnetic field;

I ~J = 0 otherwise.



Macroscopic electrodynamics

PROBLEM: given a superconductor Q ⊂ R3 in an external field
~HS(t), find the internal magnetic field ~H(x , t) and the electric field
~E (x , t).

I Faraday’s law: curl ~E = −µ0
∂~H

∂t
I Ampère’s law: ~J = curl ~H

I (Modified) Ohm’s law: ~E = ~E (~J)

Examples of material laws (Ohm’s law):

I isotropic conductor: ~E (~J) = r ~J, r = resistivity

I anisotropic conductor: ~E (~J) = A~J, A = resistivity tensor

I isotropic power-law: ~E (~J) = c

(
|~J|
Jc

)p

~J

(~E and ~J have the same direction).



Problem: dependence ~E = ~E (~J) in the Bean’s anisotropic model.

In the isotropic case, the constraint |~J| ≤ Jc can be described by a
vertical ~E–~J relation:
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...that can be approximated by a power-law relation

|~E (~J)| = c

(
|~J|
Jc

)p

.

The electric field is determined using the additional condition ~E ||~J.



Problem: dependence ~E = ~E (~J) in the Bean’s anisotropic model.

I Start from an anisotropic power law approximation for the
dissipation ~E · ~J:

~E (~J) · ~J =
c

p

(
ρ∆(~J)

)p
(ρ∆ = gauge function of ∆).

I Deduce the dependence ~E (~J) =
c

p

(
ρ∆(~J)

)p−1
Dρ∆(~J).

I In the limit as p →∞: ~E (~J) ∈ ∂I∆(~J)

∂I∆(~J) =


{0}, if ~J ∈ interior of ∆,

{λDρ∆(~J); λ ≥ 0}, if ~J ∈ ∂∆,

∅, if ~J 6∈ ∆
subdifferential of the indicator function of ∆.
=⇒ gives the constraint ~J ∈ ∆.



Cylindrical symmetry

S

Ω H=(0,0,h)

SH =(0,0,h  )

I Q = Ω× R, cylinder with cross-section Ω ⊂ R2, smooth,
simply connected;

I ~HS(t) = (0, 0, hS(t)) directed along the axis of the cylinder.

=⇒ By symmetry: ~H(x , t) = (0, 0, h(x1, x2, t))
=⇒ ~J = curl ~H = (∂x2h,−∂x1h, 0)

Remark: ~J ∈ ∆ ⇐⇒ Dh ∈ K , where K ⊂ R2 is the rotation of
the section z = 0 of ∆.



Quasistatic evolution

Time discretization in [0,T ]: δt = T/n, ti = iδt,
~Hi = (0, 0, hi ) = ~H(ti ), ~Ei = ~E (ti ).

Goal: obtain the variational formulation of the anisotropic Bean’s
model proposed by Bad́ıa - López using Γ-convergence of the
power law approximation.

Power law for dissipation: ~E (~J) · ~J =
c

p

(
ρ∆(~J)

)p
Discretized Faraday’s law: curl ~Ei+1 = −µ0

~Hi+1 − ~Hi

δt
=⇒ admits the variational formulation

Jp(h) =

∫
Ω

1

p
[ρ(Dh)]p+

µ0

2cδt
(h−hi )2, h ∈ hs(ti+1)+W 1,p

0 (Ω)

i.e., hi+1 is the unique minimum point of Jp in hs(ti+1) +W 1,p
0 (Ω).

ρ = ρK = gauge function of K ⊂ R2.



Convergence

Theorem (G.C. - A. Malusa)

up ∈ hs(ti+1) + W 1,p
0 (Ω): unique minimum point of Jp, p ≥ 1.

hi+1 ∈ hs(ti+1) + W 1,1
0 (Ω): unique minimum point of

J(u) =

∫
Ω
IK (Du) + (u − hi )

2 , u ∈ hs(ti+1) + W 1,1
0 (Ω).

Then, for every q > 1, (up) converges to hi+1 in weak-W 1,q.

Conclusion: the variational formulation of Bean’s law is based on
functional J. Given hi , we have hi+1 = unique minimum point of
J.
Remark: variational formulation proposed by Bad́ıa-López (2002)
starting from physical considerations.



Candidate solution

hi+1: unique minimum point of

J(u) =

∫
Ω
IK (Du) + (u − hi )

2 , u ∈ hs(ti+1) + W 1,1
0 (Ω).

Minkowski distance w.r.t. K : d(x) = min
y∈∂Ω

ρ0
K (x − y)

(ρ0
K = polar of the gauge function of K )

=⇒ viscosity solution of ρ(Du) = 1 in Ω, u = 0 on ∂Ω.

Minkowski distance w.r.t. −K :
d−(x) = min

y∈∂Ω
ρ0
−K (x − y) = min

y∈∂Ω
ρ0
K (y − x)

=⇒ viscosity solution of −ρ(Du) = −1 in Ω, u = 0 on ∂Ω.



Solution of the minimum problem:

hi+1(x) =


d(x) + hs(ti+1), if x ∈ Ω+ = {hi > d},
−d−(x) + hs(ti+1), if x ∈ Ω− = {hi < −d−},
hi (x), if x ∈ Ω0 = Ω \ (Ω+ ∪ Ω−).

1D heuristics

K = [−1, 2]

J(h) =

∫
Ω
|h − hi |2 + IK (Dh)

h = 0 on ∂Ω

ih

Ω

d

−d−

ih

Ω

d

−d−

h



Decomposition of Ω in transport rays

Ω can be decomposed in transport rays (paths of minimal distance
from the boundary):
two possible decompositions, one for d and one for d−.

Example: hi (y) > 0.

i

(y)
hi+1 =h

ν

Ω

y

D   (  (y))ρ ν transport ray

point on cut locus

y hi+1=d

ν(y) = inward Euclidean normal of ∂Ω at y
l(y) = length of the transport ray

=⇒ on each transport ray apply the 1D-heuristics.



Electric field

The variational formulation of the problem permits the
computation of the main variable ~H. Unfortunately, in the critical
state model the electric field ~E cannot be computed using the
current-voltage relation.

How to compute ~E for parallel geometry:

I Bad́ıa-López: compute ~E along paths of vortex penetration

I Barrett-Prigozhin: solve a dual variational problem for ~E

I G.C.-Malusa (and also Cannarsa-Cardaliaguet): solve a mass
transport problem of Monge-Kantorovich type



Electric field – mass transport approach

Theorem (Dual function)

∃ a non-negative continuous function vi such that

− div(vi Dρ(Dhi )) = hi−1 − hi in Ω.

Interpretation: wi = vi/δt is the (discretized) dissipated power
density, and Ei = wi Dρ(Dhi ) is the (discretized) electric field.
If Ω ∈ C 2, vi has an explicit representation in terms of the
anisotropic principal curvatures of ∂Ω and the normal distance
from cut locus.

Techniques developed in
G.C., Malusa: Trans. Amer. Math. Soc. 2007, Arch. Rational
Mech. Anal. 2009, Calc. Var. 2012

Isotropic case (K = ball):
Cannarsa, Cardaliaguet, G.C., Giorgieri: Calc. Var. 2005
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Proof of the minimality of h = hi+1

∂IK (ξ) =


{0}, if ξ ∈ intK

{t Dρ(ξ); t ≥ 0}, if ξ ∈ ∂K
∅, if ξ 6∈ K

vi ≥ 0, vi = 0 in Ω0 =⇒ 2vi (x)Dρ(Dh(x)) ∈ ∂IK (Dh(x))

For every w ∈ hs(ti+1) + W 1,1
0 (Ω):

IK (Dw(x))− IK (Dh(x)) ≥ 2vi (x)〈Dρ(Dh(x)), Dw(x)− Dh(x)〉

J(w)− J(h) ≥
∫

Ω
2vi (x)〈Dρ(Dh(x)), Dw(x)− Dh(x)〉

+

∫
Ω

(w − hi )
2 − (h − hi )

2

[Nec. cond.] =

∫
Ω

2(w − h)(hi − h) + (w − hi )
2 − (h − hi )

2

=

∫
Ω

(h − w)2



Quasistatic evolution

I Start with h(x , 0) = h0(x) ∈ LipK (Ω), h0 = hS(0) on ∂Ω.

I hi+1 = internal magnetic field at time ti+1

=⇒ solution of the minimization problem

min

{∫
Ω

µ0

2
|h − hi |2 + δt IK (Dh); h ∈ hS(ti+1) + W 1,1

0 (Ω)

}
I By the existence and uniqueness theorem,

hi+1(x) =
[
hi (x) ∨ (hS(ti+1)− d−(x))

]
∧ (hS(ti+1) + d(x))

I Explicit formula for monotone external field:
1. hS monotone increasing in [0,T ]:

hi (x) = h0(x) ∨ (hS(ti )− d−(x))
2. hS monotone decreasing in [0,T ]:

hi (x) = h0(x) ∧ (hS(ti ) + d(x))



The limit δt → 0

For δt = T/n, n ∈ N+, construct hi as above and define
hn(x , t) = hi (x), for t ∈ [ti , ti+1)

Assume monotone external field; as n→∞ (δt → 0)

I hS increasing: hn(x , t)→ h(x , t) = h0(x) ∨ (hS(t)− d−(x))

I hS decreasing: hn(x , t)→ h(x , t) = h0(x) ∧ (hS(t) + d(x))

=⇒ the internal magnetic field can be explicitly computed if hS is
piecewise monotone.

In a similar way construct the approximated power dissipation
wn(x , t), which converges pointwise to a function w(x , t)
=⇒ electric field: ~E (x , t) = w(x , t)Dρ(Dh(x , t)).

Convergence: hn → h uniformly in Ω× [0,T ]
wn(t)→ w(t) in Lp(Ω), p ≥ 1, uniformly in [0,T ].



Example
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The section Ω, the constraints set K ; Level sets and 3D-plot of the
distance d .



Example: plot of h
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Hysteresis loop
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Hysteresis loop: magnetization ~M = 〈~H〉 − ~HS versus external field
~HS .



The electric field

~E ∈ ∂IK (~J) =⇒ ∃ w(x , t) ≥ 0 s.t. ~E (x , t) = w(x , t)Dρ(Dh(x , t)).

Meaning of w(x , t): the power dissipation density of the sample is

~E · ~J = w(x , t) 〈Dρ(Dh(x , t)), Dh(x , t)〉
= w(x , t) ρ(Dh(x , t)) = w(x , t)

Construction of w :
in the discretized setting, from the necessary conditions we have
unique functions vi (with explicit integral representation) such that

− div
(vi+1

δt
Dρ(Dhi+1)

)
= −hi+1 − hi

δt
Set wi = vi/δt and wn(x , t) = wi (x) for t ∈ [ti , ti+1).
Then wn → w , and ~E = w Dρ(Dh) satisfies Faraday’s law.



Example: plot of w



Conclusion and outlook

What we have done...

I Strong mathematical justification of the anisotropic variational
formulation of Bean’s law suggested by Bad́ıa and López.

I Explicit form of both magnetic field and electric field inside
the superconductor; explicit computation of the dissipated
power density (very important for the stability analysis of the
superconducting phase).

...and what remains to do:

I Nonhomogeneous samples (general Finsler metric instead of
Minkowski); quasivariational approach by Barrett-Prigozhin
2010, Miranda-Rodrigues-Santos 2012, Rodrigues-Santos
2012.

I True 3D analysis (no cylindrical symmetry); samples with
cavities
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